40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog, Page 2 of 10  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  145   Tue Jun 18 10:01:11 2013 KojiOpticsCharacterizationCavity Finesse analysis

This is the analysis of the cavity finesse data taken on  Apr/13/2013 (before baking), May/30/2013 (after baking), and Jun/02/2013 (after cleaning).
If we believe this result, baking contaminated the cavity, and the first contact removed it. That agrees with the power measurement of the transmitted light.

Attachment 1: finesse_measurements.pdf
finesse_measurements.pdf
  185   Fri May 16 00:13:36 2014 KojiOpticsCharacterizationCavity mirror gluing part 1

BS1/FM1/FM2 for I1OMC were glued.

FM1 had to be intentionally rotated.
FM1 had to be intentionally shifted to avoid scattering spot.

Pin: 36.3 / Ptrans: 33.7 = Raw transmission 92.8%
Vunlock = 6.30 / Vlock = 0.120

Mode matching (estim) 0.98
Loss per mirror 84ppm
Cavity transmission 0.947

ummm

Tomorrow:
- Transmission needs to be optimized
- Apply 50V to a PZT
- Cavity FSR/HOM should be optimized
- gluing

Put a cover
Return power meter / DC supply

  18   Tue Aug 14 03:29:06 2012 KojiSupplyGeneralClean supply rack

Clean supplies & some cleaning tools are located at the right side of the entrance.
The file cabinet there was moved to the left side of the door, but will be removed eventually.

P8131959.JPG    P8131961.JPG

  347   Fri Apr 19 09:21:07 2019 PhilipOptics Cleaning of OMC optics

ach[Joe, Phillip, Koji, Stephen]

Work from 17.04.2019

First contact cleaning of OMC optics
We cleaned the OMC optic with first contact. After a first cleaning run all mirrors except for two looked
fine. One had some first contact residuals on the left at center height and another had some particle sitting
near the center area. As the ionized nitrogen gun didn't help we applied another round of first contact which resolved
the two issues. Unfortutanely the second run of cleaning again left some residuals of first contact at the edges.
We were able to peal these off with tweezers.

Placement of Optics at the breadboard
We cleaned the contact surfaces for the bonds using optic wipes and pure isopropanol. The placement wen't well for 3 of the 5 optics (low number of newtonian rings).
One was recleaned and placed on the breadboard again which seemed fine. For the 5th no newtonian rings could be seen (either verry ood or bad) we planed on trying it in the current set-up. Mirrors used can be seen in attachment 3.

 

Attachment 1: IMG_7877.JPG
IMG_7877.JPG
Attachment 2: IMG_7883.JPG
IMG_7883.JPG
Attachment 3: IMG_7884.JPG
IMG_7884.JPG
  217   Wed Aug 27 23:13:13 2014 KojiOpticsCharacterizationCollection of the power budgetting info

L1 OMC Cavity power budget

H1 OMC Cavity power budget

3IFO OMC Cavity power budget

  460   Thu Nov 17 19:50:00 2022 KojiOpticsCharacterizationConclusion on the cleaning of OMC #001

Conclusion on the cleaning of OMC #001

- After a couple of first contact cleaning trials and deep cleaning, the total loss was measured to be 0.045+/-0.004.
  This indicated a slight improvement from the loss measured at LLO before any cleaning (0.064+/-0.004).
  However, the number did not improve to the level we marked in 2013 (0.028+/-0.004).

- This loss level of 4.5% is comparable to the loss level of OMC #3, which is currently used at LHO.
  Therefore, this OMC #1 is still a useful spare for the site use.

- Some notes / to-do regarding this unit:
  1) The beam dump with melted black glass was removed. A new beam dump needs to be bonded on the base.
  2) The connector bracket still needs to be replaced with the PEEK version.
  3) The PZT of CM1 has been defunct since 2013. Combining LV and HV drivers is necessary upon use at the site. (LLO used to do it).

Attachment 1: OMC_loss.pdf
OMC_loss.pdf
  126   Mon May 13 15:00:23 2013 KojiGeneralGeneralCurrent most reliable OMC schedule
May
Tue 14th The OMC given to Bob (Air bake & Vac bake)

Mon 20th The OMC received from Bob
         Apply First contact
         Diode mount adjustment / Electronic tests
Tue 21st Diode mount adjustment / Electronic tests / Optical tests
Wed 22nd Final cabling (***Chub***)
Thu 23rd Final cabling / Packing
Fri 24th Packing / Shipping

Mon 27th? Arrival to LLO / Koji fly to LLO
Tue 28th Test on the optical bench
Wed 29th Test on the optical bench
Thu 30th Suspension test? (***Jeff B***)

June
Tue  4th Suspension test done?
  129   Tue May 21 18:28:08 2013 KojiGeneralGeneralCurrent most reliable OMC schedule

- The wrong Mighty Mouse connectors for the PZT wires were prepared. The correct ones are in the vacuum oven till Tuesday morning.

- The thread holes for the cable pegs are 1/4-20 rather than 10-24.  This requires re-machining of the cable pegs & the C&B.

- We are waiting for the fast shipment of the from LHO

 

May
Thu 23rd Diode mount adjustment / Optical tests
Fri 24th Optical tests
Tue 28th Mighty mouse connector available / Diode mounting finalization
Wed 29th final check
Thu 30th shipment
Fri 31th

June
Mon  3rd ? Arrival to LLO / Koji fly to LLO
Tue  4th Suspension test done?
  225   Sat Jul 18 11:37:21 2015 KojiElectronicsAM Stabilized EOM DriverD0900848 power board ~ oscillation issue solved

Power Supply Board D0900848 was oscillating. Here is the procedure how the issue was fixed.

PCB schematic: LIGO DCC D0900848

0. Extracting the power board.

The top lid and the front panel were removed. Top two modules were removed from the inter-board connection.
Some of the SMA cables were necessary to be removed to allow me to access to the botttom power board.

1. D1~D4 protection diodes

Daniel asked me to remove D1, D2, D3, D4 as the power supply sequence is controlled by the relays.
This was done.

2. Power supply oscillation
Since the power supply systems are entagnled, the oscillation of the transister boosted amps had to be checked one by one.

2.1 VREFP (U5)

First of all, the buffering stage of the positive voltage reference (U5) was oscillating. Attachment 1 is the observed voltage at "VREFP" at D13.
The oscillation was at 580kHz with 400mVpp. This was solved by replacing C20 with 1.2nF. (0805 SMD Cap)

2.2 VREFN (U6)

Then the buffering stage of the negative voltage reference (U6) was checked. Attachment 2 is the observed voltage at "VREFN" at D16.
The oscillation was at 26MHz with 400mVpp. This seemed to have a different mechanism from the U5 oscillation. This oscillation frequency is
higher than the GBW of OP27. So there must be some spurious path to the transister stage. This amplifier stage is a bit unique.
The input is VREFP, but the positive supply is also VREFP. And the feedback path between R31 and C24 is very long. I was afraid that this oscillation
was caused by some combination of L and stray C by the long feedback path and the output to power VREFP coupling, although I could not reproduce
the oscillation on LTSpice. 

After some struggles, adding a 100pF cap between the output of U6 op27 (PIN6) and VREFP (PIN7) stopped the oscillation.
I think this changes the loop function and fullfills the stability condition. I confirmed by a LTSpice model that additional cap does not
screw up the original function of the stage at audio frequencies when everything is functioning as designed.

2.3 Positive supply systems (U10, U11, U12)

Even after fixing the oscillations of U5 and U6, I kept observing the oscllative component of ~600kHz at U10 (+21V), U11 (+15V), and U12 (+5V) stages.
Among them, U11 had the biggest oscillation of 400mVpp at the opamp out (Attachment 3). The other two had small oscillation like 20mVpp at the opamp outputs.
The solution was the same as 2.1. C50, C51, and C52 were replaced to 1.2nF. After the modification I still had the 600kHz component with 2mVpp.
I wanted to check other channels and come back to this.

2.3 Negative supply systems (U7, U8, U9)

Similarly the outputs of U7, U8, and U9 had the oscillation at 600kHz with 40~80mVpp. Once C35, C36, and C37 were replaced with 1.2nF,
I no longer could see any 600kHz anywhere, including U10~U12.

2.4 -24V system (U13)

Last modification was U13. It had a noise of 50mVpp due to piled-up random pulses (Attachment 4). I just tried to replace C63 with 1.2nF
and remove a soldering jumber of W1
. There still looks random glitches there. But it's no longer the round shaped pulses but a sharp gliches
and the amplitude is 20mV each (Attachment 5). In fact, later I noticed that Q9 is not stuffed and W2 is closed. This means that the +24V external supply is
directly connected to +24AMP. Therefore U13 has no effect to the 24V suppy system.

3. Restoring all connections / final check of the voltages

Restore the middle and top PCBs to the intra-PCB connector board. Attach the front panel. Restore the SMA connections.

The missing soldering of the SMA cable (reported in the previous entry) was soldered.

Once all the circuits are connected again, the power supply voltages were checked again. There was no sign of oscillation.

All the above modifications are depicted in Attachment 6.

Attachment 1: IMG_20150715_215516907.jpg
IMG_20150715_215516907.jpg
Attachment 2: IMG_20150715_215706039.jpg
IMG_20150715_215706039.jpg
Attachment 3: IMG_20150714_203246414.jpg
IMG_20150714_203246414.jpg
Attachment 4: IMG_20150717_215132303.jpg
IMG_20150717_215132303.jpg
Attachment 5: IMG_20150717_220919527.jpg
IMG_20150717_220919527.jpg
Attachment 6: D0900848_modifications.jpg
D0900848_modifications.jpg
  269   Fri Sep 9 19:43:32 2016 KojiOpticsGeneralD1102211 OMC Diode Mount Glass Block went to Downs

D1102211 OMC Diode Mount Glass Block (11pcs) have been given to Calum@Downs

  409   Sun May 30 15:17:16 2021 KojiGeneralGeneralDCPD AF capacitance measirement

Attachment 1: System diagram. The reverse bias voltage is controlled by DS335. This can produce a voltage offset up to 10V. A G=+2 opamp circuit was inserted so that a bias of up to +15V can be produced. The capacitances of the photodiodes were measured with SR720 LCR meter with a probe. DS335 and SR720 were controlled from PC/Mac via serial connections.

Attachment 2: Overview

Attachment 3: How was the probe attached to the photodiode under the test

Attachment 4: The bias circuitry and the power supply

Attachment 5: G=+2 amp

Attachment 1: PD_cap_meas.pdf
PD_cap_meas.pdf
Attachment 2: 20210529013015_IMG_0577.jpeg
20210529013015_IMG_0577.jpeg
Attachment 3: 20210529013114_IMG_0580_2.jpeg
20210529013114_IMG_0580_2.jpeg
Attachment 4: 20210529013200_IMG_0584.jpeg
20210529013200_IMG_0584.jpeg
Attachment 5: 20210529013229_IMG_0586.jpeg
20210529013229_IMG_0586.jpeg
  410   Sun May 30 15:32:56 2021 KojiGeneralGeneralDCPD AF capacitance measirement

Measurement result:

The capacitance at no bias was 460~500pF. This goes down to below 300pF at 1.0~1.5V reverse bias. At maximum +15V, the capacitance goes down to 200~220pF.

On this opportunity, the capacitances of a couple of Excelitas C30665 photodiodes were measured. In Attachment 2, the result was compared with one of the results from the high QE PDs. In general the capacitance of C30665 is lower than the one from the high QE PDs.

Attachment 1: highQEPD_capacitance.pdf
highQEPD_capacitance.pdf
Attachment 2: C30665_capacitance.pdf
C30665_capacitance.pdf
  363   Mon May 20 19:53:17 2019 KojiOpticsConfigurationDCPD high power test

We want to perform a damage test of OMC DCPDs with high power beam. The OMC DCPD is the 3mm InGaAs photodiodes with high quantum efficiency, delivered by Laser Components.
The sites want to know the allowed input power during the OMC scan for beam mode analysis. The nominal bias voltage of the PDs is +12V. Therefore, 30mA of photocurrent with the transimpedance of 400 Ohm is already enough to saturate the circuit. This means that the test is intended to check the damage of the photodiode mainly by the optical power.

The test procedure is as follows:

1. Illuminate the diode with certain optical power.
2. Measure the dark current and dark noise of the PD with no light on it.
3. Check the condition of the PD surface with a digital camera.
4. Repeat 1~3 with larger optical power.

The beam from an NPRO laser is delivered to the photodiode. The maximum power available is 300~400mW. The beam shape was regulated to have the beam radius of ~500um.

- When the PD is exposed to the high power beam, the circuit setup A) is used. This setup is intended to mimic the bias and transimpedance configuration used in the DCPD amp at the site.

- When the dark noise is measured, the circuit setup B) is used. This setup is low noise enough to measure the dark noise (and current) of the PD.

- The test procedure is going to be tested with an Excelitas 3mm InGaAs PD (C30665), and then tested with the high QE PD.

Attachment 1: BIAS.pdf
BIAS.pdf
Attachment 2: P_20190520_204822.jpg
P_20190520_204822.jpg
  118   Thu Apr 18 11:59:02 2013 KojiGeneralGeneralDCPD path gluing

[Jeff, Koji]

DCPD path gluing

Usual preparation

- Locked the cavity.

- Aligned the input beam to the cavity

DCPD BS gluing

- Placed the DCPD BS on the breadboard

- Placed the dummy DCPD mount on the reflection side of the BS. Check the height and position of the spot.

- Placed the dummy DCPD mount on the transmission side of the BS. Check the height and position of the spot.

- The spot positions looked fine.

- Added a dub of UV glue on the BS. Placed it along the fixture.

- Checked the reflection spot again with the CCD. Kept monitored the spot position through out the gluing process
of the BS.

- Blasted the UV illumination

Reflection side beam dump gluing

- Replaced the alignment disk of the dummy DCPD with a photodiode with the cap removed.

- Put the dummy DCPD mount and the beam dump in place

- Checked the reflection spot from the diode on the beam dump. It looked fine.

- Applied 2~3 dubs of the glue on the beam dump. Slid in the dump to the fixture.

- Applied UV illumination. As the beam dump shadows the illumination 3 times of 10sec blasts were applied.

Transmission side beam dump gluing

- Put the dummy DCPD mount with the diode in place

- Put the beam dump in place. The template needed to be lifted up a bit to accomplish this action.
This should be fixed by the modification of the template.

- Checked the transmission spot on the diode and the spot reflected from the diode on the beam dump.

- Actually the spot was too much close to the vertex of the "V" on the beam dump. We determined that
this was mainly caused by the misalignment of the diode element, and can be compensated by the tilt of the diode mount.

- Removed the beam dump from the template once. Applied 2~3 dubs of the glue on the beam dump.
Slid in the dump to the fixture by lifting up the template again.

- Applied UV illumination. As the beam dump shadows the illumination 3 times of 10sec blasts were applied.

Mounting bracket gluing

- Glued the mounting brackets for the DCPD mounts based on the positions specified by the template.

Removing the templates

- Removed the connection bars between the two templates.

- Removed the template at the QPD side. The screws at all of the three sides were needed to be released in order to accomplish this action.
Once the screws are released, the template was slid on the breadboard so that the pads did not scratch the optical surface.
Keep one side of the template use as a pivot, lifted up another side until the pads clear the optic. Then lifted up the other side.

- Removed the other template. This time, the screws at the two DCPD sides are released. The template was slid and lifted in a same way.

Last beam dump gluing

- Once the QPD side template was removed, the last beam dump at the transmission side of the first steering mirror was glued.

- This has been done without any gluing fixture, we held the beam dump with clean Allen keys on the breadboard.

- The paths for the main and stray beams were confirmed by an IR sensor card, and blasted the UV.

Closing the transport fixture

- Removed the constraining pins for the breadboard.

- Made sure all of the constraining pins/screws are released for the other side of the transport fixture were released.

- Put the lid on.

- Fastened the constraining pins/screws of the transport fixture.

- Wrapped the fixture with sheets of the Al foil.

- Pack the fixture in anti-static bags.

  130   Thu May 23 23:41:48 2013 KojiMechanicsGeneralDCPD/QPD Mount

DCPD mounts and QPD mounts were attached on the breadboard. They are not aligned yet and loosely fastened.

DCPD (mounting 4-40x5/16 BHCS Qty4)

Face plates fatsened by 4-40x5/16 BHCS (24 out of 40)

Housing   Face plate Destination  PD
002       002        L1OMC DCPD1  #10
003       003        L1OMC DCPD2  #11
004
       004        H1OMC DCPD1
008
       005        H1OMC DCPD2
009
       006        I1OMC DCPD1
010
       007        I1OMC DCPD2

QPD (mounting 4-40x5/16 BHCS Qty4)

Face plates fatsened by 4-40x1/4 BHCS (24 out of 80)

Housing   Face plate Destination QPD
002       002        L1OMC QPD1  #38 #43 swapped on 29th May.
003       003
        L1OMC QPD2  #43 #38 swapped on 29th May.
004
       004        H1OMC QPD1
005
      005        H1OMC QPD2
006
      006        I1OMC QPD1
007
      007        I1OMC QPD2

* 4-40x5/16 BHCS Qty 8 left
* 4-40x5/16 BHCS Qty 56 left

Cut the diode legs by 3mm

 

  402   Sat Nov 21 13:58:30 2020 KojiElectronicsCharacterizationDark Current Measurement for InGaAs QPDs

Dark current measurement for InGaAs QPDs (OSI FCI-InGaAs-Q3000) has been done using Keithley 2450 and Frank's diode test kit. Frank's setup uses various custom instruments which are no longer exist, therefore the kit was used only for switching between the segments.

The diodes were serialized as 81, 82, 83, 84, continuing the numbering for the OMC QPDs. The numbers are engraved at the side and the back of the diode cans.

Overall, the QPDs nominally indicated the usual dark current level of <10nA.
SEG1 of #82 showed a lower voltage of reverse breakdown but this is not a critical level.
#83 showed variations between the segments compared to the uniform characteristics of #81 and #84.

Attachment 1: Q3000_dark_current.pdf
Q3000_dark_current.pdf
  251   Sat Feb 20 19:11:22 2016 KojiElectronicsCharacterizationDark current measurement of the HQE PD and other PDs

Dark current of the HQE PD and other PDs were measured.

- The HQE PDs were loaded on the new PD transportation cages (Attachment 1)
The PDs are always shorted by a clean PD plugs. The PD element is still capped with Kapton seals.

- The assignment of the container/slot and the PDs are as follows

Slot \ Container A B C D E
1 A1-23 B1-22 C1-07 C1-11 C1-17
2 A1-25 B1-23 C1-08 C1-12 C1-21
3 B1-01 C1-03 C1-09 C1-14 D1-08
4 B1-16 C1-05 C1-10 C1-15 D1-10

- The measurement has been done with KEITHLEY sourcemeter SMU2450.

- The result is shown in Attachment 2. Most of the PDs show the dark current of ~3nA at 15V bias. C1-05 and C1-07 showed higher dark current at high V region. We should avoid using them for the aLIGO purpose. I hope they are still OK at low bias V if there is no noise issue (TBC). You can not read the PD names on the plot for the nominal ones, but that's OK as they are almost equivalent.

- As a comparison, the dark current of a C30655 (serial #10) was measured. Considering a DC current due to an anbient light (although the PD was covered), the dark current of the HQE PD seems double of C30655.

- Taking an advantage of having the setup, I took the same measurement for the Laser Comp. PDs in ATF. I gave the identification as #1 and #2. #1 has full-length legs while #2 has trancated legs. As Zach reported before, they showed significantly high dark current. (Attachment 3)

Attachment 1: P2197992.jpg
P2197992.jpg
Attachment 2: PD_dark_current.pdf
PD_dark_current.pdf
Attachment 3: PD_dark_current_others.pdf
PD_dark_current_others.pdf
  253   Sun Mar 13 21:22:27 2016 KojiElectronicsCharacterizationDark current measurement of the HQE PD and other PDs

Transfered for RGA scan

B4 (C1-05) -> F1
C1 (C1-07) -> F2

 

  247   Tue Dec 15 13:42:37 2015 KojiOpticsCharacterizationDimensions / packaging of HQE PDs

The dimensions of a high QE PDs was measured as well as the ones for C30665. (Attachment 4, Unit in mm)
They seemed to be very much compatible.


The PDs came with the designated case (Attachment 1). The bottom of the case has a spongy (presumably conductive) material.

Diodes have no window. Each came with an adhesive seal on it. (Attachment 2)
There is a marking of a serial at the side.

I opened one (Attachment 3). The sensitive area looks just beautiful. The seal was reapplied to avoid possible contamination.

Attachment 1: PC147842.jpg
PC147842.jpg
Attachment 2: PC147846.jpg
PC147846.jpg
Attachment 3: PC147848.jpg
PC147848.jpg
Attachment 4: HQEPD_dimension.pdf
HQEPD_dimension.pdf
  78   Sat Mar 23 16:36:15 2013 KojiElectronicsCharacterizationDiode QE measurement

Quantum efficiencies of the C30665GH diodes were measured. 

- The diode was biased by the FEMTO preamplifier.

- Diode Pin 1 Signal, Pin 2 +5V, Pin 3 open

- Preamp gain 10^3 V/A

- Beam power was measured by the thorlabs power meter.

 

PD #1
Incident: 12.82 +/- 0.02 mW
Vout: 9.161 +/- 0.0005 V
PD Reflection (Prompt): 0.404 mW
PD Reflection (Total): 1.168 mW

PD #2
Incident: 12.73 +/- 0.02 mW
Vout: 9.457 +/- 0.0005 V
PD Reflection (Prompt): 0.364 mW
PD Reflection (Total): 0.937 mW

PD #3
Incident: 12.67 +/- 0.02 mW
Vout: 9.1139 +/- 0.01 V
PD Reflection (Prompt): 0.383 mW
PD Reflection (Total): 1.272 mW

PD #4
Incident: 12.71 +/- 0.02 mW
Vout: 9.3065 +/- 0.0005 V
PD Reflection (Prompt): 0.393 mW
PD Reflection (Total): 1.033 mW

PD #5
Incident: 12.69 +/- 0.02 mW
Vout: 9.1071 +/- 0.005 V
PD Reflection (Prompt): 0.401 mW
PD Reflection (Total): 1.183 mW

PD #6
Incident: 12.65 +/- 0.02 mW
Vout: 9.0310 +/- 0.01 V
PD Reflection (Prompt): 0.395 mW
PD Reflection (Total): 1.306 mW

PD #7
Incident: 12.67 +/- 0.02 mW
Vout: 9.0590 +/- 0.0005 V
PD Reflection (Prompt): 0.411 mW
PD Reflection (Total): 1.376 mW

PD #8
Incident: 12.63 +/- 0.01 mW
Vout: 9.0790 +/- 0.0005 V
PD Reflection (Prompt): 0.420 mW
PD Reflection (Total): 1.295 mW

PD #9
Incident: 12.67 +/- 0.02 mW
Vout: 9.2075 +/- 0.0005 V
PD Reflection (Prompt): 0.384 mW
PD Reflection (Total): 1.091 mW

PD #10
Incident: 12.70 +/- 0.01 mW
Vout: 9.0880 +/- 0.001 V
PD Reflection (Prompt): 0.414 mW
PD Reflection (Total): 1.304 mW

PD #11
Incident: 12.64 +/- 0.01 mW
Vout: 9.2861 +/- 0.0005 V
PD Reflection (Prompt): 0.416 mW
PD Reflection (Total): 1.152 mW

PD #12
Incident: 12.68 +/- 0.02 mW
Vout: 9.3650 +/- 0.001 V
PD Reflection (Prompt): 0.419 mW
PD Reflection (Total): 1.057 mW

PD #13
Incident: 12.89 +/- 0.01 mW
Vout: 9.3861 +/- 0.001 V
PD Reflection (Prompt): 0.410 mW
PD Reflection (Total): 1.047 mW

 

PD serial number
 1 - 0782
 2 - 1139
 3 - 0793
 4 - 0732
 5 - 0791
 6 - 0792
 7 - 0787
 8 - 0790
 9 - 0781
10 - 0784
11 - 1213
12 - 1208
13 - 1209

 

{
  {1, 12.82, 9.161, 0.404, 1.168},
  {2, 12.73 , 9.457, 0.364 , 0.937} ,
  {3, 12.67 , 9.1139, 0.383 , 1.272 },
  {4, 12.71 , 9.3065, 0.393 , 1.033 },
  {5, 12.69, 9.1071, 0.401 , 1.183 },
  {6, 12.65, 9.0310, 0.395 , 1.306} ,
  {7, 12.67, 9.0590, 0.411 , 1.376} ,
  {8, 12.63 , 9.0790, 0.420 , 1.295} ,
  {9, 12.67 , 9.2075, 0.384 , 1.091} ,
  {10, 12.70, 9.0880, 0.414 , 1.304 },
  {11, 12.64 , 9.2861, 0.416 , 1.152} ,
  {12, 12.68 , 9.3650, 0.419 , 1.057} ,
  {13, 12.89 , 9.3861, 0.410 , 1.047}
};

Attachment 1: P3213308.JPG
P3213308.JPG
Attachment 2: P3213310.JPG
P3213310.JPG
  72   Fri Mar 15 02:15:45 2013 KojiElectronicsCharacterizationDiode testing

Diode testing

o Purpose of the measurement

- Test Si QPDs (C30845EH) for ISC QPDs Qty 30 (i.e. 120 elements)

- Test InGaAs PDs (C30665GH) for OMC Qty 10 (i.e. 10 elements)

o Measurement Kit

- Inherited from Frank.

- Has relays in it.

- D0 and D1 switches the measurement instrument connected to an element

- D2 and D3 switches the element of the QPDs

- Digital switch summary

d0 d1 0 0 - ln preamp
d0 d1 1 0 - dark c
d0 d1 0 1 - omc preamp
d0 d1 1 1 - impedance

d2 d3 0 0 - A x x x
d2 d3 1 0 - C x o x
d2 d3 0 1 - B o x o
d2 d3 1 1 - D o o o

- The universal board in the box is currently configured for C30845.
  Pin1 - Elem A. Pin3 - B, Pin7 - C, Pin9 - D, Pin 12 - Case&Bias

o Labview interface

- Controls NI-USB-6009 USB DAQ interface and Agilent 82357B USB-GPIB interface

o Dark current measurement

- Borrowed Peter's source meter KEITHLEY 2635A

- For C30845GH the maxmum reverse bias is set to -20V. This drops the voltage of the each element to the bias voltage.

o Spectrum measurement

- The elements are connected to FEMTO LN current amp DLPCA-200.

- Bias voltage is set to +10V. This lifts up the outside of the amplifier input to +10V.

 

o Impedance measurement

- Agilent 4395A at PSL lab with impedance measurement kit

- For C30845GH the maxmum reverse bias is set to -15V. This drops the voltage of the each element to the bias voltage.

- Calibration: open - unplug the diode from the socket, short - use a piece of resister lead, 50Ohm - a thin metal resister 51Ohm

- Freq range: 30-50MHz where the response of the cables in the setup is mostly flat.

- Labview VI is configured to read the equivalent circuit parameters in the configuration "D" (series LCR).

- Labview fails to read the series resistance. This was solved by first read the equiv circuit param and then read it with Sim F-CHRST.
  F-CHRST does nothing on the parameters so the second request successfully acquires the first ones.

 

Attachment 1: QPD_GR_TEST_130316.pdf
QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf QPD_GR_TEST_130316.pdf
  73   Sun Mar 17 21:59:47 2013 KojiElectronicsCharacterizationDiode testing ~ DCPD

- For the dark noise measurement, the lid of the die-cast case should also contact to the box for better shielding. This made the 60Hz lines almost completely removed, although unknown 1kHz harmonics remains.

- The precise impedance of the setup can not be obtained from the measurement box; the cable in between is too long. The diode impedance should be measured with the impedance measurement kit.

- With the impedance measurement kit, the bias voltage of +5V should be used, in stead of -5V.

- diode characteristics measured at 10-100MHz

- Typical impedance characteristics of the diodes

Excelitas (Perkin-Elmer) C30665GH Rs=9Ohm, Cd=220pF, L=0~1nH (Vr=5V)

Excelitas (Perkin-Elmer) C30642G Rs=12Ohm, Cd=100pF, L=~5nH (Vr=5V) longer thin wire in a can?

Excelitas (Perkin-Elmer) C30641GH Rs=8Ohm, Cd=26pF, L=12nH (Vr=5V) leg inductance? (leg ~30mm)

- PD serial

C30665GH, Ls ~ 1nH

  1 - 0782 from PK, Rs=8.3Ohm, Cd=219.9pF
  2 - 1139 from PK, Rs=9.9Ohm, Cd=214.3pF
  3 - 0793 from PK, Rs=8.5Ohm, Cd=212.8pF
  4 - 0732 from PK, Rs=7.4Ohm, Cd=214.1pF
  5 - 0791 from PK, Rs=8.4Ohm, Cd=209.9pF
  6 - 0792 from PK, Rs=8.0Ohm, Cd=219.0pF
  7 - 0787 from PK, Rs=9.0Ohm, Cd=197.1pF
  8 - 0790 from PK, Rs=8.4Ohm, Cd=213.1pF
  9 - 0781 from PK, Rs=8.2Ohm, Cd=216.9pF
10 - 0784 from PK, Rs=8.2Ohm, Cd=220.0pF
11 - 1213 from the 40m, Rs=10.0Ohm, Cd=212.9pF
12 - 1208 from the 40m, Rs=9.9Ohm, Cd=216.8pF
13 - 1209 from the 40m, Rs=10.0Ohm, Cd=217.5pF

C30642G, Ls ~ 12nH

20 - 2484 from the 40m EG&G, Rs=12.0Ohm, Cd=99.1pF
21 - 2487 from the 40m EG&G, Rs=14.2Ohm, Cd=109.1pF
22 - 2475 from the 40m EG&G glass crack, Rs=13.5Ohm, Cd=91.6pF
23 - 6367 from the 40m ?, Rs=9.99Ohm, Cd=134.7pF
24 - 1559 from the 40m Perkin-Elmer GH, Rs=8.37Ohm, Cd=94.5pF
25 - 1564 from the 40m Perkin-Elmer GH, Rs=7.73Ohm, Cd=94.5pF
26 - 1565 from the 40m Perkin-Elmer GH, Rs=8.22Ohm, Cd=95.6pF
27 - 1566 from the 40m Perkin-Elmer GH, Rs=8.25Ohm, Cd=94.9pF
28 - 1568 from the 40m Perkin-Elmer GH, Rs=7.83Ohm, Cd=94.9pF
29 - 1575 from the 40m Perkin-Elmer GH, Rs=8.32Ohm, Cd=100.5pF

C30641GH, Perkin Elmer, Ls ~ 12nH

30 - 8983 from the 40m Perkin-Elmer, Rs=8.19Ohm, Cd=25.8pF
31 - 8984 from the 40m Perkin-Elmer, Rs=8.39Ohm, Cd=25.7pF
32 - 8985 from the 40m Perkin-Elmer, Rs=8.60Ohm, Cd=25.2pF
33 - 8996 from the 40m Perkin-Elmer, Rs=8.02Ohm, Cd=25.7pF
34 - 8997 from the 40m Perkin-Elmer, Rs=8.35Ohm, Cd=25.8pF
35 - 8998 from the 40m Perkin-Elmer, Rs=7.89Ohm, Cd=25.5pF
36 - 9000 from the 40m Perkin-Elmer, Rs=8.17Ohm, Cd=25.7pF

 

Note:
  1mm Au wire with dia. 10um -> 1nH, 0.3 Ohm
20mm BeCu wire with dia. 460um -> 18nH, 0.01 Ohm

Attachment 1: OMCPD_TEST_130317.pdf
OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf OMCPD_TEST_130317.pdf
  377   Wed Sep 18 23:38:52 2019 StephenGeneralGeneralDirty ABO ready for PZT Subassembly Bonding

The 40m Bake Lab's Dirty ABO's OMEGA PID controller was borrowed for another oven in the Bake Lab, so I have had to play with the tuning and parameters to recover a suitable bake profile. This bake is pictured below (please excuse the default excel formatting).

I have increased the ramp time, temperature offset, and thermal mass within the oven; after retuning and applying the parameters indicated, the rate of heating/cooling never exceeds .5°C/min.

Expected parameters:  Ramp 2.5 hours Setpoint 1 (soak temperature) 94 °C no additional thermal mass
Current parameters:    Ramp 4 hours Setpoint 1 (soak temperature) 84 °C Thermal mass added in the form of SSTL spacers (see photo)


The ABO is controlled by a different temperature readout from the data logger used to collect data; the ABO readout is a small bead in contact with the shelf, while the data logger is a lug sandwiched between two stainless steel masses upon the shelf. I take the data logger profile to be more physically similar to the heating experienced by an optic in a gluing fixture, so I feel happy about the results of the above bake.

I plan to add the data source file to this post at my earliest convenience.

Attachment 1: index.png
index.png
  380   Thu Sep 26 17:33:52 2019 StephenGeneralGeneralDirty ABO test run prior to PZT Subassembly Bonding - ABO is Ready!

Follow up on OMC elog 379

I was able to obtain the following (dark blue) bake profile, which I believe is adequate for our needs.

The primary change was a remounting of the thermocouple to sandwich it between two stainless steel masses. The thermocouple bead previously was 1) in air and 2) close to the oven skin.

Attachment 1: image_showing_20190924_abo_qualifying_bake.png
image_showing_20190924_abo_qualifying_bake.png
  61   Thu Feb 7 21:35:46 2013 KojiGeneralGeneralDmass's loan of LB1005 / A2&C2 sent to Fullerton / First Contact @40m

Dmass borrowed the LB1005 servo amp from the OMC lab.
It happened this week although it seems still January in his head.
Got it back on Mar 24th

The A2 and C2 mirrors have been sent to Josh Smith at Fullerton for the scatterometer measurement.

First Contact kit (incl. Peek Sheets)
Manasa borrowed the kit on Feb 7.
Got it back to the lab.

Attachment 1: P2053119.jpg
P2053119.jpg
Attachment 2: P2053120.JPG
P2053120.JPG
  147   Fri Jun 28 12:20:49 2013 KojiGeneralGeneralDmass's loan of Thorlabs HV amp

http://nodus.ligo.caltech.edu:8080/Cryo_Lab/799

(KA: Returned upon H1OMC building)

  282   Fri Jun 23 10:55:07 2017 KojiOpticsGeneralDust layer on black glass beam dumps?

I wondered why the black glass beam dumps looked not as shiny as before. It was in fact a layer of dusts (or contaminants) accumulated on the surface.
The top part of the internal surface of the black glass was touched by a piece of lens tissue with IPA. The outer surface was already cleaned. IPA did not work well i.e. Required multiple times of wiping. I tried FirstContact on one of the outer surface and it efficiently worked. So I think the internal surfaces need to be cleaned with FC.

Attachment 1: black_glass_dust.JPG
black_glass_dust.JPG
  224   Wed Jul 15 22:23:17 2015 KojiElectronicsAM Stabilized EOM DriverE1400445 first look

This is not an OMC related and even not happening in the OMC lab (happening at the 40m), but I needed somewhere to elog...


E1400445 first look

LIGO DCC E1400445

Attachment 1: Record of the original state

Attachment 2: Found one of the SMA cable has no shield soldering

Attachment 1: IMG_20150714_195534852.jpg
IMG_20150714_195534852.jpg
Attachment 2: IMG_20150714_195227746_HDR.jpg
IMG_20150714_195227746_HDR.jpg
  23   Mon Oct 8 11:30:47 2012 KojiOpticsGeneralEG&G 2mm photodiode angle response

EGE&G 2mm photodiode angle response measured by Sam T1100564-v1

  245   Tue Dec 15 13:38:34 2015 KojiElectronicsCharacterizationEOM Driver linearity check

Linearity of the EOM driver was tested. This test has been done on Nov 10, 2015.

- Attachment 1: Output power vs requested power. The output start to deviate from the request above 22dBm request.

- Attachment 2: Ctrl and Bias voltages vs requested power. This bias was measured with the out-of-loop channel.
The variable attenuator has the voltage range of 0~15V for 50dB~2dB attenuation.

Therefore this means that:

- The power setting gives a voltage logarithmically increased as the requested power increases. And the two power detectors are watching similar voltages.

- And the servo is properly working. The control is with in the range.

- Even when the given RF power is low, the power detectors are reporting high value. Is there any mechanism to realize such a condition???

Attachment 1: Output_linearity.pdf
Output_linearity.pdf
Attachment 2: Ctrl_Bias.pdf
Ctrl_Bias.pdf
  295   Tue May 15 19:53:45 2018 KojiOpticsGeneralEOM Q comparison

Qs' were estimated with a lorentzian function (eye fit)

aaa

Current LHO EOM (final version, modulation depth measurement 2018/4/5)
f0=9.1MHz, Q=18
f0=45.38MHz, Q=46
f0=118.05MHz, Q=30

Prev LHO EOM (RF transmission measurement 2018/4/13)
f0=9.14MHz, Q=53
f0=24.25MHz, Q=55
f0=45.565MHz, Q=62;

3IFO EOM (RF transmission measurement 2018/4/23)
f0=8.627MHz, Q=53
f0=24.075MHz, Q=60
f0=43.5MHz, Q=65

  302   Wed Jul 4 18:30:51 2018 KojiElectronicsCharacterizationEOM circuit models

The circuit models for the 3IFO EOM (before mods) were made using LISO.
Then the modification plan was made to make it a new LLO EOM.

Impedance data, LISO model, Mathematica files are zipped and attached at the end.

Attachment 1: eom_models.pdf
eom_models.pdf eom_models.pdf eom_models.pdf
Attachment 2: eom9.pdf
eom9.pdf
Attachment 3: eom24.pdf
eom24.pdf
Attachment 4: eom45.pdf
eom45.pdf
Attachment 5: 180704_3IFO_EOM_model.zip
  296   Wed May 30 16:40:38 2018 KojiMechanicsCharacterizationEOM mount stability test

https://awiki.ligo-wa.caltech.edu/wiki/EOM_Mount_Stability

  375   Wed Sep 18 22:30:11 2019 StephenSupplyGeneralEP30-2 Location and Status

Here is a summary of the events of the last week, as they relate to EP30-2.

1) I lost the EP30-2 syringes that had been ordered for the OMC, along with the rest of the kit.

  • Corrective action: Found in the 40m Bake Lab garbing area.
  • Preventative action: log material moves and locations in the OMC elog
  • Preventative action: log EP30-2 moves and locations in PCS via location update [LINK]
  • Preventative action: keep EP30-2 kit on home shelf in Modal Lab unless kit is in use

2) The EP30-2 syringes ordered for the OMC Unit 4 build from January had already expired, without me noticing.

  • Corrective action: Requested LHO ship recently-purchased EP30-2 overnight
  • Preventative action: log expiration dates in OMC elog
  • Preventative action: begin purchasing program supported by logistics, where 1 syringe is maintained on hand and replaced as it expires

3) LHO shipped expired epoxy on Thursday. Package not opened until Monday.

  • Corrective action: Requested LHO ship current EP30-2 overnight, this time with much greater scrutiny (including confirming label indicates not expired)
  • Preventative action: Packages should be opened, inspected, and received in ICS or Techmart on day of receipt whenever possible.

4) Current, unopened syringe of EP30-2 has been received from LHO. Expiration date is 22 Jan 2020. Syringe storage has been improved. Kit has been docked at its home in Downs 303 (Modal Lab) (see attached photo, taken before receipt of new epoxy).

Current Status: Epoxy is ready for PZT + CM subassembly bonding on Monday afternoon 23 September.

Attachment 1: IMG_5217.JPG
IMG_5217.JPG
  442   Wed Aug 24 02:57:43 2022 KojiGeneralGeneralEP30-2 bonding setup

EP30-2 bonding setup

Attachment 1: IMG_1178.JPG
IMG_1178.JPG
Attachment 2: IMG_1179.JPG
IMG_1179.JPG
Attachment 3: IMG_1180.JPG
IMG_1180.JPG
  93   Wed Apr 3 18:42:45 2013 KojiOpticsGeneralEP30-2 gluing test

EP30-2 gluing test

  383   Tue Oct 22 11:52:53 2019 StephenGeneralGeneralEpoxy Curing Timeline of OMC PZT Assy #9 and #10

This post captures the curing timeline followed by OMC PZT Assys #9 and #10.

Source file posted in case any updates or edits need to be made.

Attachment 1: omc_elog_383_Epoxy_Curing_Timeline_of_OMC_PZT_Assy_20191022.png
omc_elog_383_Epoxy_Curing_Timeline_of_OMC_PZT_Assy_20191022.png
Attachment 2: omc_elog_383_Epoxy_Curing_Timeline_of_OMC_PZT_Assy.pptx
  384   Tue Oct 22 11:56:09 2019 StephenSupplyGeneralEpoxy Status update as of 22 October 2019

The following is the current status of the epoxies used in assembly of the OMC (excerpt from C1900052)

Re-purchasing efforts are underway and/or complete

Attachment 1: image_ep30-2_epoxy_kit_pcs_item_1582_location_downs_3303.JPG
image_ep30-2_epoxy_kit_pcs_item_1582_location_downs_3303.JPG
  201   Tue Jul 8 04:08:06 2014 KojiGeneralGeneralExpoxy reapplication for beam dumps

Firstly, the excess epoxy was removed using a cleaned razor balde

Secondly, EP30-2 epoxy was applied at the exterior edges of the beam dump.
Interior of the V were glued at two points. This is to keep the gap away from being trapped

Here is the result of the gluing. Some epoxy was sucked into the gap by capillary action.
I believe, most of the rigidity is proivded by the bonds at the edges.

  57   Tue Jan 22 11:10:25 2013 KojiFacilityGeneralEyeware storage and hooks for the face shields are installed

A carpenter has come to install the eyeware storage and hooks for the face shields.

Attachment 1: P1223116.JPG
P1223116.JPG
  311   Thu Jan 10 20:42:54 2019 KojiOpticsCharacterizationFSR / HOM Test of OMC SN002

OMC SN002 = Former LHO OMC which CM1 was destroyed by the lock loss pulse in 2016. This OMC needs to be optically tested before storage.

The test items:

  • [done] FSR measurement with offset PDH locking (FM->AM conversion)
  • [done] FSR/finesse measurement with the EOM RFAM injection
  • [done] TMS measurement with input miaslignment and the trans RFPD misalignment: with no PZT offset
  • [done] TMS measurement with input miaslignment and the trans RFPD misalignment: with PZT offsets
     
  • PZT response
  • Mirror cleaning
  • Power budget
  • Diode alignment: shim height
  • PD/QPD alignment
  196   Sun Jul 6 02:45:56 2014 KojiOpticsGeneralFSR Measurement

3rd OMC FSR / Finesse measurement

RF AM was injected by detuning a HWP.

Attachment 1: finesse_measurements_log.pdf
finesse_measurements_log.pdf
  184   Wed May 14 02:15:15 2014 KojiOpticsCharacterizationFSR/TSM adjustment of the OMC cavity

1. FSR was adjusted and measured with "the golden arches" technique again.

FSR = 264.8412 MHz +/- 1400Hz => Lcav = 1.13197 m. (nominal 1.132m)

2. Transverse mode spacings for the vertical and horizontal modes were measured.

TMS/FSR = 0.218144 (V) / 0.219748 (H)

This is almost perfect!

The 19th-order lower sideband hit the resonance. Next step is to glue some of the flat mirrors.

Attachment 1: Cav_scan_response_140503_Pitch.pdf
Cav_scan_response_140503_Pitch.pdf
Attachment 2: Cav_scan_response_140503_Yaw.pdf
Cav_scan_response_140503_Yaw.pdf
  88   Mon Apr 1 03:13:41 2013 KojiOpticsGeneralFailure of PZT-glass joints

[Koji, Jeff, Zach, Lisa]

We glued a test PZT-mirror assembly last week in order to make sure the heat cure of the epoxy does not make any problem
on the glass-PZT joints. The assembly was sent to Bob for the heat treatment. We received the assembly back from Bob on Wednesday.

We noticed that the assembly after the heat cure at 100degC had some voids in the epoxy layer
(looking like the fused silica surface was only 70% "wetted" by the epoxy).
The comparison of the assembly before and after the heat treatment is found in the slideshow at the bottom of the entry.

Initially our main concern was the impact to the control and noise performance.
An unexpected series resonance on the PZT transfer function and unwanted noise creation by the imperfect bonding may terribly ruin the IFO sensitivity.
In reality, after repeated poking by fingers, the PZT-prism joint was detached. This isn't good at all.
Note that there is no sign of degradation on the glass-glass joint.

We investigated the cause of this like:
- Difference of thermal expansion (3ppm/C PZT vs 0.55ppm/C fused silica)
- Insufficient curing of epoxy by UV (but this is the motivation of the heat cure)

Our resolution up to this point is to switch the glue to EP30-2. This means we will go through the heat cure test again.
Unfortunately there is no EP30-2 in stock at Caltech. We asked MIT to send us some packets of EP30-2.

Hardness of the epoxies is another concern. Through the epoxy investigation, we learned from Noliac that the glue for the PZT
should not be too hard (stiff) so as not to constrain the deformation of the PZT. EP30-2 has Shore D Hardness of 75 or more,
while Optocast UV epoxy has 88, and EPOTEK Epoxies, which Noliac suggested for gluing, has ~65. This should also be
confirmed by some measurement.  We will also ask Master Bond if they have information regarding the effect of curing
temperature on the hardness of the epoxy.  EP30-2 can be cured anywhere between RT and 200F (it's service range is up to 300F).
However, the entire breadboard, with the curved mirror sub-assemblies, will need to be baked at 110C to cure the UV Bond epoxy. 
We hope that exposure to relatively higher temps doesn't harden the EP30-2. The EP30-2 data sheet recommends an epoxy
thickness of 80-120 microns which is much thicker than we would like.

We also don't have a way tocontrol the thickness; though we could add glass spheres to the epoxy to control the thickness.
The thickness of the EP30-2 used to bond the metal wire guide prism on the core optics is much thinner at 15-25 microns.

 

  105   Mon Apr 8 23:42:33 2013 KojiOpticsConfigurationFake OMC roughly aligned

Mode matching:

 

Attachment 1: beam_profile.pdf
beam_profile.pdf
Attachment 2: mode_matching.pdf
mode_matching.pdf
  372   Fri Aug 23 11:11:44 2019 shrutiOpticsCharacterizationFinding the curvature bottom

I attempted to fit the data taken by Koji of the beam spot precession at the CCD in order to find the location of the curvature bottom in terms of its distance (d) and angle (\phi) from the centre of the mirror. This was done using the method described in a previous similar measurement  and Section 2.1.3 of T1500060.

Initially, I attempted doing a circle_fit on python as seen in Attachment 1, and even though more points seem to coincide with the circle, Koji pointed out that the more appropriate way of doing it would be to fit the following function:

f(i, \theta, r, \phi) = \delta_{i,0} [r \cos(\theta+\phi) + x_c] + \delta_{i,1} [r \sin(\theta+\phi) +y_c]

since that would allow us to measure the angle \phi more accurately; \phi is the anti-clockwise measured angle that the curvature bottom makes with the positive x direction.

As seen on the face of the CCD, x is positive up and y is positive right, thus, plotting it as the reflection (ref. Attachment 2) would make sure that \phi is measured anti-clockwise from the positive x direction.

 

The distance from the curvature bottom is calculated as 

d = \frac{rR}{2L}

r: radius of precession on CCD screen (value obtained from fit parameters, uncertainty in this taken from the std dev provided by fit function)

R: radius of curvature of the mirror 

L: Distance between mirror and CCD

 

R = 2.575 \pm 0.005 m (taken from testing procedure doc referenced earlier) and L = 0.644 \pm 0.005 m (value taken from testing doc, uncertainty from Koji)

  d (mm) \phi (deg)
C7 0.554 \pm 0.004 -80.028 \pm 0.005
C10 0.257 \pm 0.002 -135.55 \pm 0.02
C13 0.161 \pm 0.001 -79.31 \pm 0.06

 

Attachment 1: CircleFit.pdf
CircleFit.pdf
Attachment 2: SineFit.pdf
SineFit.pdf
  45   Wed Dec 19 18:47:03 2012 KojiCleanGeneralFirst Contact Training with Margot

Steve and I visited Margot to have a training session for application of First Contact on optics.

- Make "thick" layer of first contact. It becomes thin when it gets dried.

- Apply more FC once a peek sheet is placed on the FC

- Wait for drying (~15min)

- Rip off the FC layer by pulling a peek tab. Make sure the ionized N2 is applied during ripping.

- Margot has a Dark Field Microscope. We checked how the dusts are removed from the surface.
There are many dusts on the mirror even if they are invisible. First Contact actually removes
these dusts very efficiently. Margot told us that even carbonhydrates (like finger prints) can be removed by FC.

  51   Wed Jan 2 07:45:39 2013 KojiOpticsCharacterizationFirst Contact test

Conclusion: Good. First contact did not damage the coating surface, and reduced the loss


- Construct a cavity with A1 and C2

- Measure the transmission and FWHM (of TEM10 mode)

- Apply First Contact on both mirrors

- Measure the values again


Transmission:

2.66 +/- 0.01 V -> 2.83  +/- 0.01 V

==> 6.3% +/- 0.5 % increase

FWHM of TEM10:

Before: (66.1067, 65.4257, 66.1746) +/- (0.40178, 0.38366, 0.47213) [kHz]
After: (60.846, 63.4461, 63.7906) +/- (0.43905, 0.56538, 0.51756) [kHz]

==> 5.1% +/- 2.7% decrease

Question: What is the best way to measure the finesse of the cavity?

Attachment 1: Cav_scan_response_zoom_20121125_C2_before.pdf
Cav_scan_response_zoom_20121125_C2_before.pdf
Attachment 2: Cav_scan_response_zoom_20121125_C2_after.pdf
Cav_scan_response_zoom_20121125_C2_after.pdf
  14   Wed Aug 1 19:35:00 2012 KojiFacilityGeneralFloor cleaned / Workbench being built / Table top defect

- The floor of the room was cleaned and waxed!

- Sticky mats are placed! Now we require shoe covers!

P8011949.JPG

- Work benches are being built. One unit is done.

P8011948.JPG

- The other is half done because the table top has chippings.

P8011947.JPG

  112   Tue Apr 16 08:12:14 2013 KojiOpticsCharacterizationFurther More Mirror T measurement

T&Rs of the B mirrors and some of the E mirrors are measured.

I found that these BSs have high loss (1%~3%) . As this loss will impact the performance of the squeezer
we should pick the best ones for the DCPD path. B5, B6, and B12 seems the best ones.

Mirror | P_Incident   P_Trans     P_Refl      | T             R             loss          |
       | [mW]         [mW]        [mW]        |                                           |
-------+--------------------------------------+-------------------------------------------+
B1     | 13.80+/-0.05 7.10+/-0.05 6.30+/-0.05 | 0.514+/-0.004 0.457+/-0.004 0.029+/-0.005 |
B2     | 14.10+/-0.05 6.50+/-0.05 7.15+/-0.05 | 0.461+/-0.004 0.507+/-0.004 0.032+/-0.005 |
B3     | 13.87+/-0.05 7.05+/-0.05 6.55+/-0.05 | 0.508+/-0.004 0.472+/-0.004 0.019+/-0.005 |
B4     | 13.85+/-0.05 6.78+/-0.05 6.70+/-0.05 | 0.490+/-0.004 0.484+/-0.004 0.027+/-0.005 |
B5     | 13.65+/-0.05 6.93+/-0.05 6.67+/-0.05 | 0.508+/-0.004 0.489+/-0.004 0.004+/-0.005 |
B6     | 13.75+/-0.05 6.70+/-0.05 6.92+/-0.05 | 0.487+/-0.004 0.503+/-0.004 0.009+/-0.005 |
B7     | 13.83+/-0.05 7.00+/-0.05 6.60+/-0.05 | 0.506+/-0.004 0.477+/-0.004 0.017+/-0.005 |
B8     | 13.90+/-0.05 6.95+/-0.05 6.68+/-0.05 | 0.500+/-0.004 0.481+/-0.004 0.019+/-0.005 |
B9     | 13.84+/-0.05 6.95+/-0.05 6.70+/-0.05 | 0.502+/-0.004 0.484+/-0.004 0.014+/-0.005 |
B10    | 13.97+/-0.05 6.98+/-0.05 6.72+/-0.05 | 0.500+/-0.004 0.481+/-0.004 0.019+/-0.005 |
B11    | 13.90+/-0.05 7.05+/-0.05 6.70+/-0.05 | 0.507+/-0.004 0.482+/-0.004 0.011+/-0.005 |
B12    | 13.90+/-0.05 6.98+/-0.05 6.78+/-0.05 | 0.502+/-0.004 0.488+/-0.004 0.010+/-0.005 |
-------+--------------------------------------+-------------------------------------------+

Mirror | P_Incident   P_Trans         P_Refl       | T            R             loss          |
       | [mW]         [uW]            [mW]         | [ppm]                                    |
-------+-------------------------------------------+------------------------------------------+
E4     | 13.65+/-0.05 0.0915+/-0.0005 13.50+/-0.05 | 6703+/-44ppm 0.989+/-0.005 0.004+/-0.005 |
E12    | 13.75+/-0.05 0.0978+/-0.0005 13.65+/-0.05 | 7113+/-45    0.993+/-0.005 0.000+/-0.005 |
E16    | 13.90+/-0.05 0.0975+/-0.0005 13.30+/-0.05 | 7014+/-44    0.957+/-0.005 0.036+/-0.005 |
-------+-------------------------------------------+------------------------------------------+

 

ELOG V3.1.3-