ID |
Date |
Author |
Type |
Category |
Subject |
616
|
Wed Aug 23 07:48:14 2023 |
Camille Makarem, Tejas | Optics | Characterization | FSR and TMS measuarement of A+ build |
[Camille, Thejas]
22 August 2023
We used the network analyzer to measure the FSR of the cavity using the method described in section 3.2.1 of T1500060. We locked the OMC cavity and maximized transmission the TEM00 mode. (REFL PD signal was ~45-50mV and REFL CCD looked the same as in 610). We adjusted to input offset on the servo module (REFL PD signal ~95mV) and recorded the transfer function between the modulation signal (channel R) and the transmission PD signal (channel A). (See attached picture of transfer function and phase.) We fit the FSR data to the code to get a value of 264.658982 MHz.
We also recorded the TMS of the cavity (with 0V to the PZTs). We measured the horizontal and vertical mode spacing separately. After maximizing transmission of TEM00, we then used the fiber coupler to misalign in the vertical direction first (REFL PD signal ~100). Using the network analyzer, we observed the peak at ~58 MHz. We then misaligned the mirror that steers the transmited beam to the PD. We clipped the transmitted beam so as to maximize the peak at ~58 MHz. (See attached spectrum.)
We recoved vertical alignment and then repeated this process for the horizontal direction. (See attached spectrum.)
Analysis in the next elog entry.
File names:
test_22-08-2023_160812 --> FSR
test_22-08-2022_165728 --> TMS vertical
test_22-08-2022_170543 --> TMS horizontal
https://gla-my.sharepoint.com/personal/t_seetharamu_1_research_gla_ac_uk/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Ft%5Fseetharamu%5F1%5Fresearch%5Fgla%5Fac%5Fuk%2FDocuments%2FA%2B%20OMC%20%231%2F22%5F08%5F2023&view=0 |
617
|
Thu Aug 24 12:30:58 2023 |
Camille Makarem, Thejas | Optics | Characterization | FSR and TMS analysis |
Attached are the analysis results from the measurements in 616.
FSR: 264.657354 +/- 0.003444 MHz
Pitch TMS: 58.45691858660249 MHz
Yaw TMS: 58.55821902092523 MHz
The attached plot shows the HOM spectrum with their sidebands. We see that there is overlap between TEM00 and one of the 9th-order modes which means this higher order mode will resonate with the TEM00 carrier.
We estimate that by increasing the FSR to ~266.7 MHz, we will avoid this as shown in the next attached plot (HOM_scan.pdf).
This will require us to decrease the cavity length by 16mm (4 mm each mirror). We plan begin adjusting the micrometers this afternoon. |
618
|
Thu Aug 24 16:09:46 2023 |
Camille Makarem | Optics | General | PZT length-to-angle coupling |
[Camille, Thejas]
We checked the length-to-angle coupling of each PZT by monitoring the position of the transmitted beam on the CCD camera. The CCD camera was placed behind the steering mirror that guides the transmitted beam to the PD. We used a ThorLabs piezo controller to actuate the PZT.
We first tested PZT2. We increased the voltage to PZT2 in 50V increments from 0V to 150V. We did not observe any change in the position of the transmitted beam. We monitored the signal of the TRANS PD on the scope and did not see any change. (The signal was between 191-195V.) We monitored the REFL CCD and did see changes in the beamshape, which was expected (see pictures). The REFL PD signal also increased slightly with PZT actuation (see attachment).
We repeated this process for PZT1, which showed similar results (see attachment). We did not observe any movement in the position of the transmitted beam. Increasing PZT voltage shows increasing pitch misalignment in the REFL CCD and increasing REFL PD signal. |
621
|
Wed Aug 30 12:38:52 2023 |
Thejas | Optics | General | A+ OMC #1: HOM spectrum |
Examination into bonding template confimred the limitation of space available to change cavity length by at least 10 mm to improve the cavity HOM spectrum. Here's an anlysis of HOM spectrum for various possible ROCs and corresponding required cavity length change for optimum HOM spectrum.
Assume: Astigmatism: Rx-Ry = 8mm
Current cavity length: 1.132 m
Ry = measured, Desired Cavity length: <1.12476 m
Ry = 2.5 m, Desired cav length: >1.13876 m
Ry = 2.55 m, “: No change
Ry = 2.6 m, “:<1.12
So travel range of ~ (1.138 - 1.12) / 4 = 5 mm on each CM is required. WIth a safety factor for alignemnt say we require 30 mm/4 ~ 7 mm on each curved mirror. |
623
|
Mon Sep 18 15:08:26 2023 |
Thejas | Optics | General | OMC HEPA enclosure filter fan speed |
I went in lab today and turned the HEPA filter (clsoe to the entrance) to high since we are not doing any measurements at the moment.
|
624
|
Mon Sep 18 15:09:55 2023 |
Thejas | Optics | CAvity Bonding | Piezo inertial micromaters |
New piezo actuated micrometers from thorlabs arrived last week.
4 x MPIA10
1 x KPS201
1 x KIM101
One of the micrometers' fucntioning was checked (SN..229). The micrometer was checked in jogging mode and velocity control mode using the software.
|
52
|
Sun Jan 6 23:22:21 2013 |
Koji | Mechanics | General | SolidWorks model of the OMC suspension |

|
58
|
Tue Jan 22 17:56:32 2013 |
Koji | Mechanics | General | Rotary stage selection |
Newport UTR80
Newport 481-A (SELECTED)
- Sensitivity: 15 arcsec
- Graduations: 1 deg
- Vernier: 5 arcmin
- Fine travel range: 5 deg
- With Micrometer
Newport RS40
- Sensitivity: 16 arcsec
- Graduations: 2 deg
- Vernier: 12 arcmin
- Fine travel range: 10 deg
- Micrometer BM11.5
Newport RS65
- Sensitivity: 11 arcsec
- Graduations: 2 deg
- Vernier: 12 arcmin
- Fine travel range: 10 deg
- Micrometer SM-06 to be bought separately
Elliot science MDE282-20G
- Sensitivity: 5 arcsec
- Graduations: 2 deg
- Vernier: 10 arcmin
- Fine travel range: 10 deg
- Micrometer 2 arcmin/1div
- Metric
Suruga precision B43-110N
Thorlabs precision B43-110N
|
69
|
Thu Mar 7 15:53:47 2013 |
Koji | Mechanics | General | OMC Transportation fixture, OMC PD/QPD mounts |




|
70
|
Thu Mar 14 17:06:21 2013 |
Koji | Mechanics | General | OMC SUS work @LLO |
EDIT (ZK): All photos on Picasa. Also, I discovered that since Picasa was migrated to Google+ only,
you no longer have the option to embed a slideshow like you used to. Lame, Google.
Photos sent from Zach
(3D VIEW)
 
|
90
|
Mon Apr 1 10:28:03 2013 |
Koji | Mechanics | General | Additional UV blast for the top surface |
[Koji, Lisa, Jeff, Zach]
Jeffs concern after talking with the glue company (EMI) was that the UV blast for the top side was not enough.
First we wanted to confirm if too much blasting is any harmful for the glue joint.
We took a test joint of FS-FS with the UV epoxy. We blasted the UV for 1min with ~15mm distance from the joint.
After the observation of the joint, we continued to blast more.
In total, we gave additional 5min exposure. No obvious change was found on the joint.

Then proceed to blast the OMC top again. We gave 1 min additional blast on each glue joint.

|
92
|
Wed Apr 3 17:39:38 2013 |
Koji | Mechanics | Characterization | Calibration of the test PZTs before the glue test |
We want to make sure the responses of the PZT actuator does not change after the EP30-2 gluing.
A shadow sensor set up was quickly set-up at the fiber output. It turned out the ring PZTs are something really not-so-straightforward.
If the PZT was free or just was loosely attached on a plane by double-sided tape, the actuation response was quite low (30% of the spec).
After some struggle, I reached the conclusion that the PZT deformation is not pure longitudinal but some 3-dimensional, and you need to
use a "sandwitch" with two flat surfaces with some pressue.
I turned the setup for horizontal scans to the vertical one, and put the PZT between quarter-inch spacers.
Then two more spacers are placed on the stack so that the weight applies the vertical pressure on the PZT.
This is also use ful to adjust the height of the shadow.

The calibration plot is attached. It gives us ~21k V/m.
Voltage swing of 150V results the output voltage change of ~50mV. This is pretty close to what is expected from the spec (16nm/V).
The PZT#3 (which had the mirror glued on) showed significantly large response.
Test PZT #1: 17.4nm/V
Test PZT #2: 17.2nm/V
Test PZT #3: 30.6nm/V
UHV PZT #24: 17.6nm/V
These numbers will be checked after the heat cure of EP30-2 |
98
|
Fri Apr 5 14:39:26 2013 |
Koji | Mechanics | Characterization | Calibration of the test PZTs after the heat cure |
We attached fused silica windows on the test PZTs. http://nodus.ligo.caltech.edu:8080/OMC_Lab/93
The glued assemblies were brought to Bob's bake lab for the heat cure. There they are exposed to 94degC heat for two hours (excluding ramp up/down time).
After the heat cure, we made the visual inspection.
The photos are available here.
Pre-bake
Test PZT #1: 17.4nm/V
Test PZT #2: 17.2nm/V
Test PZT #3: 30.6nm/V
Post-bake
Test PZT #1: 27.2 nm/V
Test PZT #2: 26.9 nm/V
Test PZT #3: 21.4 nm/V
Measurement precision is ~+/-20%
Spec is 14nm/V |
102
|
Mon Apr 8 11:49:18 2013 |
Koji | Mechanics | Characterization | PZT actuator tested at LLO |
Test result of the PZTs by Valera and Ryan
PZT Length Angle
# [nm/V] [urad/um]
11 14.5 17.6
12 13.8 17.8
13 11.2 25.0
14 14.5 6.6
15 12.5 10.6
21 14.5 9.7
22 13.8 28.8
23 14.5 6.8 ==> Assembly #2
24 18.5 51.7 ==> Used for prototyping
25 17.1 13.8
26 14.5 6.6 ==> Assembly #1
|
124
|
Mon May 13 14:49:35 2013 |
Koji | Mechanics | Characterization | Mounting Glass Bracket still broke with tightenin stress |
[Koji / Jeff]
This is the elog about the work on May 9th.
We made two glass brackets glue on the junk 2" mirrors with the UV glue a while ago when we used the UV bonding last time.
On May 7th:
We applied EP30-2 to the glass brackets and glued invar shims on them. These test pieces were left untouched for the night
and brought to Bob for heat curing at 94degC for two hours.
On May 9th:
We received the test pieces from Bob.
First, a DCPD mount was attached on one of the test pieces. The fasteners were screwed at the torque of 4 inch lb.
It looked very sturdy and Jeff applied lateral force to break it. It got broken at once side of the bracket.
We also attached the DCPD mount to the other piece. This time we heard cracking sound at 2 inch lb.
We found that the bracket got cracked at around the holes. As the glass is not directly stressed by the screws
we don't understand the mechanism of the failure.
After talking to PeterF and Dennis, we decided to continue to follow the original plan: glue the invar shims to the brackets.
We need to limit the fastening torque to 2 inch lb.
|
125
|
Mon May 13 14:59:16 2013 |
Koji | Mechanics | General | Invar shim gluing |
The invar reinforcement shims were glued on the glass brackets on the breadboard.
We worked on the light side on May 10th and did on the dark side on May 13rd.
U-shaped holding pieces are used to prevent each invar shim to be slipped from the right place.
We are going to bring the OMC breadboard to the bake oven tomorrow to cure the epoxies and promote the outgasing.
|
130
|
Thu May 23 23:41:48 2013 |
Koji | Mechanics | General | DCPD/QPD Mount |
DCPD mounts and QPD mounts were attached on the breadboard. They are not aligned yet and loosely fastened.
DCPD (mounting 4-40x5/16 BHCS Qty4)
Face plates fatsened by 4-40x5/16 BHCS (24 out of 40)
Housing Face plate Destination PD
002 002 L1OMC DCPD1 #10
003 003 L1OMC DCPD2 #11
004 004 H1OMC DCPD1
008
005 H1OMC DCPD2
009
006 I1OMC DCPD1
010
007 I1OMC DCPD2
QPD (mounting 4-40x5/16 BHCS Qty4)
Face plates fatsened by 4-40x1/4 BHCS (24 out of 80)
Housing Face plate Destination QPD
002 002 L1OMC QPD1 #38 #43 swapped on 29th May.
003 003 L1OMC QPD2 #43 #38
swapped on 29th May.
004
004
H1OMC QPD1
005
005
H1OMC QPD2
006
006
I1OMC QPD1
007
007 I1OMC QPD2
* 4-40x5/16 BHCS Qty 8 left
* 4-40x5/16 BHCS Qty 56 left
Cut the diode legs by 3mm
|
148
|
Sat Jul 6 17:10:07 2013 |
Koji | Mechanics | Characterization | PZT Response analysis |
Analysis of the PZT scan / TF data taken on May 31st and Jun 1st.
[DC scan]
Each PZT was shaken with 10Vpp 1Hz triangular voltage to the thorlabs amp.
The amp gain was x15. Abut 4 TEM00 peaks were seen on a sweep between 0 and 10V.
The input voltage where the peaks were seen was marked. Each peak was mapped on the
corresponding fringe among four. Then the each slope (up and down) was fitted by a iiner slope.
Of course, the PZTs show hystersis. Therefore the result is only an approximation.
PZT1: PZT #26, Mirror C6 (CM1)
PZT2: PZT #23, Mirror C5 (CM2)
PZT arrangement [ELOG Entry]
PZT1:
Ramp Up 13.21nm/V
Ramp Down 13.25nm/V
Ramp Up 13.23nm/V
Ramp Down 13.29nm/V
=> 13.24+/-0.02 nm/V
PZT2:
Ramp Up 13.27nm/V
Ramp Down 12.94nm/V
Ramp Up 12.67nm/V
Ramp Down 12.82nm/V
=> 12.9+/-0.1 nm/V
[AC scan]
The OMC cavity was locked with the fast laser actuation. Each PZT was shaken with a FFT analyzer for transfer function measurments.
(No bias voltage was given)
The displacement data was readout from the laser fast feedback. Since the UGF of the control was above 30kHz, the data was
valid at least up to 30kHz. The over all calibration of the each curve was adjusted so that it agrees with the DC response of the PZTs (as shown above).
The response is pretty similar for these two PZTs. The first series resonance is seen at 10kHz. It is fairly high Q (~30). |
158
|
Tue Aug 27 17:02:31 2013 |
Koji | Mechanics | Characterization | Spot position measurement on the diode mounts |
After the PZT test, the curved mirrors were aligned to the cavity again.
In order to check the height of the cavity beam, the test DCPD mount was assembled with 2mm shim (D1201467-3)
The spot position was checked with a CCD camera.
According to the analysis of the picture, the spot height is about 0.71mm lower than the center of the mount. |
160
|
Thu Aug 29 18:55:36 2013 |
Koji | Mechanics | General | I1 OMC top side gluing (UV) |
The glass components for the I1 OMC top side were glued by the UV glue.
Breadboard SN#4
Wire bracket SN#5/6/7/8 |
202
|
Tue Jul 8 18:54:54 2014 |
Koji | Mechanics | Characterization | PZT characterization |
Each PZT was swept with 0-150V 11Hz triangular wave.
Time series data for 0.2sec was recorded for each PZT.
The swept voltage at the resonances were extracted and the fringe number was counted.
Some hysteresis is seen as usual.
The upward/downward slopes are fitted by a linear line.
The average displacement is 11.3nm/V for PZT1 and 12.7nm/V.
The PZT response was measured with a FFT analyzer. The DC calibration was adjusted by the above numbers. |
210
|
Thu Jul 17 02:19:20 2014 |
Koji | Mechanics | Characterization | I1OMC vibration test |
Summary
- The breadboard has a resonance at 1.2kHz. The resonant freq may be chagned depending on the additional mass and the boundary condition.
- There is no forest of resonances at around 1kHz. A couple of resonances It mainly starts at 5kHz.
- The PZT mirrors (CM1/CM2) have the resonance at 10kHz as I saw in the past PZT test.
Motivation
- Zach's LLO OMC characterization revealed that the OMC length signals have forest of spikes at 400-500Hz and 1kHz regions.
- He tried to excite these peaks assuming they were coming from mechanical systems. It was hard to excite with the OMC PZT,
but actuating the OMCS slightly excited them. (This entry)
Because the OMC length control loop can't suppress these peaks due to their high frequency and high amplitude, they limit
the OMC residual RMS motion. This may cause the coupling of the OMC length noise into the intensity of the transmitted light.
We want to eventually suppress or eliminate these peaks.
By this vibration test we want to:
- confirm whether the peaks are coming from the OMC or not.
- identify what is causing the peaks if they are originated from the OMC
- correct experimental data for comparison with FEA
Method
- Place a NOLIAC PZT on the object to be excited.
- Look at the actuation signal for the OMC locking to find the excited peaks.
Results
Breadboard
- This configuration excited the modes between 800-1.2kHz most (red curve). As well as the others, the structures above 5kHz are also excited.
- The mode at 1.2kHz was suspected to be the bending mode of the breadboard. To confirm it, metal blocks (QPD housing and a 4" pedestal rod)
were added on the breadboard to change the load. This actually moved (or damped) the mode (red curve).
- Note that the four corners of the breadboard were held with a PEEK pieces on the transport fixture.
In addition, the installed OMC has additional counter balance mass on it.
This means that the actual resonant frequency can be different from the one seen in this experiment. This should be confirmed with an FEA model.
The breadboard should also exhibit higher Q on the OMCS due to its cleaner boundary condition.

DCPD / QPD
- Vibration on the DCPDs and QPDs mainly excited the modes above 3kHz. The resonances between 3 to 5kHz are observed in addition to the ubiquitous peaks above 5kHz.
So are these coming from the housing? This also can be confirmed with an FEA model.
- Some excitation of the breadboard mode at 1.2kHz is also seen.
 
CM1/CM2 (PZT mirrors)
- It is very obvious that there is a resonance at 10kHz. This was also seen in the past PZT test. This can be concluded that the serial resonance of the PZT and the curved mirror.
- There is another unknown mode at around 5~6kHz.
- Some excitation of the breadboard mode at 1.2kHz is also seen.

FM1/FM2 and Peripheral prism mirrors (BSs and SMs)
- They are all prism mirrors with the same bonding method.
- The excitation is concentrated above 5kHz. Small excitation of the breadboard mode at 1.2kHz is also seen. Some bump ~1.4kHz is also seen in some cases.

Beam dumps
- The excitation is quite similar to the case of the peripheral mirrors. Some bump at 1.3kHz.

Other tapping test of the non-OMC object on the table
- Transport fixture: long side 700Hz, short side 3k. This 3K is often seen in the above PZT excitation
- Fiber coupler: 200Hz and 350Hz.
- The beam splitter for the back scattering test: 900Hz |
211
|
Sun Jul 20 17:19:50 2014 |
Koji | Mechanics | Characterization | I1OMC vibration test ~ 2nd round |
Improved vibration measurement of the OMC
Improvement
- Added some vibration isolation. Four 1/2" rubber legs were added between the OMC bread board and the transport fixture (via Al foils).
In order to keep the beam height same, 1/2" pedestal legs were removed.
- The HEPA filter at the OMC side was stopped to reduce the excitation of the breadboard. It was confirmed that the particle level for 0.3um
was still zero only with the other HEPA filter.
Method
- Same measurement method as the previous entry was used.
Results
Breadboard
- In this new setup, we could expect that the resonant frequency of the body modes were close to the free resonances, and thus the Q is higher.
Noise is much more reduced and it is clear that the resonance seen 1.1kHz is definitely associated with the body mode of the breadboard (red curve).
As a confirmation, some metal objects were placed on the breadboard as tried before. This indeed reduced the resonant frequency (blue curve).
 
DCPD / QPD
- Vibration on the DCPDs and QPDs mainly excited the modes above 2~3kHz.
In order to check if they are coming from the housing, we should run FEA models.
- Some excitation of the breadboard mode at 1.1kHz was also seen.
 
CM1/CM2 (PZT mirrors)
- Baseically excitation was dominated by the PZT mode at 10kHz. Some spourious resonances are seen at 4~5kHz but I believe this is associated with the weight placed on the excitation PZT.

FM1/FM2 and peripheral prism mirrors (BSs and SMs)
- The modes of the FMs are seen ~8k or 12kHz. I believe they are lowered by the weight for the measurement. In any case, the mode frequency is quite high compared to our frequency region of interest.
- As the prism resonance is quite high, the excitation is directly transmitted to the breadboard. Therefore the excitation of the non-cavity caused similar effect to the excitation on the breadboard.
In fact what we can see from the plot is excitation of the 1.1kHz body mode and many high frequency resonances.
 
Beam dumps
- This is also similar to the case of the peripheral mirrors.

|
213
|
Mon Jul 21 01:02:43 2014 |
Koji | Mechanics | Characterization | Some structual mode analysis |
Prisms
Fundamental: 12.3kHz Secondary: 16.9kHz

DCPDs
Fundamental: 2.9kHz Secondary: 4.1kHz

QPDs
Fundamental: 5.6kHz Secondary: 8.2kHz

|
218
|
Tue Sep 9 20:59:19 2014 |
Koji | Mechanics | Characterization | Structural mode analysis for the PZT mirror |
Structural analysis of the PZT mirror with COMSOL.
Inline figures: Eigenmodes which involves large motion of the tombstone. In deed 10kHz mode is not the resonance of the PZT-mirror joint, but the resonance of the tombstone.
Attached PDF: Simulated transfer function of the PZT actuation. In order to simulate the PZT motion, boundary loads on the two sides of the PZT were applied with opposite signs.
10kHz peak appears as the resonance of the tombstone dominates the mirror motion. At 12kHz, the PZT extension and the backaction of the tombstone cancells each other and
the net displacement of the mirror becomes zero.


|
296
|
Wed May 30 16:40:38 2018 |
Koji | Mechanics | Characterization | EOM mount stability test |
https://awiki.ligo-wa.caltech.edu/wiki/EOM_Mount_Stability |
314
|
Fri Feb 1 12:52:12 2019 |
Koji | Mechanics | General | PZT deformation simulation |
A simple COMSOL simulation was run to see how the PZT deforms as the voltage applied.
Use the geometry of the ring PZT which is used in the OMCs - NAC2124 (OD 15mm, ID 9mm, H 2mm)
The material is PZT-5H (https://bostonpiezooptics.com/ceramic-materials-pzt) which is predefined in COMSOL and somewhat similar to the one used in NAC2124 (NCE51F - http://www.noliac.com/products/materials/nce51f/)
The bottom surface of the ring was electrically grounded (0V), and mechanically fixed.
Applied 100V between the top and bottom.
|
320
|
Thu Mar 28 16:36:52 2019 |
Koji | Mechanics | Characterization | OMC(002) PZT characterization |
As performed in the ELOG 202, the PZTs of the OMC 002 were tested.
DC response was measured by sweeping each PZT with 0-150V triangular voltage at 11Hz. Acquire 0.2sec of the tie series using an oscilloscope to get the PDH error, cavity transmission, and the sweep signal.
The voltage where the tranmission peaks were observed were fitted were recorded. One fringe corresponds to the displacement of 532nm. So the displacement and the applied volatagewere fitted witha linear function.
This gave the PZT response for PZT1 and PZT2 to be 14.9nm/V and 14.4nm/V.
AC response was measured with SR785. The PZT was shaken with 1~50mVpp signal with the DC offset of 5V while the OMC was locked with the feedback to the laser fast PZT. The transfer function from the applied PZT voltage to the servo output were measured. The closed loop TF was also measured to remove the effect of the servo control. The DC levels of the responses were calibrated using the values above. |
328
|
Thu Apr 11 12:15:31 2019 |
Koji | Mechanics | Configuration | PZT sub assy mirror orientations |
|
329
|
Thu Apr 11 21:22:26 2019 |
Koji | Mechanics | General | OMC(004): PZT sub-assembly gluing |
[Koji Stephen]
The four PZT sub-assemblies were glued in the gluing fixtures. There were two original gluing fixtures and two additional modified fixtures for the in-situ bonding at the repair of OMC(002).
- Firstly, we checked the fitting and arrangements of the components without glue. The component combinations are described in ELOG 329.
- Turned on the oven toaster for the cure test (200F).
- Then prepared EP30-2 mixture (7g EP30-2 + 0.35g glass sphere).
- The test specimen of EP30-2 was baked in the toaster oven. (The result shows perfect curing (no stickyness, no finger print, crisp fracture when bent)
- Applied the bond to the subassemblies.
- FInally the fixtures were put in airbake Oven A. We needed to raise one of the tray with four HSTS balance weights (Attachment 2). |
358
|
Thu May 9 16:07:18 2019 |
Stephen | Mechanics | General | Improvements to OMC Bonding Fixture |
[Stephen, Koji]
As mentioned in eLOG 331, either increased thermal cycling or apparent improvements in cured EP30-2 strength led to fracture of curved mirrors at unintended locations of bonding to the PEEK fixture parts.
The issue and intended resolution is summarized in the attached images (2 different visualizations of the same item).
Redline has been posted to D1600336-v3.
Drawing update will be processed shortly, and parts will be modified to D1600336-v4.
|
400
|
Mon Nov 9 22:06:18 2020 |
Koji | Mechanics | General | 5th OMC Transport Fixture |
I helped to complete the 5th OMC Transport Fixture. It was built at the 40m clean room and brought to the OMC lab. The fixture hardware (~screws) were also brought there. |
478
|
Sat Jan 28 00:38:56 2023 |
Koji | Mechanics | General | OMC #1 cable bracket replacement / OMC #1 repair completed |
The AL metal bracket was replaced with a PEEK version.
Attachments 1/2: Before the replacement. The photos show how the cables are arranged.
Attachment 3: How the replacement work is going. The 1/4-20 screws were super tight. Once the connectors were removed, an Allen key was inserted to a hole so that the 1/4-20 on the short sides were removed by closing Allen key arms. For the screws on the longer sides, the same technique can be applied by using three Allen keys. This time none of the screws/cable pegs were wasted. The clothes were used to protect the breadboard from any impact of the action.
Attachments 4/5: Final state.
OMC #1 repair has been 100% done
---------
We still have 4 correct cable pegs and many 1/4-20 BHSCs for OMC #4. |
479
|
Sat Jan 28 00:46:21 2023 |
Koji | Mechanics | General | OMC #4: Replaced the locks of the transport fixture |
Yesterday, we noticed that we could not close the transport fixture for OMC #4. We could not fully rotate the knobs of the locks. Today, I took the hooks from the functioning locks of the spare transport fixture.
It turned out that the default dimension of the lock seemed too tight. The functioning one has the through holes elongated by a file or something. This modification will be necessary for future transport fixtures. |
480
|
Wed Feb 1 01:33:03 2023 |
Koji | Mechanics | General | 5th OMC Transport Fixture |
The transport fixture was brought to the 40m clean room to use as an assembly reference. |
481
|
Wed Feb 1 01:39:41 2023 |
Koji | Mechanics | General | DCPD housing / QPD housing |
Inserted 4-40 and 2-56 helicoils into the DCPD/QPD housings for the 4th OMC. The retainer caps were also fastened to the housings. |
1
|
Fri Jun 15 15:45:49 2012 |
Koji | General | General | OMC Plan |
|
2
|
Sat Jun 16 08:53:09 2012 |
Koji | General | General | To Do List |
Facility
- Work
- Replacing wooden work benches
- Replacing a cabinet at the south wall by a lockable cabinet
- Cleaning of the floor
Plug a big hole on the wall (Done)
- Plug slits on the roof of the HEPA booth - "There should be the blanking panels there."
- Install laser Safety curtain (Peter is working on this)
- Place a sticky mat
- Prepare clean supplies (Shoes/Coverall/Hats/Gloves) => go to VWR stock room
- Prepare Al foils (All foils inc, should get a certificate everytime to ensure UHV compatibility)
- Plastic boxes for storage http://www.drillspot.com/products/422140/Rubbermaid_2282-00-CLR_18GAL_Clear_Snap_Case
(Steve is helping Koji to get them)
- Design
- Test
- Note: Optical Table W96" x D48" x H27"
Mechanics
- Work
- Design
- How do we hold the PDs, QPDs, and black glass - we put 2 PDs and 2 QPDs on the PD mounting blacket.
-
-
- Test
- Things to be tested
- New suspension scheme (cup & cone design)
- Balancing the plates
- Dummy metal payload?
- => Suspending test with a suspension cage for a Faraday isolator@CIT
- Supporting block for the suspension cage (to mimic the OMC suspension)
- Things to be designed
- Wire end (cone)
- Diode holding structures
PD/QPD/PZT holding structure
- PZT alignment
- Prototyping with metal parts?
- UV glue? (heat) / gluing test
- Balance / ballast
- Solid works
Optics
- Mirrors to be delivered ~Aug
- Design down select
- Between "Single output & BS" vs "Two outputs & no BS"
- Mode design
- Finalization of scattering paths / PD angles etc
- Things to be decided / confirmed:
- How to handle optics / assemblies (Talk to the prev people)
- First contact? (Margot: applicable to a short Rc of ~2.5m)
- Gluing templates to be designed (how to handle it?)
- Things to be tested:
- R&T of each mirror
- Cavity ref/trans/finesse
- PD QE / incident angle
- What PD do we use?
- CCD beam analyzer (Zach: It is fixed.)
- PD angle measurement
- Obtain EG&G 3mm PDs
Electronics
- Electronics / CDS electronics / software
- Things to be tested
- QPD/PD pre-selections (QE/noise)
- Functionality test of QPD/PD/PZT
Shipping, storage etc
Jun/July
- Lab renovtion
- Mechanics design
- Glue training
Aug
- Mirror delivery
- Basic optics test
Sept
- Cavity test
- Suspending test
NOV~DEC
- Shipping to LLO
Open questions
Two optical designs
Procedure
Modeling
Clamp design / stencil design
gluing-installation procedure
|
7
|
Sat Jul 14 02:16:07 2012 |
Koji | General | General | Plan Update: July |
Facility/Supplies
- Work in progress
- Floor cleaning
- Plug slits on the roof of the HEPA booth - blanking panels have been ordered (Peter)
- Install laser safety barrier (Peter is working on this)
- Place a sticky mat
- Work to be done
- Replacing a file cabinet next to the south wall by a lockable cabinet
- Replacing a lab desk at the west side of the room. (Vladimir's)
- Replacing Vladimir's rack with nicer one.
- Laser sign
- Safety glass holder
- Prepare clean supplies (Shoes/Coverall/Hats/Gloves) => go to VWR stock room
- Label maker (P-Touch) & Tape
- Design
- Optical layout - Laser SOP
- Additional HEPA stage
- Test
- Note: Optical Table W96" x D48" x H27"
Beaurocracy
Mechanics
- Ongoing Work
- Cone-shaped wire clamp design (at the OMC end) - Jeff
- Design
- Wire preparation fixture - Jeff
- How do we hold the PDs, QPDs, and black glass - we put 2 PDs and 2 QPDs on the PD mounting blacket. - Jeff
- Integrated solidwork model - Sam
- Q: How the wires are clamped at the top side?
- Q: How much the length of the wire should be?
- Q: Locations of the wire mounts on the plate
- Cabling investigation:
- Where do the cables from the feed-thrus anchored? - Sam
- List of the current internal cables and their lengths - Sam
- List of the required internal cables and their lengths
- Can we route the intermediate stage of the suspension? Do we need new cables?
- Dummy intermediate stage structure
- Metal templates
- First, decide an optical design
- takes at least a month
- Weights how heavy / how many
- Test
- Cone-shaped wire clamp test - Jeff/Koji
- Balancing the plates
- The Faraday isolator cage isn't clean
- Dummy metal payload test at the sites???
- Procedures to be decided
- PZT alignment
- Prototyping with metal parts?
- UV glue? (heat) / gluing test
- Balance
Optics
- Ongoing Work
- Mirrors to be delivered ~Aug
- Design down select - Between "Single output & BS" vs "Two outputs & no BS"
- Down selecting procedure:
- Assume ELIGO beam component
- Assume amount of 9MHz / 45MHz sidebands at the OMC input
- Calculate transmitted power
- Require HOM to be smaller than the TEM00 offset
- UV cured epoxy (Quate obtained)
- Design
- Mode design for HAM6 layout
- Finalization of scattering paths
- Tests
- Measurement of PD angles
- R&T of each mirror
- Curvature of the curved mirrors
- Cavity ref/trans/finesse
- PD Q.E. & Reflectivity measurement vs incident angle
- Things to be decided / confirmed
- How to handle optics / assemblies (Talk to the prev people)
- First contact? (Margot: applicable to a short Rc of ~2.5m)
- Gluing templates to be designed (how to handle it?)
- PDs
- Misc
- CCD beam analyzer (Zach: It is fixed.)
- Are two PZTs used?
- YES, for redundancy, range, upconversion tests.
- Things to buy
- Need to buy a fiber for mode cleaning?
- Mode content of the ELIGO dark beam?
- Jitter noise?
- How to determine the design?
- Why Fused Silica? (How much is the temp fluctuation in the chamber?)
- How to align the cavity mirrors, input mirrors, QPDs, PDs, beam dumps.
Electronics
- Thorough scrutinization of cabling / wiring / electronics
- Electronics / CDS electronics / software
- Things to be tested
- QPD/PD pre-selections (QE/noise)
- Functionality test of QPD/PD/PZT
Shipping, storage etc
Jun/July
- Lab renovtion
- Mechanics design
- Glue training
Aug
- Mirror delivery
- Basic optics test
Sept
- Cavity test
- Suspending test
NOV~DEC
- Shipping to LLO
Open questions
Two optical designs
Procedure
Modeling
Clamp design / stencil design
gluing-installation procedure
July:Facility/Supplies
- Completed Work: Facility/Supplies
- Plug a big hole on the wall
- Purchasing work benches
- Wooden work benches removed(arranging the work with Louisa)
- Al foils (All foils inc, should get a certificate everytime to ensure UHV compatibility)
- Laser / UV safety glass/face mask (Ordered with Gina, UV face shield ordered through Techmart)
- Sticky mat
- VWR MAT ADHESIVE 30L 18X36 BLU, 21924-110
- Shoe cover
- VWR SHOECVR NSKID AP XL 150PR, 414004-650
- VWR SHOECVR NSKID AP 2XL 150PR, 414004-651
- Lab coat
- VWR Lab coat L 82007-618 / XL 82007-620
- Hat
- Mask
- Gloves
- VWR GLOVE ACCTCH NR-LTX SZ7.5 PK25 79999-306 x4
- VWR GLOVE ACCTCH NR-LTX SZ8 PK25 79999-308 x4
- Plastic boxes for storage
http://www.drillspot.com/products/422140/Rubbermaid_2282-00-CLR_18GAL_Clear_Snap_Case
(We have 12 for now. More stored at the 40m)
- Completed Work: Optics
- UV Lamp arrived (shipped from LLO)
- Fiber light guide for UV lamp (Quote obtained / Ordered via techmart)
|
11
|
Tue Jul 24 11:41:29 2012 |
Koji | General | General | Useful references |
Nicolas Smith,
LIGO Document T0900383-v1
3mm Photodiode Characterization for Enhanced LIGO
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=4498
Tobin Fricke,
LIGO Document P1000010-v1
Homodyne detection for laser-interferometric gravitational wave detectors
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=8443
Nicolas Smith,
LIGO Document P1200052-v1
Techniques for Improving the Readout Sensitivity of Gravitational Wave Antennae
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=90498 |
12
|
Tue Jul 31 21:29:43 2012 |
Koji | General | General | Work completed in July [!] |
- Completed Work: Facility/Supplies
- Plug a big hole on the wall [ELOG]
- Purchasing work benches
- Wooden work benches removed(arranging the work with Louisa)
- Al foils (All foils inc, should get a certificate everytime to ensure UHV compatibility)
- Laser / UV safety glass/face mask (Ordered with Gina, UV face shield ordered through Techmart)
- Sticky mat
- VWR MAT ADHESIVE 30L 18X36 BLU, 21924-110
- Shoe cover
- VWR SHOECVR NSKID AP XL 150PR, 414004-650
- VWR SHOECVR NSKID AP 2XL 150PR, 414004-651
- Lab coat
- VWR Lab coat L 82007-618 / XL 82007-620
- Hat
- Mask
- Gloves
- VWR GLOVE ACCTCH NR-LTX SZ7.5 PK25 79999-306 x4
- VWR GLOVE ACCTCH NR-LTX SZ8 PK25 79999-308 x4
- Plastic boxes for storage
http://www.drillspot.com/products/422140/Rubbermaid_2282-00-CLR_18GAL_Clear_Snap_Case
(We have 12 for now. More stored at the 40m)
- Completed Work: Optics
- UV Lamp arrived (shipped from LLO)
- Fiber light guide for UV lamp (Quote obtained / Ordered via techmart)
- Optical test planning by Zach [ELOG]
- How to handle First Contact by Margot [ELOG]
- Useful links / OMC scanning [ELOG]
|
13
|
Tue Jul 31 21:33:17 2012 |
Koji | General | General | Plan Update: August [!] |
Completed work of the previous months: [Jul] [Aug] [Sep] [Oct] [Nov] [Dec]
Facility/Supplies
- Work done
- Things ordered
- Office Depot
- [delivered] Office Depot(R) Brand Stretch Wrap Film, 20 x 1000 Roll, Clear / 445013
- [delivered] Eveready(R) Gold AA Alkaline Batteries, Pack Of 24 / 158448
- [delivered] Rubbermaid(R) Roller Sponge Mop / 921841
- [delivered] Rubbermaid(R) Roller Sponge Mop Replacement / 921858
- [delivered] Rubbermaid(R) Sanitizing Caddy, 10 Quarts, Yellow / 674125
- [delivered] Glad(R) Tall Kitchen Trash Bags, 13 Gallon, White, Box Of 28 / 269268
- Global Industrial Equipment
- [delivered] Extended Surface Pleated Cartridge Filter Serva-Cell Mp4 Slmp295 12X24X2 Gl WBB431699
- Global Industrial Equipment
- [delivered] Nexel Poly-Z-Brite Wire Shelving 30"W x 21"D x 63"H Nexel Poly-Z-Brite™ Wire Shelving Starter Unit WB189209
- [delivered] Stem Casters Set of (4) 5" Polyurethane Wheel, 2 With Brakes 1200 lb. Capacity WB500592
- Rack Solutions
- [delivered] Open Frame Server Racks
1 x 20" Depth Kit (Ideal for Audio/Video or Networking Racks) P/N: 111-1779
1 x 36U, Rack-111 Post Kit P/N: 111-1728
1 x Caster Kit for Open Frame RACK-111 P/N: 111-1731
- [delivered] 36U Side Panel Kit $199.99 P/N: 102-1775
- Rack shelf
- [delivered] 1 RMS 19 X 15 SINGLE SIDED NON-VENTED SHELF 70121637
- Work bench, Stools
- [not yet] 72"L X 30"W Production Bench - Phenolic Resin Square Edge-Blue Form attached WB237381LBL
- [not yet] 72"W Lower Shelf For Bench - 15"D- Blue Form attached WB606951
- [not yet] ESD-Safe Vinyl Clean Room Stool with Nylon Base with Drag Chain Blue Form attached WBB560852
- P Touch
- [delivered] Brother PT-2030 Desktop Office Labeler Punch-out product 672828
- [delivered] Brother(R) TZe-241 Black-On-White Tape, 0.75 x 26.2 Punch-out product 239384
- [delivered] Brother(R) TZe-231 Black-On-White Tape, 0.5 x 26.2 Punch-out product 239400
- UV light guide
- [delivered] Fiber Optic Single Light Guide 5mm OD X 3mm ID X 1M L Note: This light guide can be used with MKIII UV Cure unit. OLB1081
- Gloves (7.5, 8.0)
- [delivered] GLOVE ACCTCH NR-LTX SZ7.5 PK25 Punch-out product 79999-306
- [delivered] GLOVE ACCTCH NR-LTX SZ8 PK25 Punch-out product 79999-308
- Lab coat (L,XL), Sticky Mat, Shoe Covers (L, XL), Cap, Mask
- [delivered] LAB XP WH EL WR.COLL. NP L30EA Punch-out product 82007-618
- [delivered] LAB XPWH EL WR.COLL. NP XL30EA Punch-out product 82007-620
- [delivered] VWR MAT ADHESIVE 30L 18X36 BLU Punch-out product 21924-110 (This was too small)
- [delivered] VWR SHOECVR NSKID AP 2XL 150PR Punch-out product 414004-651
- [delivered] VWR SHOECVR NSKID AP XL 150PR Punch-out product 414004-650
- [delivered] CAP BOUFFANT 24IN RAYON CS500 Punch-out product 10843-053
- [delivered] MASK VLTC TIES N/STRL PK50 Punch-out product 10869-020
- VWR
- [delivered] FACE SHIELD UVC-803 Supplier: UVP 33007-151
- [Delivered] Laser safety glasses
- Work in progress
- Work to be done
- Replacing a file cabinet next to the south wall by a lockable cabinet
- Laser sign
- Safety glass holder/rack/shelf
- Prepare clean supplies ~ glove 8.5,9,9.5
- Ion gun safety issues: https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=88631
- Design
- Optical layout - Laser SOP
- Additional HEPA stage
- Test
- Note: Optical Table W96" x D48" x H27"
Beaurocracy
Mechanics
- Ongoing Work
- Cone-shaped wire clamp design (at the OMC end) - Jeff
- Design
- Wire preparation fixture - Jeff
- How do we hold the PDs, QPDs, and black glass - we put 2 PDs and 2 QPDs on the PD mounting blacket. - Jeff
- Integrated solidwork model - Derek
- Q: How the wires are clamped at the top side?
- Q: How much the length of the wire should be?
- Q: Locations of the wire mounts on the plate
- Cabling investigation:
- Where do the cables from the feed-thrus anchored?
- List of the current internal cables and their lengths
- List of the required internal cables and their lengths
- Can we route the intermediate stage of the suspension? Do we need new cables?
- Dummy intermediate stage structure
- Metal templates
- First, decide an optical design
- takes at least a month
- Weights how heavy / how many
- Earthquake stop design (Sam B)
- Test
- Cone-shaped wire clamp test - Jeff/Koji
- Balancing the plates
- The Faraday isolator cage isn't clean
- Dummy metal payload test at the sites???
- Procedures to be decided
- PZT alignment
- Prototyping with metal parts?
- UV glue? (heat) / gluing test
- Balance
Optics
- Things ordered
- Newport LB servo
- Halogen Lamp
- N2 cylinder/lines/filter
- Ongoing Work
- Mirrors to be delivered ~Aug
- Design down select - Between "Single output & BS" vs "Two outputs & no BS"
- Down selecting procedure:
- Assume ELIGO beam component
- Assume amount of 9MHz / 45MHz sidebands at the OMC input
- Calculate transmitted power
- Require HOM to be smaller than the TEM00 offset
- UV cured epoxy (Quate obtained)
- Design
- Mode design for HAM6 layout
- Finalization of scattering paths
- Tests
- Measurement of PD angles
- R&T of each mirror
- Curvature of the curved mirrors
- Cavity ref/trans/finesse
- PD Q.E. & Reflectivity measurement vs incident angle
- Things to be decided / confirmed
- How to handle optics / assemblies (Talk to the prev people)
- First contact? (Margot: applicable to a short Rc of ~2.5m)
- Gluing templates to be designed (how to handle it?)
- PDs
- Misc
- CCD beam analyzer (Zach: It is fixed.)
- Are two PZTs used?
- YES, for redundancy, range, upconversion tests.
- Things to buy
- Need to buy a fiber for mode cleaning?
- Mode content of the ELIGO dark beam?
- Jitter noise?
- How to determine the design?
- Why Fused Silica? (How much is the temp fluctuation in the chamber?)
- How to align the cavity mirrors, input mirrors, QPDs, PDs, beam dumps.
- PZTs @LLO
Electronics
- Thorough scrutinization of cabling / wiring / electronics
- ELIGO OMC Wiring diagram D070536-A2
- Occupies 2 DB25s -> They were anchored on the sus cage
- Preamps for DCPDs will be fixed on the ISI table
-> DB25 for the DCPDs will be anchored on the table
- Use longer thin cables for the DCPDs in order to route them through the suspension stages
- Turn the heater cable to the one for the other PZT
- Electronics / CDS electronics / software
- Things to be tested
- QPD/PD pre-selections (QE/noise)
- PD preamp design (Rich)
- Functionality test of QPD/PD/PZT
Shipping, storage etc
Jun/July
- Lab renovation
Aug
- Mechanics design
- Mirror delivery
Sept
- Basic optics test
- Glue training
Oct
- Cavity test
Nov
- Suspending test
Dec
- Shipping to LLO
Open questions
Two optical designs
Procedure
Modeling
Clamp design / stencil design
gluing-installation procedure |
27
|
Tue Oct 16 14:50:54 2012 |
jamie, jeff | General | General | OMC breadboard/plate measurement dimensions |
We have measured the dimensions and mass of the OMC glass plates/breadboards:
S/N |
Mass (g) |
Length (mm) |
Width (mm) |
Height (mm) |
Notes |
01 |
6146 |
449.66 |
149.85 |
41.42, 41.42 |
for LLO |
02 |
6126 |
449.66 |
149.97 |
41.32, 41.32 |
for LHO |
03 |
6143 |
449.76 |
149.98 |
41.39, 41.43 |
|
04 |
6139 |
449.78 |
149.81 |
41.40, 41.40 |
for 3IFO |
05 |
6132 |
449.76 |
150.03 |
41.27, 41.31 |
corner chip, front-bottom-left* |
06 |
6138 |
449.84 |
149.71 |
41.42, 41.42 |
|
- * orientation is relative to "front" face, i.e. long-short face with S/N on it, with S/N upright.
- Height measurements were made twice, once at each end.
- TMeasurements of 03, 05, 02, and 06 were done in the open in the OMC lab. This was not thought to be too much of an issue since the plates
are already covered with particulate matter from the tissue paper that they were wrapped in.
Measurements of 04 and 01 were done on the optics table, under the clean room enclosure.
Note by Koji:
- The scale of the bake lab was used. (Max 60kg, Min resolution of 1g)
- The dimensions were measured by a huge caliper which Jeff brought from Downs.
- S/N 01, 03, 04 look pretty similar. They should be the primary candidates.
|
28
|
Tue Oct 16 15:50:09 2012 |
Koji | General | General | Work completed in August/September [!] |
- Work done
- Things ordered
- Office Depot
- [delivered] Office Depot(R) Brand Stretch Wrap Film, 20 x 1000 Roll, Clear / 445013
- [delivered] Eveready(R) Gold AA Alkaline Batteries, Pack Of 24 / 158448
- [delivered] Rubbermaid(R) Roller Sponge Mop / 921841
- [delivered] Rubbermaid(R) Roller Sponge Mop Replacement / 921858
- [delivered] Rubbermaid(R) Sanitizing Caddy, 10 Quarts, Yellow / 674125
- [delivered] Glad(R) Tall Kitchen Trash Bags, 13 Gallon, White, Box Of 28 / 269268
- Global Industrial Equipment
- [delivered] Extended Surface Pleated Cartridge Filter Serva-Cell Mp4 Slmp295 12X24X2 Gl WBB431699
- Global Industrial Equipment
- [delivered] Nexel Poly-Z-Brite Wire Shelving 30"W x 21"D x 63"H Nexel Poly-Z-Brite™ Wire Shelving Starter Unit WB189209
- [delivered] Stem Casters Set of (4) 5" Polyurethane Wheel, 2 With Brakes 1200 lb. Capacity WB500592
- Rack Solutions
- [delivered] Open Frame Server Racks
1 x 20" Depth Kit (Ideal for Audio/Video or Networking Racks) P/N: 111-1779
1 x 36U, Rack-111 Post Kit P/N: 111-1728
1 x Caster Kit for Open Frame RACK-111 P/N: 111-1731
- [delivered] 36U Side Panel Kit $199.99 P/N: 102-1775
- Rack shelf
- [delivered] 1 RMS 19 X 15 SINGLE SIDED NON-VENTED SHELF 70121637
- Work bench, Stools
- [not yet] 72"L X 30"W Production Bench - Phenolic Resin Square Edge-Blue Form attached WB237381LBL
- [not yet] 72"W Lower Shelf For Bench - 15"D- Blue Form attached WB606951
- [not yet] ESD-Safe Vinyl Clean Room Stool with Nylon Base with Drag Chain Blue Form attached WBB560852
- P Touch
- [delivered] Brother PT-2030 Desktop Office Labeler Punch-out product 672828
- [delivered] Brother(R) TZe-241 Black-On-White Tape, 0.75 x 26.2 Punch-out product 239384
- [delivered] Brother(R) TZe-231 Black-On-White Tape, 0.5 x 26.2 Punch-out product 239400
- UV light guide
- [delivered] Fiber Optic Single Light Guide 5mm OD X 3mm ID X 1M L Note: This light guide can be used with MKIII UV Cure unit. OLB1081
- Gloves (7.5, 8.0)
- [delivered] GLOVE ACCTCH NR-LTX SZ7.5 PK25 Punch-out product 79999-306
- [delivered] GLOVE ACCTCH NR-LTX SZ8 PK25 Punch-out product 79999-308
- Lab coat (L,XL), Sticky Mat, Shoe Covers (L, XL), Cap, Mask
- [delivered] LAB XP WH EL WR.COLL. NP L30EA Punch-out product 82007-618
- [delivered] LAB XPWH EL WR.COLL. NP XL30EA Punch-out product 82007-620
- [delivered] VWR MAT ADHESIVE 30L 18X36 BLU Punch-out product 21924-110 (This was too small)
- [delivered] VWR SHOECVR NSKID AP 2XL 150PR Punch-out product 414004-651
- [delivered] VWR SHOECVR NSKID AP XL 150PR Punch-out product 414004-650
- [delivered] CAP BOUFFANT 24IN RAYON CS500 Punch-out product 10843-053
- [delivered] MASK VLTC TIES N/STRL PK50 Punch-out product 10869-020
- VWR
- [delivered] FACE SHIELD UVC-803 Supplier: UVP 33007-151
- [Delivered] Laser safety glasses
|
29
|
Tue Oct 16 15:51:01 2012 |
Koji | General | General | Plan Update: October [!] |
Completed work of the previous months: [Jul] [Aug] [Sep] [Oct] [Nov] [Dec]
Facility/Supplies
- Work done
- Particle Level measured / HEPA activated [ELOG]
- Particle counter peripherals arrived ~Oct 12.
- Making the OMC optical test setup [ELOG] [ELOG] [ELOG] [ELOG] [ELOG]
- OMC Bread board dimensions / weights measurement by Jeff and Jam [ELOG]
- UV epoxy has arrived - stored in a freezer in the office
- Laser sign installed during my trip by Peter/Eric
- OMC design downselect [DCC Link]
- Things to buy
- Things to be done
- Cavity ref/trans/finesse
- PD Q.E. & Reflectivity measurement vs incident angle
- Work in progress
- RoC measurement
- R&T measurement
- Wedge measurement
- Work to be done
- Replacing a file cabinet next to the south wall by a lockable cabinet
- Additional clean supplies ~ glove 8.5,9,9.5
- Stainless bats
- Ion gun safety issues: https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=88631
- Design
- Test
- Continuous monitoring of the particle level
- Note: Optical Table W96" x D48" x H27"
Beaurocracy
- Laser SOP / HV use? / UV?
- Procedures to be decided
- PZT alignment
- UV glue? (heat) / gluing test
- Balance
- N2 cylinder/lines/filter
- Design
- Mode design for HAM6 layout
- Finalization of scattering paths
- Things to be decided / confirmed
- How to handle optics / assemblies (Talk to the prev people)
- First contact? (Margot: applicable to a short Rc of ~2.5m)
- Gluing templates to be designed (how to handle it?)
- PDs
- Things to buy
- Need to buy a fiber for mode cleaning?
- Mode content of the ELIGO dark beam?
- Jitter noise?
- How to determine the design?
- Why Fused Silica? (How much is the temp fluctuation in the chamber?)
- How to align the cavity mirrors, input mirrors, QPDs, PDs, beam dumps.
- PZTs @LLO
Electronics
- Thorough scrutinization of cabling / wiring / electronics
- ELIGO OMC Wiring diagram D070536-A2
- Occupies 2 DB25s -> They were anchored on the sus cage
- Preamps for DCPDs will be fixed on the ISI table
-> DB25 for the DCPDs will be anchored on the table
- Use longer thin cables for the DCPDs in order to route them through the suspension stages
- Turn the heater cable to the one for the other PZT
- Electronics / CDS electronics / software
- Things to be tested
- QPD/PD pre-selections (QE/noise)
- PD preamp design (Rich)
- Functionality test of QPD/PD/PZT
Shipping, storage etc
|
33
|
Wed Nov 7 20:21:42 2012 |
Koji | General | General | Work completed in October [!] |
Completed work of the previous months: [Jul] [Aug] [Sep] [Oct] [Nov] [Dec]
- Work done
- Particle Level measured / HEPA activated [ELOG]
- Particle counter peripherals arrived ~Oct 12.
- Making the OMC optical test setup [ELOG] [ELOG] [ELOG] [ELOG] [ELOG]
- OMC Bread board dimensions / weights measurement by Jeff and Jam [ELOG]
- UV epoxy has arrived - stored in a freezer in the office
- Laser sign installed during my trip by Peter/Eric
- OMC design downselect [DCC Link]
|
34
|
Wed Nov 7 20:44:11 2012 |
Koji | General | General | Plan Update: November [!] |
Completed work of the previous months: [Jul] [Aug] [Sep] [Oct] [Nov] [Dec]
- Work in progress
- R&T measurement
- Wedge measurement
- Work to be done
- QPD/PD pre-selections (QE/noise)
-
-
-
- Misc. / Beaurocracy?
- Continuous monitoring of the particle level
- Replacing a file cabinet next to the south wall by a lockable cabinet
- Ion gun safety issues: https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=88631
- Laser SOP / HV use? / UV?
- Things delivered
- Things ordered
- Power strips Tripp Lite PS3612 (Ordered Nov. 8, Delivered Nov. 12)
- Kapton tapes (1in x 6, 1/2in x 12 Delivered Nov. 15)
- Sticky Mats (VWR 18888-216 Delivered Nov. 12 and 21992-042)
- Duck tape (PK3) (Delivered Nov. 12)
- Wipers 12"x12" 2ply x 119 pairs x case15 (Delivered Nov. 12)
- Syringes (1mL&2mL) & Needles (20G x dozen)
- Stainless trays with cover (Steve Delivered Nov. 12)
- Gold Plated allen keys (Steve Delivered Nov. 12)
- Forceps (Delivered Nov. 12) / Tweezers / Scissors (Delivered Nov. 12)
- Things to buy / get
- OMC testing optics / opto-mechanics
- Black Glass / Black Glass holder / AR ==> Some at the 40m, some from LLO
- Ionized air blow
- N2 or Air cylinder: 4N - UHP or 5N - Research Grade. (... steal from Downs)
- Clean tools, tray, storage
- Supply
- Additional clean supplies ~ glove 8.5,9,9.5
- Stainless bats / Pure solvents (Metha / Aceton / Iso) / Syringes / Lint free cloth / Paper lens tissue
- Lab coats
- ATF
- Tefron tape
- Thorlabs 8-32 screw kit / Thorlabs HW-KIT1
- Pedestal Shims - Newport
- Things to be done
- Cavity ref/trans/finesse
- PD Q.E. & Reflectivity measurement vs incident angle
- Functionality test of QPD/PD (PeterK) /PZT
- Procedures to be decided
- PZT alignment
- UV glue? (heat) / gluing test
- Balance
- N2 cylinder/lines/filter
- Shipping procedure: New shipping cage design on going (Jeff) => Plastic box similar to COC
- Design
- Solidworks raytracing model
- Mode design for HAM6 layout
- Things to be decided / confirmed
- How to handle optics / assemblies (Talk to the prev people)
- First contact? (Margot: applicable to a short Rc of ~2.5m)
- Gluing templates to be designed (how to handle it?)
- Jitter noise?
- How to align the cavity mirrors, input mirrors, QPDs, PDs, beam dumps.
Electronics ==> Rich |
47
|
Mon Dec 31 01:45:04 2012 |
Koji | General | General | Work completed in Nov and Dec [!] |
Completed work of the previous months: [Jul] [Aug] [Sep] [Oct] [Nov] [Dec]
- Things delivered
- The ionized gun used in the clean room at Downs: made by Terra Universal.com (Jeff's room)
http://www.terrauniversal.com/static-control/ionizing-blow-off-guns.php
- Flow path: N2 cylinder - Filter - Gun (Jeff's room)
- Power strips Tripp Lite PS3612 (Ordered Nov. 8, Delivered Nov. 12)
- Kapton tapes (1in x 6, 1/2in x 12 Delivered Nov. 15)
- Sticky Mats (VWR 18888-216 Delivered Nov. 12 and 21992-042)
- Duck tape (PK3) (Delivered Nov. 12)
- Wipers 12"x12" 2ply x 119 pairs x case15 (Delivered Nov. 12)
- Syringes (1mL&2mL) & Needles (20G x dozen)
- Stainless trays with cover (Steve Delivered Nov. 12)
- Gold Plated allen keys (Steve Delivered Nov. 12)
- Forceps (Delivered Nov. 12) / Tweezers / Scissors (Delivered Nov. 12)
- OMC testing optics / opto-mechanics
- SolidWorks raytracing model
- Mode design for HAM6 layout [Zach]
- Black Glass / Black Glass holder / AR ==> Some at the 40m, some from LLO
- Ionized air blow
- N2 or Air cylinder: 4N - UHP or 5N - Research Grade. (... steal from Downs)
|
61
|
Thu Feb 7 21:35:46 2013 |
Koji | General | General | Dmass's loan of LB1005 / A2&C2 sent to Fullerton / First Contact @40m |
Dmass borrowed the LB1005 servo amp from the OMC lab.
It happened this week although it seems still January in his head. Got it back on Mar 24th
The A2 and C2 mirrors have been sent to Josh Smith at Fullerton for the scatterometer measurement.
First Contact kit (incl. Peek Sheets)
Manasa borrowed the kit on Feb 7. Got it back to the lab.
|
71
|
Thu Mar 14 22:18:23 2013 |
Koji | General | General | New loans for the diode test |
ALL returned
Loan from ATF:
2 blue banana cables returned on Jun 4, 2013
BNC cable returned on Mar 21, 2013
TENMA triple power supply returned on July 17, 2015
From 40m:
4x GPIB cables returned on Mar 21, 2013
From EE shop:
red banana cables returned on Jun 4, 2013
|