40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 5 of 9  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  389   Thu Feb 27 14:31:13 2020 KojiGeneralGeneralItem lending

Item lending as per Ian's request: Particle Counter from OMC Lab to QIL

 

Attachment 1: P_20200227_134755_vHDR_On.jpg
P_20200227_134755_vHDR_On.jpg
  390   Mon Aug 10 15:29:54 2020 KojiGeneralGeneralItem lending

The particle counter came back to the OMC lab on Aug 10, 2020

 

  392   Mon Aug 10 15:53:46 2020 KojiGeneralGeneralLab status check

Check-in to the OMC lab to see the status. Nothing seemed changed. No bug. The HEPA is running normal. The particle level was 0.

Went into the HEPA enclosure and put a cover on the OMC. Because of the gluing template, the lid could not be close completely (that's expected and fine).

The IPA vector cloth bag was not dry yet but seemed expired (some smell). There is no stock left -> 5 bags to be ordered.

  393   Mon Sep 28 16:03:13 2020 ranaGeneralGeneralOMC Beam Dump Production Cure Bake
are there any measurements of the BRDF of these things? I'm curious how much light is backscattered into the incoming beam and how much goes out into the world.

Maybe we can take some camera images of the cleaned ones or send 1-2 samples to Josh. No urgency, just curiosity.

I saw that ANU and also some labs in India use this kind of blue/green glass for beam dumps. I don't know much about it, but I am curious about its micro-roughness and how it compares to our usual black glass. For the BRDF, I think the roughnesss matters more for the blackness than the absorption.

  394   Mon Sep 28 16:13:08 2020 KojiGeneralGeneralOMC Beam Dump Production Cure Bake

According to the past backscatter test of the OMC (and the black glass beamdump: not V type but triangular type on a hexagonal-mount), the upper limit of the back reflection was 0.13ppm. https://nodus.ligo.caltech.edu:8081/OMC_Lab/209

I don't have a BRDF measurement. We can send a few black glass pieces to Josh.

  396   Fri Oct 9 01:01:01 2020 KojiGeneralGeneralTFT Monitor mounting

To spare some room on the optical table, I wanted to mount the two TFT monitor units on the HEPA enclosure frame.
I found some Bosch Rexroth parts (# 3842539840) in the lab, so the bracket was taken for the mount. This swivel head works very well. It's rigid and still the angle is adjustable.

https://www.boschrexroth.com/ics/cat/?cat=Assembly-Technology-Catalog&p=p834858

BTW, this TFT display (Triplett HDCM2) is also very nice. It has HDMI/VGA/Video/BNC inputs (wow perfect) and the LCD is Full-HD LED TFT.
https://www.triplett.com/products/cctv-security-camera-test-monitor-hd-1080p-led-display-hdcm2

https://www.newegg.com/p/0AF-0035-00016

https://www.bhphotovideo.com/c/product/1350407-REG/triplett_hdcm2_ultra_compact_7_hd_monitor.html

The only issue is that one unit (I have two) shows the image horizontally flipped. I believe that I used the unit with out this problem before, I'm asking the company how to fix this.

 

Attachment 1: 20201008214515_IMG_0152.jpg
20201008214515_IMG_0152.jpg
Attachment 2: 20201008214519_IMG_0153.jpg
20201008214519_IMG_0153.jpg
Attachment 3: 20201008214536_IMG_0154.jpg
20201008214536_IMG_0154.jpg
Attachment 4: 20201008220955_IMG_0155.jpg
20201008220955_IMG_0155.jpg
Attachment 5: 20201008221019_IMG_0156_2.jpg
20201008221019_IMG_0156_2.jpg
  397   Fri Oct 16 00:53:29 2020 KojiGeneralGeneralTFT Monitor mounting

The image flipping of the display unit was fixed. The vendor told me how to fix it.

- Open the chassis by the four screws at the side.
- Look at the pass-through PCB board between the mother and display boards.
- Disconnect the flat flex cables from the pass-through PCB (both sides) and reconnect them (i.e. reseat the cables)

That's it and it actually fixed the image flipping issue.

 

  398   Fri Oct 23 19:09:54 2020 KojiGeneralGeneralParticle counter transfered to Radhika

See this entry: https://nodus.ligo.caltech.edu:8081/40m/15642

  399   Fri Nov 6 18:38:00 2020 KojiGeneralGeneralPowermeter lent from OMC Lab to 2um ECDL

Thorlabs' powermeter controler + S401C head was lent from OMC Lab. Returned to OMC Jul 15, 2022 KA

https://nodus.ligo.caltech.edu:8081/SUS_Lab/1856

  400   Mon Nov 9 22:06:18 2020 KojiMechanicsGeneral5th OMC Transport Fixture

I helped to complete the 5th OMC Transport Fixture. It was built at the 40m clean room and brought to the OMC lab. The fixture hardware (~screws) were also brought there.

Attachment 1: IMG_0211.jpg
IMG_0211.jpg
Attachment 2: IMG_0221.jpg
IMG_0221.jpg
  401   Fri Nov 20 18:51:23 2020 KojiGeneralGeneralInstrument loan

FEMTO DLPCA200 low noise preamp (brand new)

Keithley Source Meter 2450 (brand new) => Returned 11/23/2020

were brought to the OMC lab for temporary use.

https://nodus.ligo.caltech.edu:8081/QIL/2522

  407   Fri Feb 5 07:40:37 2021 StephenSupplyGeneralOMC Unit 4 Build Machined Parts

OMC Unit 4 Build Machined Parts are currently located in Stephen's office. See image of large blue box from office, below.

Loaned item D1100855-V1-00-OMC08Q004 to Don Griffith for work in semi-clean HDS assy.

This includes mass mounting brackets, cable brackets, balance masses, etc. For full inventory, refer to ICS load Bake-9527 (mixed polymers) and Bake-9495 (mixed metals).

Inventory includes all items except cables. Plasma sprayed components with slight chipping were deemed acceptable for Unit 4 use. Cable components (including flex circuit) are ready to advance to fabrication, with a bit more planning and ID of appropriate wiring.

Attachment 1: IMG_8117.JPG
IMG_8117.JPG
  408   Thu May 20 17:03:50 2021 KojiGeneralGeneralSRS LCR meter SRS720 borrowed from Downs

Item loan: SRS LCR meter SRS720 borrowed from Downs. The unit is at the 40m right now for testing with an excelitas PD. Once it is done, the setup will be moved to the OMC lab for testing the high QE PDs

Attachment 1: P_20210520_154841.jpg
P_20210520_154841.jpg
  409   Sun May 30 15:17:16 2021 KojiGeneralGeneralDCPD AF capacitance measirement

Attachment 1: System diagram. The reverse bias voltage is controlled by DS335. This can produce a voltage offset up to 10V. A G=+2 opamp circuit was inserted so that a bias of up to +15V can be produced. The capacitances of the photodiodes were measured with SR720 LCR meter with a probe. DS335 and SR720 were controlled from PC/Mac via serial connections.

Attachment 2: Overview

Attachment 3: How was the probe attached to the photodiode under the test

Attachment 4: The bias circuitry and the power supply

Attachment 5: G=+2 amp

Attachment 1: PD_cap_meas.pdf
PD_cap_meas.pdf
Attachment 2: 20210529013015_IMG_0577.jpeg
20210529013015_IMG_0577.jpeg
Attachment 3: 20210529013114_IMG_0580_2.jpeg
20210529013114_IMG_0580_2.jpeg
Attachment 4: 20210529013200_IMG_0584.jpeg
20210529013200_IMG_0584.jpeg
Attachment 5: 20210529013229_IMG_0586.jpeg
20210529013229_IMG_0586.jpeg
  410   Sun May 30 15:32:56 2021 KojiGeneralGeneralDCPD AF capacitance measirement

Measurement result:

The capacitance at no bias was 460~500pF. This goes down to below 300pF at 1.0~1.5V reverse bias. At maximum +15V, the capacitance goes down to 200~220pF.

On this opportunity, the capacitances of a couple of Excelitas C30665 photodiodes were measured. In Attachment 2, the result was compared with one of the results from the high QE PDs. In general the capacitance of C30665 is lower than the one from the high QE PDs.

Attachment 1: highQEPD_capacitance.pdf
highQEPD_capacitance.pdf
Attachment 2: C30665_capacitance.pdf
C30665_capacitance.pdf
  411   Wed Jul 7 14:21:50 2021 StephenSupplyGeneralOMC Unit 4 Build Machined Parts

More explicit insights into the inventory for the Unit 4 build. Image of inventory included below.

Machined Parts:

Cable Components:

  • Hughes Circuits made us Kapton flex circuits. These have not been processed in any way.
  • Rich had supplied a spool of Gore 4-conductor in-vacuum wire (see below image). I returned the sppol for Rich but it is living in Downs and available for use.
  • PEEK cable ties were damaged during bake, and will be replaced by SYS inventory.

Retrofit/Repair Capabilities:

  • Aluminum reinforcement brackets D1600316
  • Glass reinforcement brackets (Edmund Optics 45-072 and 45-071)

ref: E1900034 and other associated documents.

Attachment 1: IMG_9238.JPG
IMG_9238.JPG
Attachment 2: IMG_9236.JPG
IMG_9236.JPG
  412   Thu Jun 23 21:03:33 2022 KojiFacilityGeneralMoving the small optical table to CAML (TCS Lab)

I've cleared the small optical table and wondered how to move it out of the room. Fortunately, the north side of the big table had wide enough clearance and let the 36" wide table go through. This was easy without moving other heavy stuff.

From here to the door, a bit of work is required. A possibility is to roll the laser blocking wall to the south side of the big table. This will require moving the shelving in the entrance area but it's not a lot of work compared to disassembling a part of the wall.

If this does not work somehow, we will consider removing the last panel of the wall and it will definitely allow the table to get out from the door.

Attachment 1: PXL_20220624_035628602.jpg
PXL_20220624_035628602.jpg
  413   Tue Jun 28 16:13:34 2022 KojiGeneralGeneralThe small optical table not small enough to get out

The table width was an inch too large compared to the door width. We need to tilt the table and it seemed too much for us. Let's ask the transportation for handling.

Photo courtesy by Juan

Attachment 1: IMG-5203.jpg
IMG-5203.jpg
  414   Fri Jul 15 22:14:14 2022 KojiGeneralGeneralOMC Lab recovery for the OMC #002 test

- The lab is chilly (18degC)

- Cleaned the lab and the optical table a bit so that the delicate work can be done. The diode test rig (borrowed from Downs - see OMC ELOG 408 and OMC ELOG 409) was removed from the table and brought to the office (to return on Monday)

- The rack electronics were energized.

- The OMC mirrors in use were returned to the cases and stored in the plastic box.

- The optical table was also cleaned. Removed the old Al foils. The table was wiped with IPA

- The OMC #4 was moved to the other part of the table, and then OMC #2 was placed in the nominal place (Attachment 1). Note that the "legs" were migrated from #4 to #2. There are three poles that defines the location of the OMC Transportation

- The lid was removed and the OMC was inspected (Attachment 2). Immediately found some more delamination of the epoxy beneath the cable bracket (Attachment 3). This needs to be taken care of before shipment.

- The cavity was already flashing as usual, and a bit of alignment made the TEM00 flashing.

- The locking was a little tricky because the LB unit seemed to have a gain-dependent offset. After some adjustment, robust locks were achieved. The cavity was then finely adjusted. Attachment 4 shows the CCD image of the reflection. The core of the spot is more or less axisymmetric as usual. There is also a large helo around the spot. I was not aware of this before. I may need to wipe some of the mirrors of the input path.

- As the satisfactory lock was achieved, I called a day by taking a picture of the table (Attachment 5).

Attachment 1: PXL_20220716_035922673.jpg
PXL_20220716_035922673.jpg
Attachment 2: PXL_20220716_025319391.MP.jpg
PXL_20220716_025319391.MP.jpg
Attachment 3: PXL_20220716_025334324.jpg
PXL_20220716_025334324.jpg
Attachment 4: PXL_20220716_035309066.jpg
PXL_20220716_035309066.jpg
Attachment 5: PXL_20220716_035411435.NIGHT.jpg
PXL_20220716_035411435.NIGHT.jpg
  415   Mon Jul 18 14:20:09 2022 KojiGeneralGeneralOMC #002 Plan Portal

== Initial Preparation ==

  • [Done] OMC #002 placement
  • [Done] OMC #002 locking
  • Details OMC ELOG 414

== Measurements ==

  • [Done] Transmission / Power budget before FirstContact OMC ELOG 416
  • [Done] Transmission / Power budget after FirstContact OMC ELOG 417
  • [Done] Backscatter measurement with a new deflection optics
    • [Done] Optics bonding done waiting for cure OMC ELOG 420 -> Returned the bond to Madeline OMC ELOG 424
    • [Done] Backscatter measurement
      • Measurement: 0.6 ppm OMC ELOG 422
      • (Transmission is 10~60mW. If the backscatter is the order of 1ppm or less, we expect the light level is ~10nW. Can we really detect it? How? ... OK... last time the measurement has been done with the stick PD type powermeter with baffles and the room light turned off (OMC ELOG 209). So it's not totally crazy.)
  • [Done] High QE PD preparation / install / QE check
    • [Done] High QE PD inventory check
      • A1-23    LLO OMC#001
      • A1-25    LLO OMC#001
      • B1-01    LHO OMC#003
      • B1-16    LHO OMC#003
      • B1-22    @CIT Cage B1 Cleaned/Installed
      • B1-23    @CIT Cage B2 Cleaned/Installed
      • C1-03    @CIT Cage B3 Cleaned
      • C1-05    Dead / CIT contamination test cav
      • C1-07    Dead / CIT contamination test cav
      • C1-08    @CIT Cage C2
      • C1-09    @CIT Cage C3
      • C1-10    @CIT Cage C4
      • C1-11    @CIT Cage D1
      • C1-12    @CIT Cage D2
      • C1-14    @CIT Cage D3
      • C1-15    Dead / CIT Cage D4
      • C1-17    LHO Spare
      • C1-21    LHO Spare
      • D1-08    not @CIT, maybe LLO Spare?
      • D1-10    not @CIT, maybe LLO Spare?
    • [Done] Install & QE check
  • [Done] Fiber input beam characterization OMC ELOG 421

== Repair / Preparation ==

  • Obtain from Stephen: UHV Foil (done) / EP30
  • Crimper tool? LLO bought a new one and modify it.
  • BeCu wire clamps:
    • [Done] Sufficient # of clamps found:OMC ELOG 428
    • To be: C&B of Athe clamps
  • [Done] FirstContact cavity mirror cleaning (see OMC ELOG 414)
  • [Done] FirstContact for protection OMC ELOG 430
     
  • Beam dump cleaning -> not necessary
     
  • Replacing the cable bracket
    • [Done] Obtain all parts from Stephen.
    • [Done] Class B Torque wrench present in the lab
    • Replacement work
  • Delamination Repair
  • Check all the fasteners

== Shipping ==

  • Tools to ship to LLO
    • CLASS B special tool kit
    • FC kit
    • Electronic kit (PD connector / trans-impedance amp)
    • Spare PDs
    • Power meters
    • Beamdump
       
  • OMC Pelican Filling (Stephen)
  • OMC Outerbox/insulation (Stephen/Downs)
  • OMC Shipment

 

  416   Tue Jul 19 03:17:56 2022 KojiGeneralGeneralOMC #002 Power Budget before mirror cleaning

o Power Budget (2022/07/18)
NPRO ADJ -50 (min)
Fiber incident 62.8mW
Fiber output 45.1mW
Matching to the fiber 72%


DCPD T =  8.90  +/- 0.01  mW
REFPD  =  3.760  +/- 0.001 V

DCPD R =  8.82  +/- 0.01  V
REFPD  =  3.760 +/- 0.001 V

CM1    =  81.4  +/- 0.1   uW
REFPD  =  3.767 +/- 0.001 V

CM2    =  86.6  +/- 0.1   uW
REFPD  =  3.767 +/- 0.001 V

REFLPD
OFS    = -6.214 +/- 0.001 mV (beam blocked)
OFS_REF= +4.587mV

LOCKED =  57.5  +/- 0.5   mV
REFPD  =  3.970 +/- 0.003 V

UNLOCK =  2.816 +/- 0.003 V
REFPD  =  3.943 +/- 0.001 V

P_Inc  =  20.04 +/- 0.01  mW
REFPD  =  3.946 +/- 0.001 V
 


Analysis Result

- Cavity coupling 0.989 (1.1% junk&sidebands)

- Cavity R&T: R=756ppm, T=0.946
- OMC Throughput (Cavity T x First BS R): T=0.939
- Cavity loss per mirror 90 ppm / Round Trip Loss 432ppm

 

  417   Thu Jul 21 02:55:06 2022 KojiGeneralGeneralOMC #002 Power Budget after mirror cleaning

o Power Budget after FirstContact cleaning (2022/07/20)
NPRO ADJ -50 (min)
Fiber incident --.-mW
Fiber output --.-mW
Matching to the fiber ??%



DCPD T =  8.62  +/- 0.01  mW
REFPD  =  3.549  +/- 0.001 V

DCPD R =  9.46  +/- 0.01  V
REFPD  =  3.562 +/- 0.001 V

CM1    =  74.5  +/- 0.1   uW
REFPD  =  3.585 +/- 0.001 V

CM2    =  81.7  +/- 0.1   uW
REFPD  =  3.585 +/- 0.001 V

REFLPD
vOFS    = -6.197 +/- 0.001 mV (beam blocked)
vOFS_REF= +4.58mV

LOCKED =  47.6  +/- 0.2   mV
REFPD  =  3.596 +/- 0.003 V

UNLOCK =  2.700 +/- 0.003 V
REFPD  =  3.590 +/- 0.001 V

P_Inc  =  19.36 +/- 0.001  mW
REFPD  =  3.594 +/- 0.001 V


Analysis Result

- Cavity coupling 0.980 (2.0% junk&sidebands)

- Cavity R&T: R=229ppm, T=0.970 (previous T=0.946, 2.4% UP!)
- OMC Throughput (Cavity T x First BS R): T=0.963
- Cavity loss per mirror 42.8 ppm / Round Trip Loss 238ppm

  419   Thu Jul 21 14:35:35 2022 KojiGeneralGeneralBond reinforcement blocks for the invar brackets

Bond reinforcement blocks for the invar brackets:

  • Attachment 1: CLASS A glass prisms (the surplus of the 2016 repair)
  • Attachment 2: Dirty reiforcement bars made of Aluminum
  • There are also many dirty prisms in the kit obtained from Stephen
Attachment 1: IMG_1095.JPG
IMG_1095.JPG
Attachment 2: IMG_1091.JPG
IMG_1091.JPG
  420   Thu Jul 21 14:55:48 2022 KojiGeneralGeneralOptics bonding for the backscatter measurement

The backscatter beam is supposed to appear in the backpropagation path. The transmission of the OMC has a couple of optics, it's not easy to access that beam.
To try to deflect the beam either horizontally or vertically, small optical pieces were made. (Attachment)

These are the combination of the optics

- Thorlabs PF05-03 Fused Silica Mirror Blank (dia12.7mm x t 6.0mm) + Thorlabs 1/2"sq BB Dielectric Mirror BBSQ05-E03

- Thorlabs PF05-03 Fused Silica Mirror Blank (dia12.7mm x t 6.0mm) + Thorlabs ME05-G01 Protected Al Mirror (dia12.7mm x t 3.2mm) + Thorlabs MRA10-K13 Right-Angle Prism Nd:YAG 10mm

Torr seal was used as the bonding epoxy. It uses a 1:2 volume mixture (not easy because of the viscosity) and is relatively fast to cure (in a couple of hours).
The test piece showed some softness after 3~4 hours so I left the parts cured overnight at room temp (i.e. 18degC)

Attachment 1: IMG_1098.JPG
IMG_1098.JPG
  421   Thu Jul 21 17:47:00 2022 KojiGeneralGeneralThe profile of the beam incident on the fiber input coupler

The profile of the beam incident on the fiber input

The fiber input was deflected by a 45deg mirror. The beam profile was measured with WincamD. The beam was too strong (~60mW) even at the smallest pump power (ADJ -50) of the NPRO. So the two ND20 filters were added to the lens right before the 45 deg mirror and the camera.

The measured profile had some deviation from the nice TEM00 particularly around the waist. This could be a problem of the too small beam on the ND filter and the CCD.
This is not an issue as we just want to know the approximate shape of the beam.

For the fiber coupling, if we have the beam waist radius of ~200um it is sufficient for decent coupling.

Attachment 1: fiber_beam_profile.pdf
fiber_beam_profile.pdf
  422   Fri Jul 22 00:31:17 2022 KojiGeneralGeneralOMC #002 backscatter measurement

Measure the power ratio between the forward-propagating and reverse-propagating beams.

  1. Place a small deflecting mirror at the transmission.
  2. Place a flat mirror at the deflected transmission. When the alignment of this mirror is adjusted to retroreflect this beam, the DC of the cavity reflection PD increases, and also the CCD shows spurious fringes.
  3. This condition allows us to locate the power meter at the reverse-propagating spot of the transmission (Attachment 1)
  4. Place a black glass beam dump for the main (bright) transmission (Attachment 2)
  5. Now the power meter is receiving the counter-propagating beam. Turn off the room light and place an anodized Al baffle as shown in Attachment 2. Move the baffle to block only the counter-propagating. Move the baffle out. => Record the power meter reading with/without the baffle in the counter-propagating path. The difference is the power of the reverse-propagating beam.
  6. Now measure the power of the reflected main transmission. This tells us the power ratio between the foward- and back-propagating beams.
  7. Remove the small deflecting mirror and measure the power of the main transmission.
  8. Now the back-propagating power can be estimated from 6 and 7. The same amount is going back to the IFO path.
  9. The reflectivity can be calculated from the 7 and the transmission

- To increase the incident laser power, NPRO Current ADJ was set to be 0 (increased from -50)

- 1st:  Without the baffle 0.373 +/- 0.001 uW / With the baffle 0.318 +/- 0.001 uW
- 2nd: Without the baffle 0.370 +/- 0.001 uW / With the baffle 0.318 +/- 0.001 uW
- 3rd: Without the baffle 0.370 +/- 0.001 uW / With the baffle 0.317 +/- 0.001 uW

==> 53.3 +/- 0.6 nW

- The main transmission was 84.0mW
==> Backpropagation ratio was 0.634+/-0.007 ppm

- Direct measurement of the OMC was  after BS 96.6mW
==> Backpropagation power from the cavity: 61.3 +/- 0.7 nW

- Cavity transmission for the matched beam is Tcav RinputBS = 0.963
==> Incident resonant TEM00 power 100.3mW

- Reflection 61.3+/-0.7 nW x RinputBS = 60.8+/-0.7 nW
-> The effective reflectivity for the mode-matched resonant TEM00 beam incident on the OMC (1st steering mirror) is 0.606+/-0.007 ppm

Attachment 1: OMC_backscatter.pdf
OMC_backscatter.pdf OMC_backscatter.pdf
  423   Fri Jul 22 17:41:01 2022 KojiGeneralGeneralSRS LCR meter SRS720 returned to Downs

SRS LCR meter SRS720 was returned to Downs as before.

 

Attachment 1: PXL_20220723_002330805.jpg
PXL_20220723_002330805.jpg
  424   Fri Jul 22 17:47:38 2022 KojiGeneralGeneralC&B request for the reinforcement blocks

OMC Reinforcement blocks

1. P/N D1600316; Version v4; Type 01; Qty 30; Source Chemistry Machine Shop
2. P/N D1600316; Version v4; Type 02; Qty 15; Source Chemistry Machine Shop
3. P/N D1600316; Version v4; Type 01; Qty 40; Source Resource MFG PO S422806
4. P/N D1600316; Version v4; Type 02; Qty 40; Source Resource MFG PO S422806

Stephen asked Srinath for the ICS entry.
Stephen made the C&B request https://cleanandbake.ligo.caltech.edu/clean_and_bake/request/1708/

Madeline was asked to take care of the C&B.

Also, the Torr Seal box was returned to Madeline.

Attachment 1: PXL_20220722_222013127.jpg
PXL_20220722_222013127.jpg
  425   Mon Jul 25 18:25:04 2022 KojiGeneralGeneralA/C Filter was replaced
New filter PN
Grainger
TK70457312T Mini-Pleat Air Filter, Style - Air Filters Box, Performance Rating MERV 14, Nominal Filter Size 12x24x2
 
Previous filter PN
Global Industrial Equipment
Extended Surface Pleated Cartridge Filter Serva-Cell Mp4 Slmp295 12X24X2 Gl WBB431699
-> No longer available
  426   Tue Jul 26 00:01:59 2022 KojiGeneralGeneralOMC #002 delamination check 2

More epoxy delamination check:

DCPD R (Attachment 1): Found half delaminated

DCPD T (Attachment 2): Found half delaminated

QPD1/QPD2 (Attachment 3): Looks fine

------

In total we need to fix bonding of three invar bases (including the one for the cable bracket)

Attachment 1: IMG_1106.JPG
IMG_1106.JPG
Attachment 2: IMG_1107.JPG
IMG_1107.JPG
Attachment 3: IMG_1110.JPG
IMG_1110.JPG
  427   Tue Jul 26 00:12:58 2022 KojiGeneralGeneralHigh QE PD: QE measurements

- Installed the High QE PDs to OMC #002

  • B1-22@Cage B1 was installed to the transmission DCPD
  • B1-23@Cage B1 was installed to the reflection DCPD

Upon the installation, the legs of the PDs were cut by 3mm. Also, the tab of the PD could not be embedded in the DCPD housing. Therefore, the tabs were cut.

The alignment looked just fine. The weak reflections are directed to the black glass beam dumps.

- After the installation, the QEs were measured.

  • With Thorlabs S130C power meter, the QE was estimated to be ~95%. (Accuracy +/-7%)
  • With Thorlabs S401C power meter, the QE was estimated to be ~100%. (Accuracy +/-3%)

It is so confusing. So I decided to make the QE test setup.


Ophir RM9 with chopper (+/-5%): 8.97mW
Thorlabs S140C integrating sphere (+/-7%): 9.11mW
Thorlabs S130C PD power meter (+/-7%): 9.15mW
Thorlabs S401C thermal power meter (+/-3%): 8.90mW
So there looks ~3% discrepancy between S130C and S401C

Then tried to measure the QE of C1-03@Cage B3 with Ophir RM9
- Initial state: QE=0.95
- First FirstContact application: QE went up to 0.973
- Second FirstContact application: QE = 0.974, basically no change


To Do:
- Calibrate the trans-impedance amp with Keithley
- Apply FC to B1-22 and B1-23 to see if there is an improvement
- The power should be measured with S401C because the accuracy seems better (+/-3%).
- Take photos of the PD FC process

General To Do:

- Backscatter test 2nd trial

- Start applying the first contact to the optical surfaces
- Beam dump cleaning
- Apply FC cap to the PDs
- Delamination repair (light side)
- Delamination repair (dark side)
- Cable bracket replace (dark side)

 

Attachment 1: IMG_1118.JPG
IMG_1118.JPG
  428   Wed Jul 27 10:09:51 2022 KojiGeneralGeneral4+4 wire clamp in hand

Regarding: D1200971

- 4 CLASS A wire clamp obtained from the OMC spare
- 4 more DIRTY wire clamp obtained from WB experiments (they no longer use these)

Once the later ones are C&Bed, we have enough.

 

Attachment 1: PXL_20220727_072154009.jpg
PXL_20220727_072154009.jpg
  429   Wed Jul 27 10:34:09 2022 KojiGeneralGeneralHigh QE PD: QE measurements 2

- DLPCA-200 trans-impedance amplifier was calibrated.
  Keithley source meter 2450 was connected to the amp. Provide current and read the output voltage with the precision digital voltage meter (Agilent/Keysight).
  Gain: 999.7V/A@7mA, 999.6V/A@8mA

- From the power meter spec, Thorlabs S401C seemed the best (+/-3%). So the QEs of the 9 PDs were checked with this power meter again.

- All PDs exhibited the QE of 0.95~0.96. It's all relative as the power meter has a systematic error.
- Tried to clean B1-22 and B1-23 PDs. They didn't show significant improvement after the cleaning. To avoid the unnecessary risk of damaging the PDs, further cleaning was not performed. (Some photos were attached)

- What we can do is use this result as the relative measurements.
- For OMC#2, B1-22 is the DCPD(T) and B1-23 is the DCPD(R). C1-03 and C1-12 are the spares, according to this latest result.
- At LLO, we track down the source of the throughput reduction (-10%). The QEs of the PDs are going to be tested in the same setup at once to compare their PDs and our PDs.

PD Type SN Case DCV1 Pin [mW] dPin [mW] Power Meter DCV2 Avg(DCV) Std(DCV) DCVOFS (mV) Responsivity [A/W] dR QE dQE Date Note
IGHQEX3000 B1-22 B1 7.734 9.43 0.02 TL 401C 7.745 7.7395 0.006 -0.0260 0.821 0.002 0.957 0.002 July 26, 2022 clean1 / installed (T)
IGHQEX3000 B1-23 B2 7.679 9.26 0.02 TL 401C 7.709 7.6940 0.015 -0.0220 0.831 0.002 0.969 0.003 July 26, 2022 clean1 / installed (R)
IGHQEX3000 C1-03 B3 7.775 9.40 0.02 TL 401C 7.770 7.7725 0.003 -0.0450 0.827 0.002 0.964 0.002 July 26, 2022 clean3
                                 
IGHQEX3000 C1-08 C2 7.717 9.45 0.02 TL 401C 7.750 7.7335 0.017 -0.0430 0.819 0.002 0.954 0.003 July 26, 2022 initial
IGHQEX3000 C1-09 C3 7.737 9.50 0.05 TL 401C 7.776 7.7565 0.019 -0.0580 0.817 0.005 0.952 0.006 July 26, 2022 initial
IGHQEX3000 C1-10 C4 7.757 9.50 0.03 TL 401C 7.774 7.7655 0.009 -0.0650 0.818 0.003 0.953 0.003 July 26, 2022 initial
                                 
IGHQEX3000 C1-11 D1 7.826 9.66 0.01 TL 401C 7.828 7.8270 0.001 -0.0570 0.810 0.001 0.945 0.001 July 26, 2022 initial
IGHQEX3000 C1-12 D2 7.841 9.51 0.02 TL 401C 7.841 7.8410 0.000 -0.0410 0.825 0.002 0.961 0.002 July 26, 2022 initial
IGHQEX3000 C1-14 D3 7.769 9.55 0.01 TL 401C 7.789 7.7790 0.010 -0.0520 0.815 0.001 0.950 0.002 July 26, 2022 initial
Attachment 1: IMG_1119.JPG
IMG_1119.JPG
Attachment 2: IMG_1120.JPG
IMG_1120.JPG
  430   Wed Jul 27 10:34:30 2022 KojiGeneralGeneralOMC #002 Protective FirstContact Paint

The optical surfaces were coated with FirstContact to keep them clean / somewhat protected during the transportation.
The PD aperture was sealed with FirstContact "caps" (made by Kate in 2016?).

Attachment 1: IMG_1125.JPG
IMG_1125.JPG
  431   Wed Jul 27 23:52:18 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (1)

Parts check

- D1300052-V3 SN001 is going to be used (Attachment 1)

- This is the PEEK version of the cable bracket (Attachment 2). The side thread holes have no Helicoils inserted. This needs to be done!
 

Connector arrangement check / cable routing check

Attachment 3: Connector Arrangement from the Northside

Attachment 4: Connector Arrangement from the South side

Attachment 5: Cable routing (Northside down)

At this point, the delamination of the V shape beam dumps was visible. This is the subject of bonding reinforcement.

Attachment 1: IMG_1126.JPG
IMG_1126.JPG
Attachment 2: IMG_1135.JPG
IMG_1135.JPG
Attachment 3: IMG_1127.JPG
IMG_1127.JPG
Attachment 4: IMG_1129.JPG
IMG_1129.JPG
Attachment 5: IMG_1130.JPG
IMG_1130.JPG
  432   Thu Jul 28 00:28:15 2022 KojiGeneralGeneral OMC #002 Cable bracket replacement (2)

Connector unmounting

- (Attachment 1) The connector nut rings were removed using an angled needle nose plier. The connector shell has a tight dimension relative to the hole on the bracket. But of course, they could be extracted.

- The 4 screws mounting the bracket to the invar blocks were successfully removed. No extra damage to the bonding.

- (Attachment 2) The plan was to remove the cable pegs by unfastening the button head 1/4-20 screws from the bracket and then just replace the bracket with the new one. However, these screws were really tight. The two were successfully removed without cutting the PEEK cable ties. Two cable ties were necessary to be cut to detach the bracket+pegs from the fragile OMC. Then one screw was removed. However, the final one could not be unfastened. This is not a problem as we are not going to recycle the metal cable bracket... as long as we have spare parts for the new bracket.

- (Attachment 3) Right now, the new bracket is waiting for the helicoils to be inserted. So the OMC lid was closed with the cables piled up. Just be careful when the lid is open.

Attachment 1: IMG_1132.JPG
IMG_1132.JPG
Attachment 2: IMG_1133.JPG
IMG_1133.JPG
Attachment 3: IMG_1136.JPG
IMG_1136.JPG
  433   Thu Jul 28 00:46:47 2022 KojiGeneralGeneral Subject: OMC #002 Cable bracket replacement (3)

Checking the spare parts

- Conclusion for OMC#2: need PEEK cable ties
- for more OMCs: need more BHCS / PEEK cable ties / Helicoils

  • Helicoils: 1/4-20 0.375 helicoils / Qty 4 / Class A (Attachment 1)
    • looks like there are many more as the transport fixture bags (Attachment 2). Stephen noted that they are meant to be CLASS B
       
  • Cable pegs: D1300057 / Qty 24 + 3 recycled from OMC#2 / Class A (Attachment 3)
    • Requirement: 3+3+4 = 10 for the 4th OMC / 3x4 =12 for the cable bracket replacement -> we have enough
       
  • PEEK Cable Ties: Stephen reported they were deformed by baking heat... did not check how they are in the bags.
     
  • Button Head Cap Screws 1/4-20 length ? none found in the bags.
    • Qty 4 spare (forgot to take a picture) + 3 recycled. So we have sufficient for OMC#2
Attachment 1: IMG_1137.JPG
IMG_1137.JPG
Attachment 2: IMG_1148.JPG
IMG_1148.JPG
Attachment 3: IMG_1138.JPG
IMG_1138.JPG
  434   Wed Aug 10 18:42:27 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (4)

[Stephen Koji]

Now we got the C&Bed parts to continue to work on the cable bracket replacement.

1) Helicoil insertion

1/4-20 Helicoils were inserted into the 6 thread holes of D1300052. It went mostly okay. We witnessed that the Helicoil insertion tool delaminated the plating of the Helicoils upon insertion (Attachment 1). Stephen mentioned that this is not usual, but we didn't find anything further such as increased friction, more debris, etc. So we decided to go forward.

2) EP30-2 Kit

The EP30-2 kit was transferred from the 40m clean room to the OMC lab. The EP30-2 kit tracking was updated via C1900343

3) D1300052 reinstallation -> FAIL

Now resumed to the installation of D1300052 bracket. However, the hole size of the bracket is just a bit too small compared with the size of the mighty mouse connectors. It was already quite tight with the metal version. However, this PEEK version seems to have 0.1 mm further small diameter, and then the connectors do not penetrate the holes. The plan could be
1) Use a razor blade to shave the hole inner circle.
2) Use a cleaned drill bit to make the hole size 0.2mm bigger.

Attachment 1: PXL_20220809_235457354.jpg
PXL_20220809_235457354.jpg
Attachment 2: PXL_20220811_011910569.jpg
PXL_20220811_011910569.jpg
Attachment 3: PXL_20220811_013746139.jpg
PXL_20220811_013746139.jpg
  435   Thu Aug 11 15:24:57 2022 KojiGeneralGeneralOMC #002 Cable bracket replacement (4)

- The hole size extension is going forwared now.

- Madeline and Chub are cleaning (sonicating) a drill (29/64=0.4531")
- The parts in a bag were brought to the 40m C&B lab.

- The hole is going to be 11mil=0.28mm larger than the recommendation (0.442").
  It's not a D-hole. The connector has a rounded-rectangular flange that fits into the PEEK parts.
  So I don't think it's an issue.

- Chub has a proper spanner to fasten the nuts. We want to use it here and LLO.

 

  4   Wed Jun 20 20:37:45 2012 ZachOpticsConfigurationTopology / parameter selection

EDIT (ZK): All the plots here were generated using my MATLAB cavity modeling tool, ArbCav. The utility description is below. The higher-order mode resonance plots are direct outputs of the function. The overlap plots were made by modifying the function to output a list of all HOM resonant frequencies, and then plotting the closest one as a function of cavity length. This was done for various values of highest mode order to consider, as described in the original entry.

Description:

This function calculates information about an arbitrary optical cavity. It can plot the cavity geometry, calculate the transmission/reflection spectrum, and generate the higher-order mode spectrum for the carrier and up to 2 sets of sidebands.

The code accepts any number of mirrors with any radius of curvature and transmission, and includes any astigmatic effects in its output.

As opposed to the previous version, which converted a limited number of cavity shapes into linear cavities before performing the calculation, this version explicitly propagates the gouy phase of the beam around each leg of the cavity, and is therefore truly able to handle an arbitrary geometry.

----------------Original Post----------------

I expressed concern that arbitrarily choosing some maximum HOM order above which not to consider makes us vulnerable to sitting directly on a slightly-higher-order mode. At first, I figured the best way around this is to apply an appropriate weighting function to the computed HOM frequency spacing. Since this will also have some arbitrariness to it, I have decided to do it in a more straightforward way. Namely, look at the spacing for different values of the maximum mode number, nmax, and then use this extra information to better select the length.

Assumptions:

  • The curved mirror RoC is the design value of 2.50±0.025 m
  • The ±9 MHz sidebands will have ~1% the power of the other fields at the dark port. Accordingly, as in Sam's note, their calculated spacing is artificially increased by 10 linewidths.
  • The opening angle of 4º is FIXED, and the total length is scaled accordingly

Below are the spacing plots for the bowtie (flat-flat-curved-curved) and non-bowtie (flat-curved-flat-curved) configurations. Points on each line should be read out as "there are are no modes of order N or lower within [Y value] linewidths of the carrier TEM00 transmission", where N is the nmax appropriate for that trace. Intuitively, as more orders are included, the maxima go down, because more orders are added to the calculation.

*All calculations are done using my cavity simulation function, ArbCav. The mode spacing is calculated for each particular geometry by explicitly propagating the gouy phase through each leg of the cavity, rather than by finding an equivalent linear cavity*

 ovlp_bowtie.pngovlp_non-bowtie.png

Since achievable HOM rejection is only one of the criteria that should be used to choose between the two topologies, the idea is to pick one length solution for EACH topology. Basically, one maximum should be chosen for each plot, based on how how high an order we care about.

Bowtie

For the bowtie, the nmax = 20 maximum at L = 1.145 m is attractive, because there are no n < 20 modes within 5 linewidths, and no n < 25 modes within ~4.5 linewidths. However, this means that there are also n < 10 modes within 5 linewidths, while they could be pushed (BLUE line) to ~8.5 linewidths at the expense of proximity to n > 15 modes.

Therefore, it's probably best to pick something between the red and green maxima: 1.145 m < L < 1.152 m.

By manually inspecting the HOM spectrum for nmax = 20, it seems that L = 1.150 m is the best choice. In the HOM zoom plot below and the one to follow, the legend is as follows

  • BLUE: Carrier
  • GREEN: +9 MHz
  • RED: -9 MHz
  • CYAN: +45 MHz
  • BLACK: -45 MHz

spect_zoom_bowtie.png

Non-bowtie

Following the same logic as above, the most obvious choice for the non-bowtie is somewhere between the red maximum at 1.241 m and the magenta maximum at 1.248 m. This still allows for reasonable suppression of the n < 10 modes without sacrificing the n < 15 mode suppression completely.

Upon inspection, I suggest L = 1.246 m

spect_zoom_non-bowtie.png

I reiterate that these calculations are taking into account modes of up to n ~ 20. If there is a reason we really only care about a lower order than this, then we can do better. Otherwise, this is a nice compromise between full low-order mode isolation and not sitting directly on slightly higher modes.

 

RoC dependence

One complication that arises is that all of these are highly dependent on the actual RoC of the mirrors. Unfortunately, even the quoted tolerance of ±1% makes a difference. Below is a rendering of the RED traces (nmax = 20) in the first two plots, but for R varying by ±2% (i.e., for R = 2.45 m, 2.50 m, 2.55 m).

ovlp_vs_R_bowtie.pngovlp_vs_R_non-bowtie.png

The case for the non-bowtie only superficially seems better; the important spacing is the large one between the three highest peaks centered around 1.24 m.

Also unfortunately, this strong dependence is also true for the lowest-order modes. Below is the same two plots, but for the BLUE (nmax = 10) lines in the first plots.

 ovlp_vs_R_N10_bowtie.pngovlp_vs_R_N10_non-bowtie.png

Therefore, it is prudent not to pick a specific length until the precise RoC of the mirrors is measured.

 

Conclusion

Assuming the validity of looking at modes between 10 < n < 20, and that the curved mirror RoC is the design value of 2.50 m, the recommended lengths for each case are:

  • Bowtie: LRT = 1.150 m
  • Non-bowtie: LRT = 1.246 m

 HOWEVER, variation within the design tolerance of the mirror RoC will change these numbers appreciably, and so the RoC should be measured before a length is firmly chosen.

  5   Thu Jun 21 03:07:27 2012 ZachOpticsConfigurationParameter selection / mode definition

EDIT 2 (ZK): As with the previous post, all plots and calculations here are done with my MATLAB cavity modeling utility, ArbCav.

EDIT (ZK): Added input q parameters for OMMT 

found the nice result that the variation in the optimal length vs. variation in the mirror RoC is roughly linear within the ±1% RoC tolerance. So, we can choose two baseline mode definitions (one for each mirror topology) and then adjust as necessary following our RoC measurements.

Bowtie

For R = 2.5 m, the optimal length (see previous post) is LRT = 1.150 m, and the variation in this is dLRT/dR ~ +0.44 m/m.

Here is an illustration of the geometry:

geom_bowtie.png

The input q parameters, defined at the point over the edge of the OMC slab where the beam first crosses---(40mm, 150mm) on the OptoCad drawing---are, in meters:

  • qix = - 0.2276 + 0.6955 i
  • qiy = - 0.2276 + 0.6980 i

 

Non-bowtie

For R = 2.5 m, the optimal length is LRT = 1.246 m, and the variation in this is also dLRT/dR ~ +0.44 m/m.

Geometry:

geom_non-bowtie.png

q parameters, defined as above:

  • qix = - 0.0830 + 0.8245 i
  • qiy = - 0.0830 + 0.8268 i
  36   Thu Nov 8 19:47:55 2012 KojiElectronicsConfigurationSolder for PZTs

Rich saids:

I have ordered a small roll of solder for the OMC piezos. 
The alloy is: Sn96.5 Ag3.0 Cu0.5

  38   Thu Nov 8 20:12:10 2012 KojiOpticsConfigurationHow many glass components we need for a plate

Optical prisms 50pcs (A14+B12+C6+E18)
Curved Mirrors 25pcs (C13+D12)

  Qty

Prisms

Curved No BS OMC Wedge tested
Coating A: IO coupler   14 0  2 prisms 5/5
Coating B: BS 45deg   12 0  2 prisms  0/5
Coating C: HR   6 13 2 curved  
Coating D: Asym. output coupler   0 12 -  
Coating E: HR 45deg   18 0  4 prism (1 trans + 3 refl) 0/3
D1102209 Wire Mount Bracket 25      4  
D1102211 PD Mount Bracket 30      8  

 

  55   Fri Jan 18 13:25:17 2013 KojiOpticsConfigurationAutocollimator calibration

An autocollimator (AC) should show (0,0) if a retroreflector is placed in front of the AC.
However, the AC may have an offset. Also the retroreflector may not reflect the beam back with an exact parallelism.

To calibrate these two errors, the autocollimator is calibrated. The retroreflector was rotated by 0, 90, 180, 270 deg
while the reticle position are monitored. The images of the autocollimator were taken by my digital camera looking at the eyepiece of the AC.

Note that 1 div of the AC image corresponds to 1arcmin.

Basically the rotation of the retroreflector changed the vertical and horizontal positions of the reticle pattern by 0.6mdeg and 0.1mdeg
(2 and 0.4 arcsec). Therefore the parallelism of the retrorefrector is determined to be less than an arcsec. This is negligibly good for our purpose.

The offset changes by ~1div in a slanted direction if the knob of the AC, whose function is unknown, is touched.
So the knob should be locked, and the offset should be recorded before we start the actual work every time.

Attachment 1: autocollimator_calibration.pdf
autocollimator_calibration.pdf autocollimator_calibration.pdf autocollimator_calibration.pdf autocollimator_calibration.pdf
  63   Thu Feb 21 18:44:18 2013 KojiOpticsConfigurationPerpendicularity test

Perpendicularity test of the mounting prisms:

The perpendicularity of the prism pieces were measured with an autocollimator.

Two orthogonally jointed surfaces forms a part of a corner cube.
The deviation of the reflected image from retroreflection is the quantity measured by the device.

When the image is retroreflected, only one horizontal line is observed in the view.
If there is any deviation from the retroreflection, this horizontal line splits into two
as the upper and lower halves have the angled wavefront by 4x\theta. (see attached figure)

The actual reading of the autocollimator is half of the wavefront angle (as it assumes the optical lever).
Therefore the reading of the AC times 30 gives us the deviation from 90deg in the unit of arcsec.

SN / measured / spec

SN10: 12.0 arcsec (29 arcsec)

SN11: 6.6 arcsec (16 arcsec)

SN16: 5.7 arcsec (5 arcsec)

SN20: -17.7 arcsec (5 arcsec)

SN21: - 71.3 arcsec (15 arcsec)

 

Attachment 1: perpendicularity_test.pdf
perpendicularity_test.pdf perpendicularity_test.pdf
Attachment 2: P2203206.JPG
P2203206.JPG
  64   Wed Feb 27 18:18:48 2013 KojiOpticsConfigurationMore perpendicularity test

Mounting Prisms:
(criteria: 30arcsec = 145urad => 0.36mm spot shift)
SN  Meas.(div) ArcSec Spec.
10   0.3989    11.97   29    good
11   0.2202     6.60   16
    good
16   0.1907     5.72    5
    good
20  -0.591    -17.73    5
    good
21  -2.378    -71.34   15

21  -1.7      -51.     15
01  -0.5      -15.     52
02  -2.5      -75.     48
06  -1.0      -30.     15
    good
07   1.7       51.     59
12  -2.2      -66.     40
13  -0.3      - 9.     12
    good
14  -2.8      -84.     27
15  -2.5      -75.     50
17   0.7       21.     48
22   2.9       87.    
63

Mirror A:
A1  -0.5      -15.     NA    good
A3   0.5       15.     NA
    good
A4   0.9       27.     NA
    good
A5   0.4       12.     NA
    good
A6   0.1        3.
    NA    good
A7   0.0        0.
    NA    good
A8   0.0       
0.     NA    good
A9   0.0       
0.     NA    good
A10  1.0      
30.     NA    good
A11  0.3       
9.     NA    good
A12  0.1       
3.     NA    good
A13  0.0       
0.     NA    good
A14  0.6      
18.     NA    good

Mirror B:
B1  -0.9     
-27.     NA    good
B2  -0.6     
-18.     NA    good
B3  -0.9     
-27.     NA    good
B4   0.7      
21.     NA    good
B5  -1.1     
-33.     NA
B6  -0.6     
-18.     NA    good
B7  -1.8     
-54.     NA
B8  -1.1     
-33.     NA
B9   1.8      
54.     NA
B10  1.2       
36.     NA   
B11 -1.7     
-51.     NA
B12  1.1       
33.     NA

  65   Fri Mar 1 23:06:15 2013 KojiOpticsConfigurationMore perpendicularity test final

Perpendicularity of the "E" mirror was measured.


Mounting Prisms:
(criteria: 30arcsec = 145urad => 0.36mm spot shift)
SN  Meas.(div) ArcSec Spec.
10   0.3989    11.97   29    good
11   0.2202     6.60   16
    good
16   0.1907     5.72    5
    good
20  -0.591    -17.73    5
    good
21  -2.378    -71.34   15

21  -1.7      -51.     15
01  -0.5      -15.     52
02  -2.5      -75.     48
06  -1.0      -30.     15
    good
07   1.7       51.     59
12  -2.2      -66.     40
13  -0.3      - 9.     12
    good
14  -2.8      -84.     27
15  -2.5      -75.     50
17   0.7       21.     48
22   2.9       87.    
63

Mirror A:
A1  -0.5      -15.     NA    good
A3   0.5       15.     NA
    good
A4   0.9       27.     NA
    good
A5   0.4       12.     NA
    good
A6   0.1        3.
    NA    good
A7   0.0        0.
    NA    good
A8   0.0       
0.     NA    good
A9   0.0       
0.     NA    good
A10  1.0      
30.     NA    good
A11  0.3       
9.     NA    good
A12  0.1       
3.     NA    good
A13  0.0       
0.     NA    good
A14  0.6      
18.     NA    good

Mirror B:
B1  -0.9     
-27.     NA    good
B2  -0.6     
-18.     NA    good
B3  -0.9     
-27.     NA    good
B4   0.7      
21.     NA    good
B5  -1.1     
-33.     NA
B6  -0.6     
-18.     NA    good
B7  -1.8     
-54.     NA
B8  -1.1     
-33.     NA
B9   1.8      
54.     NA
B10  1.2       
36.     NA   
B11 -1.7     
-51.     NA
B12  1.1       
33.     NA

Mirror E:
E1  -0.8      -24.     NA    good
E2  -0.8      -24.    
NA    good
E3  -0.25     - 7.5   
NA    good
E4  -0.5      -15.     NA
    good
E5   0.8       24.     NA    good
E6  -1.0      -30.     NA
    good
E7  -0.2      - 6.     NA
    good
E8  -0.8      -24.     NA
    good
E9  -1.0      -30.     NA
    good
E10  0.0        0.     NA
    good
E11 -1.0      -30.     NA
    good
E12 -0.3      - 9.     NA
    good
E13 -0.8      -24.     NA
    good
E14 -1.0      -30.     NA    good
E15 -1.2      -36.     NA

E16 -0.7      -21.     NA
    good
E17 -0.8      -24.     NA
    good
E18 -1.0      -30.     NA
    good

  86   Thu Mar 28 03:37:07 2013 ZachOpticsConfigurationTest setup input optics progress

[Lisa, Zach]

Last night (Tuesday), I finished setting up and aligning most of the input optics for the OMC characterization setup. See the diagram below, but the setup consists of:

  • Faraday isolator/polarization definition
  • HWP+PBS for power splitting into two paths:
    • EOM path
      • Resonant EOM for PDH sideband generation
      • Broadband EOM for frequency scanning
    • AOM path
      • Double-passed ~200-MHz Isomet AOM for subcarrier generation. NOTE: in this case, I have chosen the m = -1 diffraction order due to the space constraints on the table.
  • Recombination of paths on a 50/50 beam splitter---half of the power is lost through the unused port into a black glass dump
  • Coupler for launching dual-field beam into a fiber (to OMC)

OMC_test_setup_IO.jpg 2013-03-27_05.48.20.jpg

Today, we placed some lenses into the setup, in two places:

  1. In the roundabout section of the AOM path that leads to the recombination, to re-match the AOM-path beam to that of the EOM path
  2. After the recombination beam splitter, to match the combined beam mode into the fiber

We (Koji, Lisa, and myself) had significant trouble getting more than ~0.1% coupling through the fiber, and after a while we decided to go to the 40m to get the red-light fiber illuminator to help with the alignment.

Using the illuminator, we realigned the input to the coupler and eventually got much better---but still bad---coupling of ~1.2% (0.12 mW out / 10 mW in). Due to the multi-mode nature of the illuminator beam, the output cannot be used to judge the collimation of the IR beam; it can only be used to verify the alignment of the beam.

With 0.12 mW emerging from the other end of the fiber, we could see the output quite clearly on a card (see photo below). This can tell us about the required input mode. From the looks of it, our beam is actually focused too strongly. We should probably replace the 75mm lens again with a slightly longer one.

Lisa and I concurred that it felt like we had converged to the optimum alignment and polarization, which would mean that the lack of coupling is all from mode mismatch. Since the input mode is well collimated, it seems unlikely that we could be off enough to only get ~1% coupling. One possibility is that the collimator is not well attached to the fiber itself. Since the Rayleigh range within it is very small, any looseness here can be critical.

2013-03-28_02.29.36.jpg

I think there are several people around here who have worked pretty extensively with fibers. So, I propose that we ask them to take a look at what we have done and see if we're doing something totally wrong. There is no reason to reinvent the wheel.

  87   Fri Mar 29 08:55:00 2013 ZachOpticsConfigurationBeam launched into fiber

Quote:

Lisa and I concurred that it felt like we had converged to the optimum alignment and polarization, which would mean that the lack of coupling is all from mode mismatch. Since the input mode is well collimated, it seems unlikely that we could be off enough to only get ~1% coupling. One possibility is that the collimator is not well attached to the fiber itself. Since the Rayleigh range within it is very small, any looseness here can be critical.

My hypothesis about the input-side collimator turned out to be correct.

I removed the fiber from the collimator and mount at the input side, and then injected the illuminator beam from this side. Since we already saw a nice (but dim) IR beam emerging from the output side the other night, it followed that that collimator was correctly attached. With the illuminator injected from the input side, I also saw a nice, collimated red beam emerging from the output. So, the input collimator was not properly attached during our previous attempts, leading to the abysmal coupling.

The problem is that the mount does not allow you to remove and reattach the fiber while the collimator is already attached, and the dimensions make it hard to fit your fingers in to tighten the fiber to the collimator once the collimator is in the mount. I disassembled the mount and found a way to attach/reattach the fiber that preserves the tight collimator contact. I will upload a how-to shortly.

With this fix, I was able to align the input beam and get decent coupling:

EOM path: ~70%

AOM path: ~50%

  94   Thu Apr 4 00:35:42 2013 ZachOpticsConfigurationMMT installed on breadboard, periscope built

[Koji, Zach]

We installed the MMT that matches the fiber output to the OMC on a 6"x12" breadboard. We did this so that we can switch from the "fauxMC" (OMC mirrors arranged with standard mounts for practice locking) to the real OMC without having to rebuild the MMT.

The solution that Koji found was:

z = 0: front face of the fiber output coupler mount

z = 4.8 cm: f = 35mm lens

z = 21.6 cm: f = 125mm lens

This should place the waist at z ~ 0.8 m. Koji has the exact solution, so I will let him post that.

The lenses are on ±0.5" single-axis OptoSigma stages borrowed from the TCS lab. Unfortunately, the spacing between the two lenses is very close to a half-integer number of inches, so I had to fix one of them using dog clamps instead of the screw holes to preserve the full range.

Koji also built the periscope (which raises the beam height by +1.5") using a vertical breadboard and some secret Japanese mounts. Part of it can be seen in the upper left corner of the photo below---sorry for not getting a shot of it by itself.

2013-04-03_23.43.00.jpg

ELOG V3.1.3-