40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 4 of 9  Not logged in ELOG logo
IDdown Date Author Type Category Subject
  261   Fri Jun 10 17:12:57 2016 KojiGeneralConfigurationL1 OMC DCPD replacement

New DCPD(T) = A1-23
DCPD(T) = DCPDB: extracted and accomodated in CAGE-G SLOT1

New DCPD(R) = A1-25
DCPD(R) = DCPDA: extracted and accomodated in CAGE-G SLOT2

  260   Tue Apr 5 21:20:15 2016 KojiElectronicsCharacterizationMore dark noise measurement

All survived PDs have been measured.

Attachment 1: PD_dark_current.pdf
PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf
  259   Tue Apr 5 18:22:40 2016 KojiElectronicsCharacterizationBaking / Contamination tests of the PDs

Possible reduction of the QE was observed after air-bake at 75degC.


Yesterday I received Cage G from Bob for intermediate test of the PD performance after air bake but before vacuum bake.
This cage was prepared to be the production pair.

According to the ICS, https://ics-redux.ligo-la.caltech.edu/JIRA/browse/Bake-8047
the PDs were air baked at 75degC for 48 hours.

I took the PDs to my lab to check if there is any issue in terms of the performance.
- Dark current: No change observed
- Dark noise: No noise increase observed
- QE: Probably reduced by ~0.5%.

Here I attached the result of the QE measurement. I have measured the QEs of the baked ones (A1-23 and A1-25) and the reference. Since the reference PD has not been baked, this gives us the measure of the systematic effect. The reference showed the reduction of ~0.1%. Assuming this reduction came from the systematic effect of the measurement system, I observed at least 0.5% QE reduction (A1-23). Note that the previous measurement of 99.8% for A1-25 was too high and dubious. But both A1-23 and A1-25 showed ~0.4% lower QEs.

So I believe the air-baking process reduced the QE.

Another evidence was that now I could clearly see the beam spots on these air-baked-PDs with an IR viewer when the PDs were illuminated with a 1064nm beam. Usually it is difficult to see the spot on the PD. The spot on the reference PD was still dark. So this difference was very obvious. I was afraid that something has been deposited on the surface of the photosensitive element. The surface of the diodes looked still very clean when they were checked with a green LED flash light.

Attachment 1: QE_after_air_bake.pdf
QE_after_air_bake.pdf
  258   Tue Apr 5 18:14:55 2016 KojiGeneralLoan / LendingQPD Lending Crackle

Xiaoyue

QPD head
X-Z stage
Mounting brackets
DB15 cable
QPD matrix circuit
+/-18V power supply cable

  257   Sat Mar 26 18:22:24 2016 KojiElectronicsCharacterizationBaking / Contamination tests of the PDs

For the production of the aLIGO PDs, the following transfer of the PDs were carried out
A1-23 Cage A1 -> G1
A1-25 Cage A2 -> G2

The cage A will be baked at 75degC to see if this improves AMU=64 emission.

At the same time, we will put C1-05 (F1) and C1-07 (F2) into the contamination test cavity.

  256   Sat Mar 26 17:39:50 2016 KojiElectronicsCharacterizationHQEPD dark noise

Dark noise measurement for 6 HQEPDs and 1 C30665. All of these showed sufficiently low dark current noise levels compared with the noise level of the DCPD preamp. The measurement was limited by the input noise (ADC) noise of the FFT analyzer as the line noises were too big.

The measurement has been done with the transimpedance of 1e7. The bandwidth of the measurement was 50kHz.

Attachment 1: PD_dark_current.pdf
PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf PD_dark_current.pdf
  255   Sat Mar 26 01:49:48 2016 KojiOpticsCharacterizationHQEPD QE

Calibration of the transimpedance

Use KEITHLEY 2450 as a calibrated current source. Model 2450 has the current source accuracy of 0.020%+1.5uA at 10mA range. For 6mA current output, the error is 3uA (0.05%).

The output of the current amp at 103 Ohm setting was 6.0023V when -6.000mA current was applied. i.e R_trans = 1000.4 +/- 0.5 Ohm. This is a negligible level.

QE of the diodes (As of 07/30/2016)

Refer E1800372

Attachment 1: QE1.png
QE1.png
Attachment 2: QE2.png
QE2.png
  254   Sun Mar 13 22:02:09 2016 KojiOpticsCharacterizationHQEPD QE measurement (direct comaprison)

Direct comparison of the PD responsibities

We can expect 5% increase of the QE with the new PD.


P-pol 10deg incident

Power meter Ophir RM9C (Systematic error +/-5%)
Vbias = 6V

C30665GH (#07)
Incident: 7.12mW
Reflection: 0.413mW (=> R=5.8%)
PD output: 5.690+/-0.006V
=> Responsibity 0.799+/-0.001 A/W
=> QE = 0.931+/-0.001

HQE PD (A1-23)
Incident: 7.15mW
Reflection: 0.020+/-0.1mW (=> R=0.28%)
PD output: 6.017+/-0.007V
=> Responsibity 0.842+/-0.001 A/W
=> QE = 0.981+/-0.001

Note that there is a 5% systematic error with the power meter.

  253   Sun Mar 13 21:22:27 2016 KojiElectronicsCharacterizationDark current measurement of the HQE PD and other PDs

Transfered for RGA scan

B4 (C1-05) -> F1
C1 (C1-07) -> F2

 

  252   Sun Mar 6 02:13:28 2016 KojiOpticsCharacterizationPD glass reflections

On friday, I removed a glass cover of a G30655 with a PD can cutter.

When a beam shoots a Perkin Elmer/Excelitas PD, we usually observe three reflections.
We always wonder what these are.

When the glass window is illuminated by a beam, I could see two reflections. So they are the front and rear reflection from the glass windows.

Attachment 1: P3048124.JPG
P3048124.JPG
Attachment 2: P3048125.JPG
P3048125.JPG
  251   Sat Feb 20 19:11:22 2016 KojiElectronicsCharacterizationDark current measurement of the HQE PD and other PDs

Dark current of the HQE PD and other PDs were measured.

- The HQE PDs were loaded on the new PD transportation cages (Attachment 1)
The PDs are always shorted by a clean PD plugs. The PD element is still capped with Kapton seals.

- The assignment of the container/slot and the PDs are as follows

Slot \ Container A B C D E
1 A1-23 B1-22 C1-07 C1-11 C1-17
2 A1-25 B1-23 C1-08 C1-12 C1-21
3 B1-01 C1-03 C1-09 C1-14 D1-08
4 B1-16 C1-05 C1-10 C1-15 D1-10

- The measurement has been done with KEITHLEY sourcemeter SMU2450.

- The result is shown in Attachment 2. Most of the PDs show the dark current of ~3nA at 15V bias. C1-05 and C1-07 showed higher dark current at high V region. We should avoid using them for the aLIGO purpose. I hope they are still OK at low bias V if there is no noise issue (TBC). You can not read the PD names on the plot for the nominal ones, but that's OK as they are almost equivalent.

- As a comparison, the dark current of a C30655 (serial #10) was measured. Considering a DC current due to an anbient light (although the PD was covered), the dark current of the HQE PD seems double of C30655.

- Taking an advantage of having the setup, I took the same measurement for the Laser Comp. PDs in ATF. I gave the identification as #1 and #2. #1 has full-length legs while #2 has trancated legs. As Zach reported before, they showed significantly high dark current. (Attachment 3)

Attachment 1: P2197992.jpg
P2197992.jpg
Attachment 2: PD_dark_current.pdf
PD_dark_current.pdf
Attachment 3: PD_dark_current_others.pdf
PD_dark_current_others.pdf
  250   Thu Feb 18 21:08:32 2016 KojiGeneralLoan / Lending(all returned) Antonio loan

Antonio borrowed: Rich's PD cutter (returned), Ohir power meter(returned), Thorlabs power meter head, Chopper

  249   Tue Dec 29 12:15:46 2015 KojiGeneralGeneralGlasgow polarizer passed to Kate

The Glasgow polarizer was passed to Kate on Dec 17, 2015.

  248   Fri Dec 18 15:33:24 2015 KojiGeneralLoan / LendingLoan from Rich

Loan Record: I borrowed a PD can opener from Rich => Antonio Returned Sep 9, 2016

Tungsten Carbide Engraver (permanently given to the OMC lab)

KEITHLEY SOURCE METER + Laptop

  247   Tue Dec 15 13:42:37 2015 KojiOpticsCharacterizationDimensions / packaging of HQE PDs

The dimensions of a high QE PDs was measured as well as the ones for C30665. (Attachment 4, Unit in mm)
They seemed to be very much compatible.


The PDs came with the designated case (Attachment 1). The bottom of the case has a spongy (presumably conductive) material.

Diodes have no window. Each came with an adhesive seal on it. (Attachment 2)
There is a marking of a serial at the side.

I opened one (Attachment 3). The sensitive area looks just beautiful. The seal was reapplied to avoid possible contamination.

Attachment 1: PC147842.jpg
PC147842.jpg
Attachment 2: PC147846.jpg
PC147846.jpg
Attachment 3: PC147848.jpg
PC147848.jpg
Attachment 4: HQEPD_dimension.pdf
HQEPD_dimension.pdf
  246   Tue Dec 15 13:39:13 2015 KojiElectronicsCharacterizationPhase noise measurement of aLIGO EOM drivers

This measurement has been done on Dec 1st, 2015.


The phase noise added by the EOM driver was tested.

The test setup is depicted in the attached PDF. The phase of the RF detector was set so that the output is close to zero crossing as much as possible with the precision of 0.5ns using a switchable delay line box. The phase to voltage conversion was checked by changing the delayline by 1ns. This gave me somewhat larger conversion factor compared to the sine wave test using an independent signal generator. This was due to the saturation of the phase detector as the LO and RF both have similar high RF level for the frequency mixer used.

The measurement has done with 1) no EOM driver involved, 2) one EOM driver inserted in the RF path, and 3) EOM drivers inserted in both the LO and RF paths.

I could not understand why the measurement limit is so high. Also the case 2 seems too low comsidering the noise level for 1) and 3).

At least we could see clear increase of the noise between the case 1) and 3). Therefore, we can infer the phase noise added by the EOM driver from the measurements.

Note: The additional phase noise could be associated with the original amplitude noise of the oscillator and the amplitude-to-phase conversion by the variable attenuator. This means that the noise could be corellated between two EOM drivers. The true test could be done using a PLL with a quiet VCO. Unfortuantely I don't have a good oscillator sufficient for this measurement.

Attachment 1: phase_noise.pdf
phase_noise.pdf phase_noise.pdf phase_noise.pdf
Attachment 2: phase_noise_9MHz.pdf
phase_noise_9MHz.pdf
  245   Tue Dec 15 13:38:34 2015 KojiElectronicsCharacterizationEOM Driver linearity check

Linearity of the EOM driver was tested. This test has been done on Nov 10, 2015.

- Attachment 1: Output power vs requested power. The output start to deviate from the request above 22dBm request.

- Attachment 2: Ctrl and Bias voltages vs requested power. This bias was measured with the out-of-loop channel.
The variable attenuator has the voltage range of 0~15V for 50dB~2dB attenuation.

Therefore this means that:

- The power setting gives a voltage logarithmically increased as the requested power increases. And the two power detectors are watching similar voltages.

- And the servo is properly working. The control is with in the range.

- Even when the given RF power is low, the power detectors are reporting high value. Is there any mechanism to realize such a condition???

Attachment 1: Output_linearity.pdf
Output_linearity.pdf
Attachment 2: Ctrl_Bias.pdf
Ctrl_Bias.pdf
  244   Wed Sep 23 17:49:50 2015 KojiOpticsCharacterizationMore polarizer optics measurement (Summary)

For the Glasgow PBS, the measurement has been repeated with different size of beams.
In each case, the PBS crystal was located at around the waist of the beam.
Otherwise, the measurement has been done with the same way as the previous entries.

Beam radius [um]  Loss [ppm]
 160              5000 +/-  500
 390              2700 +/-  240
1100              5300 +/-  700
1400              2500 +/-  600 (from the previous entry)
2000              4000 +/-  350

Attachment 1: Glasgow_PBS_spotsize.pdf
Glasgow_PBS_spotsize.pdf
  243   Thu Sep 10 04:03:42 2015 KojiOpticsCharacterizationMore polarizer optics measurement (Summary)

Brewster calcite PBS (eLIGO Squeezer OFI)

Loss L = 3600 +/- 200ppm
Angular dependence: Attachment 1

In the first run, a sudden rise of the loss by 1% was observed for certain angles. This is a repeatable real loss.
Then the spot position was moved for the second run. This rise seemed disappeared. Is there a defect or a stria in the crystal?

Wave plate (eLIGO Squeezer OFI?)

Loss L = 820 +/- 160ppm
Angular dependence: Attachment 2

Initially I had the similar issue to the one for the brewster calcite PBS. At the 0 angle, the loss was higher than the final number
and high asymmetric loss (~2%) was observed in the negative angle side. I checked the wave plate and found there is some stain
on the coating. By shifting the spot, the loss numbers were significantly improved. I did not try cleaning of the optics.

The number is significantly larger than the one described in T1400274 (100ppm).

Thin Film Polarlizer (aLIGO TFP)

Loss L = 3680 +/- 140ppm @59.75 deg
Angular dependence: Attachment 3

0deg was adjusted by looking at the reflection from the TFP. The optics has marking saying the nominal incident angle is 56deg.
The measurement says the best performance is at 59.75deg, but it has similar loss level between 56~61deg.

Glasgow PBS

It is said by Kate that this PBS was sent from Glasgow.

Loss L = 2500 +/- 600ppm
Angular dependence: Attachment 4

 

Attachment 1: eLIGO_PBS.pdf
eLIGO_PBS.pdf
Attachment 2: HWP.pdf
HWP.pdf
Attachment 3: TFP.pdf
TFP.pdf
Attachment 4: Glasgow_PBS.pdf
Glasgow_PBS.pdf
  242   Wed Sep 9 01:58:34 2015 KojiOpticsCharacterizationPBS Transmission measurement

Calcite Brewster PBS Continued

The transmission loss of the Calcite brewster PBS (eLIGO squeezer OFI) was measured with different conditions.
The measured loss was 3600+/-200ppm.
(i.e. 900+/-50 ppm per surface)
The measurement error was limited by the systematic error, probably due to the dependence of the PD response on the spot position.


I wonder if it is better to attenuate the beam by a ND filter instead of HWP+PBS.

o First PBS power adjustment -> full power transmission, OD1.0 ATTN Full Power
   PDA20CS Gain 10dB
   Thru 0.746711, PBS 0.744155 => Loss L = 3423 +/- 5ppm

o Same as above, PDA20CS Gain 0dB (smaller amplitude = slew rate less effective?)
   Thru 0.748721, PBS 0.746220 => L = 3340 +/- 5ppm

o Same as above but OD1.4 ATTN
   Thru 0.744853, PBS 0.742111 => L = 3681 +/- 5ppm

o More alignment, more statistics
(PDA20CS 0dB gain =  0.6A/W, 1.51kV/A)
PD(REF, 0dB) 0.426V = 0.47W
PD(MEAS, 0dB) Thru 0.320V, PBS 0.318V = 0.35W, L = 6000+/-3000ppm

Chopping 234Hz, TF 1.6kHz AVG10
Thru 0.745152, PBS 0.742474 => 3594 +/- 5 ppm
Thru 0.745141, PBS 0.742467 => 3589 +/- 5ppm
Thru 0.745150, PBS 0.742459 => 3611 +/- 5ppm
Thru 0.745120, PBS 0.742452 => 3581 +/- 5ppm
Thru 0.745153, PBS 0.742438 => 3644 +/- 5ppm
=> 3604ppm +/-25ppm

o More power

Attenuation OD 1.0
PD(REF, 0dB) 0.875V = 0.97W
PD(MEAS, 0dB) Thru 0.651V, PBS 0.649V = 0.72W, L = 3100+/-1600ppm

Chopping 234Hz, TF 1.6kHz AVG10
Thru 0.746689, PBS 0.743789 => 3884 +/- 5ppm
Thru 0.746660, PBS 0.743724 => 3932 +/- 5ppm
Thru 0.746689, PBS 0.743786 => 3888 +/- 5ppm
Thru 0.746663, PBS 0.743780 => 3861 +/- 5ppm
Thru 0.746684, PBS 0.743783 => 3885 +/- 5ppm
=> 3890ppm +/- 26ppm

o Much less power

Attenuation OD 2.4
PD(REF, 0dB) 67.1mV = 74.0mW
PD(MEAS, 0dB) Thru 53.7V, PBS 53.5V = 59mW, L = 3700+/-1900ppm

Thru 0.745142, PBS 0.742430 => 3640 +/- 5ppm
Thru 0.745011, PBS 0.742557 => 3294 +/- 5ppm
Thru 0.744992, PBS 0.742537 => 3295 +/- 5ppm
Thru 0.745052, PBS 0.742602 => 3288 +/- 5ppm
Thru 0.745089, PBS 0.742602 => 3338 +/- 5ppm
=> 3371ppm +/- 151ppm

o Much less power, but different gain

Attenuation OD 2.4
PD(REF, 20dB) 662mV = 73.1mW
PD(MEAS, 20dB) Thru 501V, PBS 500V = 55.3mW, L = 2000+/-2000ppm

Thru 0.744343, PBS 0.741753 => 3480 +/- 5ppm
Thru 0.744304, PBS 0.741739 => 3446 +/- 5ppm
Thru 0.744358, PBS 0.741713 => 3553 +/- 5ppm
Thru 0.744341, PBS 0.741719 => 3523 +/- 5ppm
Thru 0.744339, PBS 0.741666 => 3591 +/- 5ppm
=> 3519ppm +/- 58ppm


Using the last 4 measurements, mean loss is 3596, and the std is 218. => Loss = 3600+/-200ppm

  241   Tue Sep 8 11:18:10 2015 KojiOpticsCharacterizationPBS Transmission measurement

Motivation: Characterize the loss of the Calcite Brewster PBS.

Setup: (Attachment 1)

- The beam polarization is rotated by an HWP
- The first PBS filters out most of the S pol
- The second PBS further filters the S and also confirms how good the polarization is.

- The resulting beam is modulated by a chopper disk. The chopping freq can be 20~1kHz.

- The 50:50 BS splits the P-pol beam into two. One beam goes to the reference PD. The other beam goes to the measurement PD.

- Compare the transfer functions between RefPD and MeasPD at the chopping frequency with and without the DUT inserted to the measurement pass.

- The PBS shift the beam significantly. The beam can't keep the alignment on the Meas PD when the crystal is removed.
  Therefore the "On" and "Off" states are swicthed by moving the PBS and the steering mirror at the same time.
  The positions and angles of the mounts are defined by the bases on the table. The bases are adjusted to have the same spot position for these states as much as possible.

Device Under Test:

Brewster polarizer https://dcc.ligo.org/LIGO-T1300346

The prisms are aligned as shown in Attachment 2

Between the prisms, a kapton sheet (2MIL thickness) is inserted to keep the thin air gap between them.

Result:

Set1: (~max power without hard saturation)
PD1(REF) 10dB Gain (4.75kV/A) 6.39V
PD2(PBS) 10dB Gain (4.75kV/A) Thru 4.77V, PBS 4.75
Chopping frequency 234Hz, FFT 1.6kHz span AVG 20 (1s*20 = 20s)

Thru 0.748307, PBS 0.745476 => 3783 +/- 5 ppm loss
Thru 0.748227, PBS 0.745552 => 3575 +/- 5 ppm
Thru 0.748461, PBS 0.745557 => 3879 +/- 5 ppm
Thru 0.748401, PBS 0.745552 => 3806 +/- 5 ppm
Thru 0.748671, PBS 0.745557 => 4159 +/- 5 ppm
=> Loss 3841 +/- 2 ppm

Set2: (half power)
PD1(REF) 10dB Gain (4.75kV/A) 3.20V
PD2(PBS) 10dB Gain (4.75kV/A) Thru 2.38V, PBS 2.37
Chopping frequency 234Hz, FFT 1.6kHz span AVG 20 (1s*20 = 20s)

Thru 0.747618, PBS 0.744704 => 3898 +/- 5 ppm loss
Thru 0.747591, PBS 0.744690 => 3880 +/- 5 ppm
Thru 0.747875, PBS 0.744685 => 4265 +/- 5 ppm
Thru 0.747524, PBS 0.744655 => 3838 +/- 5 ppm
Thru 0.747745, PBS 0.744591 => 4218 +/- 5 ppm
=> Loss 4020 +/- 2 ppm

Set3: (1/4 power)
PD1(REF) 10dB Gain (4.75kV/A) 1.34V
PD2(PBS) 10dB Gain (4.75kV/A) Thru 1.00V, PBS 0.999
Chopping frequency 234Hz, FFT 1.6kHz span AVG 20 (1s*20 = 20s)

Thru 0.745140, PBS 0.741949 => 4282 +/- 5ppm loss
Thru 0.745227, PBS 0.741938 => 4413 +/- 5ppm
Thru 0.745584, PBS 0.741983 => 4830 +/- 5ppm
Thru 0.745504, PBS 0.741933 => 4790 +/- 5ppm
Thru 0.745497, PBS 0.741920 => 4798 +/- 5ppm
Thru 0.745405, PBS 0.741895 => 4709 +/- 5ppm
=> Loss 4637 +/- 2ppm


Possible improvement:

- Further smaller power
- Use the smaller gain as much as possible
- Compare the number for the same measurmeent with the gain changed

- Use a ND Filter instead of HWP/PBS power adjustment to reduce incident S pol
- Use a double pass configuration to correct the beam shift by the PBS

To be measured

- Angular dependence
- aLIGO Thin Film Polarizer
- HWP
- Glasgow PBS

Attachment 1: setup.JPG
setup.JPG
Attachment 2: CaF2Prism.jpg
CaF2Prism.jpg
Attachment 3: CaF2Prism2.JPG
CaF2Prism2.JPG
  240   Tue Sep 8 10:55:31 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ 37MHz OCXO AM measurement

Test sheet: https://dcc.ligo.org/LIGO-E1400445

Test Result (S1500114): https://dcc.ligo.org/S1500114

  239   Sun Sep 6 16:50:51 2015 KojiElectronicsGeneralUnit test of the EOM/AOM Driver S1500118

TEST Result: S1500118

Additional notes

- Checked the power supply. All voltages look quiet and stationary.

- Checked the internal RF cables too see if there is any missing shield soldering => Looked fine

- Noticed that the RFAM detector board has +/-21V for the +/-24V lines => It seems that this is nominal according to the schematic

- Noticed that the RFAM detector sensitivity were doubled fomr the other unit.
  => This is reated to the modification (E1500353) of  "Controller Board D0900761-B Change 1" (doubling the monitor output gain)

- Noticed that the transfer function of the CTRL signal on the BNC and the DAQ output.
  => This is reated to the modification (E1500353) of  "Servo Board D0900847-B Change 1"  (servo transfer function chage)
  => The measured transfer function did not agree with the prediction from the circuit constants in this document
  => From the observation of the servo board it was found that R69 was not 200Ohm but 66.5 Ohm (See attachment 1).
       This explained the measured transfer function. The actuator TF has: P 2.36, Z 120., K -1@DC (0.020@HF)

- Similarly, the TF between the CTRL port on the unit and the CTRL port on the test rig was also modified.

Noise level

Attachment 2

- The amplitude noise in dBc (SSB) was measured at the output of 27dBm. From the test sheet, the noise level with 13dBm output was also referred. From the coherence of the MON1 and MON2, the noise level was inferred. It suggests that the floor level is better than 180dBc/Hz. However, there is a 1/f like noise below 1k and is dominating the actual noise level of the RF output. Daniel suggested that we should check nonlinear downconversion from the high frequency noise due to the noise attenuator. This will be check with the coming units.

Attachment 1: P9037810.JPG
P9037810.JPG
Attachment 2: RF_AM_spectra.pdf
RF_AM_spectra.pdf
  238   Fri Aug 28 02:14:53 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ 37MHz OCXO AM measurement

In order to check the noise level of the RFAM detector, the power and cross spectra for the same signal source
were simultaneously measured with the two RFAM detectors.


As a signal source, 37MHz OCXO using a wenzel oscillator was used. The output from the signal source
was equaly splitted by a power splitter and fed to the RFAM detector CHB(Mon1) and CHA(Mon2).

The error signal for CHB (Mon1) were monitored by an oscilloscope to find an appropriate bias value.
The bias for CHA are adjusted automatically by the slow bias servo.

The spectra were measured with two different power settings:

Low Power setting: The signal source with 6+5dB attenuation was used. This yielded 10.3dBm at the each unit input.
The calibration of the low power setting is dBc = 20*log10(Vrms/108). (See previous elog entry)

High Power setting: The signal source was used without any attenuation. This yielded 22.4dBm at the each unit input.
The calibration for the high power setting was measured upon the measurement.
SR785 was set to have 1kHz sinusoidal output with the amplitude of 10mVpk and the offset of 4.1V.
This modulation signal was fed to DS345 at 30.2MHz with 24.00dBm
The network analyzer measured the carrier and sideband power levels
30.2MHz 21.865dBm
USB    -37.047dBm
LSB    -37.080dBm  ==> -58.9285 dBc (= 0.0011313)

The RF signal was fed to the input and the signal amplitude at Mon1 and Mon2 were measured
MON1 => 505   mVrms => 446.392 Vrms/ratio
MON2 => 505.7 mVrms => 447.011 Vrms/ratio
dBc = 20*log10(Vrms/446.5).


Using the cross specrum (or coherence)of the two signals, we can infer the noise level of the detector.

Suppose there are two time-series x(t) and y(t) that contain the same signal s(t) and independent but same size of noise n(t) and m(t)

x(t) = n(t) + s(t)
y(t) = m(t) + s(t)

Since n, m, s are not correlated, PSDs of x and y are

Pxx = Pnn + Pss
Pyy = Pmm+Pss = Pnn+Pss

The coherence between x(t) and y(t) is defined by

Cxy = |Pxy|^2/Pxx/Pyy = |Pxy|^2/Pxx^2

In fact |Pxy| = Pss. Therefore

sqrt(Cxy) = Pss/Pxx

What we want to know is Pnn

Pnn = Pxx - Pss = Pxx[1 - sqrt(Cxy)]
=> Snn = sqrt(Pnn) = Sxx * sqrt[1 - sqrt(Cxy)]

This is slightly different from the case where you don't have the noise in one of the time series (e.g. feedforward cancellation or bruco)


Measurement results

 

Power spectra:
Mon1 and Mon2 for both input power levels exhibited the same PSD between 10Hz to 1kHz. This basically supports that the calibration for the 22dBm input (at least relative to the calibration for 10dBm input) was corrected. Abobe 1kHz and below 10Hz, some reduction of the noise by the increase of the input power was observed. From the coherence analysis, the floor level for the 10dBm input was -178, -175, -155dBc/Hz at 1kHz, 100Hz, and 10Hz, respectively. For the 22dBm input, they are improved down to -188, -182, and -167dBc/Hz at 1kHz, 100Hz, and 10Hz, respectively.

 

Attachment 1: OCXO_AM_noise.pdf
OCXO_AM_noise.pdf
  237   Fri Aug 28 01:08:14 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151 ~ Calibration

Worked on the calibration of the RF AM Measurement Unit.

The calibration concept is as follows:

  • Generate AM modulated RF output
  • Measure sideband amplitude using a network anayzer (HP4395A). This gives us the SSB carrier-sideband ratio in dBc.
  • Measure the output of the RF AM measurement unit with the same RF signal
  • Determine the relationship between dBc(SSB) and the output Vrms.

The AM modulated signal is produced using DS345 function generator. This FG allows us to modulate
the output by giving an external modulation signal from the rear panel. In the calibration, a 1kHz signal with
the DC offset of 3V was given as the external modulation source. The output frequency and output power of
DS345 was set to be 30.2MHz (maximum of the unit) and 14.6dBm. This actually imposed the output
power of 10.346dBm. Here is the result with the modulation amplitude varied

                 RF Power measured             Monitor output
Modulation       with HP4395A (dBm)           Measure with SR785 (mVrms)
1kHz (mVpk)   Carrier    USB      LSB          MON1       MON2
   0.5        9.841    -72.621  -73.325          8.832      8.800
   1          9.99     -65.89   -65.975         17.59      17.52
   2          9.948    -60.056  -59.747         35.26      35.07
   3          9.90     -56.278  -56.33          53.04      52.9
   5          9.906    -51.798  -51.797         88.83      88.57
  10          9.892    -45.823  -45.831        177.6      177.1
  20          9.870    -39.814  -39.823        355.3      354.4
  30          9.8574   -36.294  -36.307        532.1      531.1
  50          9.8698   -31.86   -31.867        886.8      885.2
 100          9.8735   -25.843  -25.847       1772       1769
 150          9.8734   -22.316  -22.32        2656       2652
 200          9.8665   -19.819  -19.826       3542       3539
 300          9.8744   -16.295  -16.301       5313       5308

The SSB carrier sideband ratio is derived by SSB[dBc] = (USB[dBm]+LSB[dBm])/2 - Carrier[dBm]

This measurement suggests that 10^(dBc/20) and Vrms has a linear relationship. (Attachment 1)
The data points were fitted by the function y= a x.

=> 10^dBc(SSB)/20 = 108*Vrms (@10.346dBm input)


Now we want to confirm this calibration.

DS345 @30.2MHz was modulated with the DC offset + random noise. The resulting AM modulated RF was checked with the network analyzer and the RFAM detector
in order to compare the calibrated dBc/Hz curves.

A) SR785 was set to produce random noise
B) Brought 2nd DS345 just to produce the DC offset of -2.52V (Offset display -1.26V)
Those two are added (A-B) by an SR560 (DC coupling, G=+1, 50 Ohm out).
The output was fed to Ext AM in DS345(#1)

DS345(#1) was set to 30.2MHz 16dBm => The measured output power was 10.3dBm.

On the network analyzer the carrier power at 30.2MHz was 9.89dBm

Measurement 1) SR785     1.6kHz span 30mV random noise (observed flat AM noise)
Measurement 2) SR785   12.8kHz span 100mV random noise (observed flat AM noise)
Measurement 3) SR785 102.4kHz span 300mV random noise (observed cut off of the AM modulation due to the BW of DS345)

The comparison plot is attached as Attachment 2. Note that those three measurements are independent and are not supposed to match each other.
The network analyzer result and RFAM measurement unit output should agree if the calibration is correct. In fact they do agree well.

 

Attachment 1: RFAM_detector_calib.pdf
RFAM_detector_calib.pdf
Attachment 2: RFAM_detector_calib_spectra.pdf
RFAM_detector_calib_spectra.pdf
  236   Wed Aug 26 11:31:33 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

The noise levels of the output pins (pin1/pin6) are measured. Note that the measurement is done with SE. i.e. There was no common mode noise rejection.

Attachment 1: OMC_DCPD_OutputNoise.pdf
OMC_DCPD_OutputNoise.pdf
  235   Thu Aug 20 01:35:01 2015 KojiElectronicsGeneralOMC DCPD in-vacuum electronics chain test

We wanted to know the  transimpedance of the OMC DCPD at high frequency (1M~10M).
For this purpose, the OMC DCPD chain was built at the 40m. The measurement setup is shown in Attachment 1.

- As the preamp box has the differential output (pin1 and pin6 of the last DB9), pomona clips were used to measure the transfer functions for the pos and neg outputs individually.

- In order to calibrate the measurements into transimpedances, New Focus 1611 is used. The output of this PD is AC coupled below 30kHz.
This cutoff was calibrated using another broadband PD (Thorlabs PDA255 ~50MHz).

Result: Attachment 2
- Up to 1MHz, the transimpedance matched well with the expected AF transfer function. At 1MHz the transimpedance is 400.

- Above 1MHz, sharp cut off at 3MHz was found. This is consistent with the openloop TF of LT1128.

 

Attachment 1: OMC_DCPD_Chain.pdf
OMC_DCPD_Chain.pdf
Attachment 2: OMC_DCPD_Transimpedance.pdf
OMC_DCPD_Transimpedance.pdf
  234   Mon Aug 10 12:09:49 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Still suffering from a power supply issue!

I have been tracking the issues I'm having with the RF AM detector board.

I found that the -5V test point did not show -5V but ~+5V! It seemed that this pin was not connected to -5V but was passive.

I removed the RF AM detector board and exposed the power board again. Pin 11 of P3 interboard connector indeed was not connected to TP12 (-5V). What the hell?

As seen in the attached photo, the PCB pattern for the Pin 11 is missing at the label "!?" and not driven. I soldered a piece of wire there and now Pin11 is at -5V.


This fix actually changed several things. Now the bias setting by the rotary switches works.

Setting BIAS1
 [dBm]   [V]

   0    0.585
   2    0.720
   4    0.897
   6    1.12
   8    1.42
  10    1.79
  12    2.25
  14    2.84
  16    3.60
  18    4.56
  20    5.75
  22    7.37

This allows me to elliminate the saturation of MON1 of the first RF AM detector. I can go ahead to the next step for the first channel.

Now the bias feedback of the second detector is also behaving better. Now TP2 is railing.

Still MON2 is saturated. So, the behavior of the peak detectors needs to be reviewed.

Attachment 1: IMG_20150809_215628585_HDR.jpg
IMG_20150809_215628585_HDR.jpg
  233   Mon Aug 10 11:57:17 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Spending some days to figure out how to program CPLD (Xilinx CoolRunner II XC2C384).

I learned that the JTAG cable which Daniel sent to me (Altium JTAG USB adapter) was not compatible with Xilinx ISE's iMPACT.

I need to use Altium to program the CPLD. However I'm stuck there. Altium recognizes the JTAG cable but does not see CPLD. (Attachment 1)

Upon the trials, I followed the instruction on awiki as Daniel suggested.
http://here https://awiki.ligo-wa.caltech.edu/aLIGO/TimingFpgaCode

Altium version is 15.1. Xilinx ISE Version is 14.7

Attachment 1: screen_shot.png
screen_shot.png
  232   Mon Aug 10 11:39:40 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

Entry for Aug 6th, 2015

I faced with difficulties to operate the RF AM detectors.

I tried to operate the RF AM detector. In short I could not as I could not remove the saturation of the MON outputs, no matter how jiggle the power select rotary switches. The input power was 10~15dBm.

D0900761 Rev.A
https://dcc.ligo.org/LIGO-D0900761-v1

I've measured the bias voltage at TP1. Is the bias such high? And does it show this inversion of the slope at high dBm settings?

Setting Vbias
 [dBm]   [V]

   0    21.4
   2    21.0
   4    20.5
   6    19.8
   8    18.8
  10    17.7
  12    16.3
  14    14.2
  16    11.9
  18    10.6
  20    11.8
  22    15.0


The SURF report (https://dcc.ligo.org/LIGO-T1000574) shows monotonic dependence of Vbias from 0.6V to 10V (That is supposed to be the half of the voltage at TP1). 
I wonder I need to reprogram FPGA?

But if this is the issue, the second detector should still work as it has the internal loop to adjust the bias by itself.
TP3 (Page 1 of D0900761 Rev.A) was railed. But still MON2 was saturated.
I didn't see TP2 was also railed. It was ~1V (not sure any more about the polarity). But TP2 should also railed.

Needs further investigation

  231   Mon Aug 10 02:11:47 2015 KojiElectronicsAM Stabilized EOM DriverRF AM Measurement Unit E1500151

This is an entry for the work on Aug 3rd.

LIGO DCC E1500151

Power supply check

- Removed the RF AM detector board and exposed the D0900848 power board. The board revision is Rev. A.

- The power supply voltage of +30.2V and -30.5V were connected as +/-31V supplies. These were the maximum I could produce with the bench power supply I had. +17.2V and -17.1V were supplied as +/-17V supplies.

- Voltage reference: The reference voltages were not +/-10V but +/-17V. The cause was tracked down to the voltage reference chip LT1021-10. It was found that the chip was mechanically destroyed (Attachment 1, the legs were cut by me) and unluckily producing +17V. The chip was removed from the board. Since I didn't have any spare LT1021-10, a 8pin DIP socket and an AD587 was used instead. Indeed AD587 has similar performance or even better in some aspects. This fixed the reference voltage.

- -5V supply: After the fix of the reference voltage, I still did not have correct the output voltage of -5V at TP12. It was found that the backpanel had some mechanical stress and caused a leg of the current boost transister cut and a peeling of the PCB pattern on the component lalyer (Attachment 2). I could find some spare of the transister at the 40m. The transister was replaced, and the pattern was fixed by a wire. This fixed the DC values of the power supply voltages. In fact, +/-24V pins had +/-23.7V. But this was as expected. (1+2.74k/2k)*10V = 23.7V .

- VREFP Oscillation: Similarly to the EOM/AOM driver power supply board (http://nodus.ligo.caltech.edu:8080/OMC_Lab/225), the buffer stage for the +10V has an oscillation at 762kHz with 400mVpp at VREFP. This was fixed by replacing C20 (100pF) with 1.2nF. The cap of 680pF was tried at first, but this was not enough to completely elliminate the oscilation.

- VREFN Oscillation: Then, similarly to the EOM/AOM driver power supply board (http://nodus.ligo.caltech.edu:8080/OMC_Lab/225), the amplifier and buffer stage for the -10V has an oscillation at 18MHz with 60mVpp at VREFN. This was fixed by soldering 100pF between pin6 and pin7 of U6.

- Voltage "OK" signal: Checked the voltage of pin5 of U1 and U4 (they are connected). Nominally the OK voltage had +2.78V. The OK voltage turned to "Low (~0V)" when:
The +31V were lowered below +27.5V.
The +31V were lowered below -25.2V.
The +17V were lowered below +15.2V.
The +17V were lowered below -15.4V.

- Current draw: The voltage and current supply on the bench top supplies are listed below

+30.2V 0.09A, -30.5V 0.08A, +17.2V 0.21A, -17.1V 0.10A

- Testpoint voltages:

TP12(-5V) -5.00V
TP11(-15) -14.99V
TP10(-24V) -23.69V
TP9(-10V) -9.99V
TP5(-17V) -17.15V
TP6(-31V) -30.69

TP2(+31V) +30.37V
TP3(+17V) +17.24V
TP8(+10V) +10.00V
TP16(+28V) +28.00V
TP13(+24V) +23.70V
TP14(+15V) +15.00V
TP15(+5V) +5.00V

 

Attachment 1: IMG_20150803_223403975.jpg
IMG_20150803_223403975.jpg
Attachment 2: IMG_20150803_221210816_HDR.jpg
IMG_20150803_221210816_HDR.jpg
Attachment 3: IMG_20150803_223420267.jpg
IMG_20150803_223420267.jpg
  230   Tue Jul 28 18:36:50 2015 KojiElectronicsAM Stabilized EOM DriverRF test of the EOM/AOM Driver S1500117

Final Test Result of S1500117: https://dcc.ligo.org/LIGO-S1500117


After some staring the schematic and checking some TFs, I found that the DAQ channels for MON2 have a mistake in the circuit.
Differential driver U14 and U15 of D0900848 are intended to have the gain of +10 and -10 for the pos and neg outputs.
However, the positive output has the gain of +1.

Daniel suggested to shift R66 and R68 by one pad, replace with them by ~5.5K and add a small wire from the now "in air" pad to
the GND near pad 4.

The actual modification can be seen on Attachment 1. The resulting gain was +10.1 as the resisters of 5.49k were used.

The resulting transfer function is found in the Attachment 2. ow the nominal magnitude is ~x20.

You may wonder why the transfer function for MON1 is noisy and lower at low freq (f<1kHz). This is because the input noise of the FFT analizer
contributed to the BNC MON1 signal. High frequency part dominated the RMS of the signal and the FFT analyzer could not have proper range
for the floor noise. The actual voltage noise comparison between the BNC and DAQ signals for MON1 and MON2 can be found in Attachment 3.
 

Attachment 1: IMG_20150727_214536773_HDR.jpg
IMG_20150727_214536773_HDR.jpg
Attachment 2: EOM_Driver_DAQ_TF_test.pdf
EOM_Driver_DAQ_TF_test.pdf
Attachment 3: EOM_Driver_Mon_PSD.pdf
EOM_Driver_Mon_PSD.pdf
  229   Sat Jul 25 17:24:11 2015 KojiElectronicsAM Stabilized EOM DriverRF test of the EOM/AOM Driver S1500117

(Calibration for Attachment 5 corrected Aug 27, 2015)


Now the test procedure fo the unit is written in the document https://dcc.ligo.org/LIGO-T1500404

And the test result of the first unit (S1500117) has also been uploaded to DCC https://dcc.ligo.org/LIGO-S1500117

Here are some supplimental information with plots

Attachment 1: OLTF of the AM amplitude stabilization servo.

Attachment 2: CLTF/OLTF of the 2nd AM detector self bias adj servo

The secondary RF AM detector provides us the out-of-loop measurement. The secondary loop has an internal control loop to adjust the DC bias.
This loop supresses the RF AM error signal below the control bandwidth. This has been tested by injecting the random noise to the exc and taking
the transfer function between the primary RF AM detector error (MON1) and the secondary one (MON2).

Then the closed loop TF was converted to open loop TF to see where the UGF is. The UGF is 1Hz and the phase margin is 60deg.

Above 10Hz, the residual control gain is <3%. Therefore we practically don't need any compensation of MON2 output above 10Hz.

Attachment 3: Comparison between the power setting and the output power

Attachment 4: Raw power spectra of the monitor channels

Attachment 5: Calibrated in-loop and out-of-loop AM noise spectra

Attachment 6: TFs between BNC monitor ports and DAQ differential signals

BIAS2 and CTRL look just fine. BIAS2 has a gain of two due to the differential output. The TF for CTRL has a HPF shape, but in fact the DC gain is two.
This frequency response comesfro that the actual CTRLis taken after the final stage that has LPF feature while the CTRL DAQ was taken before this final stage.

MON1 and MON2 have some riddle. I could not justify why they have the gain of 10 instead of 20. I looked into the issue (next entry)

Attachment 7: TF between the signals for the CTRL monitor (main unit) and the CTRL monitor on the remote control test rig

The CTRL monitor for the test rig is taken from the CTRL SLOW signal. There fore there is a LPF feature together with the HPF feature described above.
This TF can be used as a reference.

 

Attachment 1: EOM_Driver_AM_servo_OLTF.pdf
EOM_Driver_AM_servo_OLTF.pdf
Attachment 2: EOM_Driver_2ndAMdet_CLOLTF.pdf
EOM_Driver_2ndAMdet_CLOLTF.pdf
Attachment 3: EOM_Driver_Output_Power.pdf
EOM_Driver_Output_Power.pdf
Attachment 4: EOM_Driver_Mon_PSD.pdf
EOM_Driver_Mon_PSD.pdf
Attachment 5: EOM_Driver_AM_PSD.pdf
EOM_Driver_AM_PSD.pdf
Attachment 6: EOM_Driver_DAQ_TF_test.pdf
EOM_Driver_DAQ_TF_test.pdf
Attachment 7: EOM_Driver_CTRL_TESTRIG_TF.pdf
EOM_Driver_CTRL_TESTRIG_TF.pdf
  228   Wed Jul 22 10:15:14 2015 KojiElectronicsAM Stabilized EOM DriverRF test of the EOM/AOM Driver S1500117

7) Make sure the on/off RF button works,
=> OK

8) Make sure the power output doesn't oscillate,

Connect the RF output to an oscilloscope (50Ohm)
=> RF output: there is no obvious oscillation

Connect the TP1 connector to an oscilloscope
=> check the oscillation with an oscilloscope and SR785 => OK

Connect the CTRL connector to an oscilloscope
=> check the oscillation with an oscilloscope and SR785 => OK

9) EXC check
Connect a function generator to the exc port.
Set the FG output to 1kHz 2Vpk. Check the signal TP1
Turn off the exc switch -> no output
Turn on the exc switch -> nominally 200mVpk

=> OK

10) Openloop transfer function

Connect SR785 FG->EXC TP2->CHA TP1->CHB
EXC 300mV 100Hz-100kHz 200 line

Network Analyzer (AG4395A)
EXC 0dBm TP1->CHA TP2->CHB, measure A/B
801 line
CHA: 0dBatt CHB: 0dBatt
1kHz~2MHz
UGF 133kHz, phase -133.19deg = PM 47deg

11) Calibrate the output with the trimmer on the front panel

13dB setting -> 12.89dBm (maximum setting)

12) Check MON, BIAS and CTRL outputs,
CTRL:    2.95V
MON(L):    6.5mV
BIAS(L):    1.81V
MON(R):    10.7mV
BIAS(R):    1.85V

13) Output check
4+0dB    3.99dBm
6    5.89
8    7.87
10    9.87
12    11.88
14    13.89
16    15.89
18    17.92
20    19.94
22    21.95
24    24.00
26    26.06

4dB+
0.0    3.99
0.2    4.17
0.4    4.36
0.6    4.56
0.8    4.75
1.0    4.94
1.2    5.13
1.4    5.32
1.6    5.53
1.8    5.73
2.0    5.92
2.2    6.10

16dB+
0.0    15.82
0.2    16.11
0.4    16.31
0.6    16.51
0.8    16.72
1.0    16.92
1.2    17.12
1.4    17.32
1.6    17.53
1.8    17.72
2.0    17.92
2.2    18.13

26dB+
0.0    26.06
0.2    26.27
0.4    26.46
0.6    26.58
0.8    26.68
1.0    26.69
1.2    26.70
1.4    3.98
1.6    3.99
1.8    3.99
2.0    3.99
2.2    3.99

 

 

 

  227   Wed Jul 22 09:43:01 2015 KojiElectronicsAM Stabilized EOM DriverPower supply test of the EOM/AOM Driver

Serial Number of the unit: S1500117
Tester: Koji Arai
Test Date: Jul 22, 2015

1) Verify the proper current draw with the output switch off:

+24 Volt current: 0.08 A Nom.
-24 Volt current: 0.07 A Nom.
+18 Volt current: 0.29 A Nom.
-18 Volt current: 0.24 A Nom.

2) Verify the proper current draw with the output switch on:
+24 Volt current: 0.53 A Nom.
-24 Volt current: 0.07 A Nom.
+18 Volt current: 0.21 A Nom.
-18  Volt current: 0.26 A Nom.

3) Verify the internal supply voltages:

All look good.

TP13 -5.001V
TP12 -15.00
TP11 -21.05
TP10 -10.00
TP5  -18.19
TP6  -24.22
TP2  +24.15
TP3  +18.22
TP9  + 9.99
TP17 +24.15
TP14 +21.04
TP15 +15.00
TP16 + 4.998

4) Verify supply OK logic:
All look good. This required re-disassembling of the PCBs...

Check then pin 5 on U1 (connected to R11) and U4 (connected to R23):

U1 3.68V (=Logic high)
U4 3.68V (=Logic high)

5) Verify the relays for the power supply sequencing: OK

Turn off +/-24 V. Confirm Pin 5 of K1 and K2 are not energized to +/-18V. => OK
Turn on +/-24 V again. Confirm Pin 5 of K1 and K2 are now energized to +/-18V. => OK

6) Verify noise levels of the internal power supply voltages:

TP13 (- 5V) 13nV/rtHz@140Hz
TP12 (-15V) 22
nV/rtHz@140Hz
TP11 (-21V) 32
nV/rtHz@140Hz
TP10 (-10V) 16nV/rtHz@140Hz
TP9  (+10V)  9
nV/rtHz@140Hz
TP14 (+21V) 21nV/rtHz@140Hz
TP15 (+15V) 13nV/rtHz@140Hz
TP16 (+ 5V) 11nV/rtHz@140Hz

 

Note that the input noise of SR785 is 9~10nV/rtHz@140Hz with -50dBbpk input (AC)

 

  226   Tue Jul 21 20:20:12 2015 KojiGeneralGeneralItem lending

Kate (ATF)

- 4ch color oscilloscope (Tektronix)

- Chopper controller

- Chopper with a rotating disk

  225   Sat Jul 18 11:37:21 2015 KojiElectronicsAM Stabilized EOM DriverD0900848 power board ~ oscillation issue solved

Power Supply Board D0900848 was oscillating. Here is the procedure how the issue was fixed.

PCB schematic: LIGO DCC D0900848

0. Extracting the power board.

The top lid and the front panel were removed. Top two modules were removed from the inter-board connection.
Some of the SMA cables were necessary to be removed to allow me to access to the botttom power board.

1. D1~D4 protection diodes

Daniel asked me to remove D1, D2, D3, D4 as the power supply sequence is controlled by the relays.
This was done.

2. Power supply oscillation
Since the power supply systems are entagnled, the oscillation of the transister boosted amps had to be checked one by one.

2.1 VREFP (U5)

First of all, the buffering stage of the positive voltage reference (U5) was oscillating. Attachment 1 is the observed voltage at "VREFP" at D13.
The oscillation was at 580kHz with 400mVpp. This was solved by replacing C20 with 1.2nF. (0805 SMD Cap)

2.2 VREFN (U6)

Then the buffering stage of the negative voltage reference (U6) was checked. Attachment 2 is the observed voltage at "VREFN" at D16.
The oscillation was at 26MHz with 400mVpp. This seemed to have a different mechanism from the U5 oscillation. This oscillation frequency is
higher than the GBW of OP27. So there must be some spurious path to the transister stage. This amplifier stage is a bit unique.
The input is VREFP, but the positive supply is also VREFP. And the feedback path between R31 and C24 is very long. I was afraid that this oscillation
was caused by some combination of L and stray C by the long feedback path and the output to power VREFP coupling, although I could not reproduce
the oscillation on LTSpice. 

After some struggles, adding a 100pF cap between the output of U6 op27 (PIN6) and VREFP (PIN7) stopped the oscillation.
I think this changes the loop function and fullfills the stability condition. I confirmed by a LTSpice model that additional cap does not
screw up the original function of the stage at audio frequencies when everything is functioning as designed.

2.3 Positive supply systems (U10, U11, U12)

Even after fixing the oscillations of U5 and U6, I kept observing the oscllative component of ~600kHz at U10 (+21V), U11 (+15V), and U12 (+5V) stages.
Among them, U11 had the biggest oscillation of 400mVpp at the opamp out (Attachment 3). The other two had small oscillation like 20mVpp at the opamp outputs.
The solution was the same as 2.1. C50, C51, and C52 were replaced to 1.2nF. After the modification I still had the 600kHz component with 2mVpp.
I wanted to check other channels and come back to this.

2.3 Negative supply systems (U7, U8, U9)

Similarly the outputs of U7, U8, and U9 had the oscillation at 600kHz with 40~80mVpp. Once C35, C36, and C37 were replaced with 1.2nF,
I no longer could see any 600kHz anywhere, including U10~U12.

2.4 -24V system (U13)

Last modification was U13. It had a noise of 50mVpp due to piled-up random pulses (Attachment 4). I just tried to replace C63 with 1.2nF
and remove a soldering jumber of W1
. There still looks random glitches there. But it's no longer the round shaped pulses but a sharp gliches
and the amplitude is 20mV each (Attachment 5). In fact, later I noticed that Q9 is not stuffed and W2 is closed. This means that the +24V external supply is
directly connected to +24AMP. Therefore U13 has no effect to the 24V suppy system.

3. Restoring all connections / final check of the voltages

Restore the middle and top PCBs to the intra-PCB connector board. Attach the front panel. Restore the SMA connections.

The missing soldering of the SMA cable (reported in the previous entry) was soldered.

Once all the circuits are connected again, the power supply voltages were checked again. There was no sign of oscillation.

All the above modifications are depicted in Attachment 6.

Attachment 1: IMG_20150715_215516907.jpg
IMG_20150715_215516907.jpg
Attachment 2: IMG_20150715_215706039.jpg
IMG_20150715_215706039.jpg
Attachment 3: IMG_20150714_203246414.jpg
IMG_20150714_203246414.jpg
Attachment 4: IMG_20150717_215132303.jpg
IMG_20150717_215132303.jpg
Attachment 5: IMG_20150717_220919527.jpg
IMG_20150717_220919527.jpg
Attachment 6: D0900848_modifications.jpg
D0900848_modifications.jpg
  224   Wed Jul 15 22:23:17 2015 KojiElectronicsAM Stabilized EOM DriverE1400445 first look

This is not an OMC related and even not happening in the OMC lab (happening at the 40m), but I needed somewhere to elog...


E1400445 first look

LIGO DCC E1400445

Attachment 1: Record of the original state

Attachment 2: Found one of the SMA cable has no shield soldering

Attachment 1: IMG_20150714_195534852.jpg
IMG_20150714_195534852.jpg
Attachment 2: IMG_20150714_195227746_HDR.jpg
IMG_20150714_195227746_HDR.jpg
  223   Wed Feb 18 21:51:23 2015 KojiGeneralGeneralNotes on OMC Transportation Fixtures & Pelican

LLO has one empty OMC transportation fixture.

LHO has one empty OMC transportation fixture.

LHO has one OMC transportation fixture with 3IFO OMC in it.

LHO has the Pelican trunk for the OMC transportation. Last time it was in the lab next to the optics lab.

  222   Wed Feb 4 20:07:24 2015 KojiGeneralGeneralItem lending

Shipment to MIT (L. Barsotti, J. Miller)

1. UV Illuminator (LESCO Super Spot MK III)

2. UV Power meter (American Ultraviolet AIB1001) Caltech property C30140

3. UV protection face shield (VWR UVC-803) Qty.2 Caltech property C30141/C30142

4. UV Fiber Optic Light Guide (American Ultraviolet OLB1081) C30143

All returned: Aug 30, 2016

Attachment 1: C30140_1.JPG
C30140_1.JPG
Attachment 2: C30140_2.JPG
C30140_2.JPG
Attachment 3: C30141.JPG
C30141.JPG
Attachment 4: C30142.JPG
C30142.JPG
Attachment 5: C30143.JPG
C30143.JPG
  221   Tue Feb 3 18:23:49 2015 KojiGeneralGeneralItem lending

- The laser was removed and shipped to LHO today.

- UV illuminator / fused silica fiber light guide / UV power meter / UV face shield (Qty 2) will be shipped to MIT.
They are CIT properties except for the illuminator.

Quote:

Gabriele:

PZT HV Amp

Evan:
HP signal generator (990MHz) (prev. setting 32.7MHz / +3dBm)
Black glass beam dump

Dmass:

LB1005 Oct 24.

Quote:

Tara: Laser Safety goggle -> Returned

Evan:
HP signal generator (990MHz) (prev. setting 32.7MHz / +3dBm)
Black glass beam dump

Dmass:

LB1005 Oct 24.

 

 

  220   Fri Jan 30 19:31:08 2015 KojiGeneralGeneralItem lending

Gabriele:

PZT HV Amp

Evan:
HP signal generator (990MHz) (prev. setting 32.7MHz / +3dBm)Returned March 23, 2016
Black glass beam dump

Dmass:

LB1005 Oct 24. This unit is permanently gone to Cryo lab. Acquired a new unit. Aug, 2016.

Quote:

Tara: Laser Safety goggle -> Returned

Evan:
HP signal generator (990MHz) (prev. setting 32.7MHz / +3dBm)
Black glass beam dump

Dmass:

LB1005 Oct 24.

 

  219   Sat Jan 17 11:40:04 2015 KojiGeneralGeneral3rd OMC completed

Jan 15, 2015 3rd OMC completed

The face caps of the DCPD/QPD cables were installed (Helicoils inserted)
PD7&10 swapped with PD11(for DCPD T) and PD12(DCPD R).
Firct Contact coating removed

Note on the 3rd OMC

Before the 3rdOMC is actually used,

- First Contact should be applied again for preventing contamination during the installation

- DCPD glass windows should be removed

  218   Tue Sep 9 20:59:19 2014 KojiMechanicsCharacterizationStructural mode analysis for the PZT mirror

Structural analysis of the PZT mirror with COMSOL.

Inline figures: Eigenmodes which involves large motion of the tombstone. In deed 10kHz mode is not the resonance of the PZT-mirror joint, but the resonance of the tombstone.

Attached PDF: Simulated transfer function of the PZT actuation. In order to simulate the PZT motion, boundary loads on the two sides of the PZT were applied with opposite signs.
10kHz peak appears as the resonance of the tombstone dominates the mirror motion. At 12kHz, the PZT extension and the backaction of the tombstone cancells each other and
the net displacement of the mirror becomes zero.

PZT_10.0kHz.png PZT_14.6kHz.png PZT_18.0kHz.png

PZT_22.5kHz.png PZT_29.7kHz.png

Attachment 1: PZT_response_FEA.pdf
PZT_response_FEA.pdf
  217   Wed Aug 27 23:13:13 2014 KojiOpticsCharacterizationCollection of the power budgetting info

L1 OMC Cavity power budget

H1 OMC Cavity power budget

3IFO OMC Cavity power budget

  216   Tue Aug 5 13:03:25 2014 KojiGeneralGeneralMissing cable components

DCPD Connector Face: Qty2 https://dcc.ligo.org/LIGO-D1201276
QPD Connector Face: Qty2 https://dcc.ligo.org/LIGO-D1201282

PD faster: 92210A07 Qty 4: MCMASTER #2-56 x .25 FHCS

Spare DCPD

  215   Mon Aug 4 18:59:50 2014 KojiGeneralGeneralA memorandom

On breadboarfd cabling for 3IFO OMC

D1300371 - S1301806
D1300372 - S1301808
D1300374 - S1301813
D1300375 - S1301815

  214   Thu Jul 31 15:07:53 2014 KojiGeneralGeneralItem lending

Tara: Laser Safety goggle -> Returned

Evan:
HP signal generator (990MHz) (prev. setting 32.7MHz / +3dBm)
Black glass beam dump

Dmass:

LB1005 Oct 24.

  213   Mon Jul 21 01:02:43 2014 KojiMechanicsCharacterizationSome structual mode analysis

Prisms

Fundamental: 12.3kHz Secondary: 16.9kHz

PRISM_12_3kHz.png PRISM_16_9kHz.png

DCPDs

Fundamental: 2.9kHz Secondary: 4.1kHz

DCPD_2_9kHz.png DCPD_4_1kHz.png

QPDs

Fundamental: 5.6kHz Secondary: 8.2kHz

QPD_6_0kHz.png QPD_8_2kHz.png

  212   Sun Jul 20 17:20:39 2014 KojiGeneralGeneralThe 3rd (LIO) OMC was shipped out to LHO

The 3rd (LIO) OMC was shipped out to LHO on Friday (Jul 18) Morning.

At LHO

- All of the on-breadboard cables should be attached and tied down.

- Peel First Contact paint and pack the OMC for storage.

 

ELOG V3.1.3-