40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  OMC elog  Not logged in ELOG logo
Entry  Wed May 1 15:40:46 2019, Koji, Optics, Characterization, OMC(004): Spot positions and the scattering misalignment.pdf
    Reply  Fri May 3 11:06:28 2019, Koji, Optics, Characterization, OMC(004): Spot positions and the scattering misalignment.pdf
Message ID: 356     Entry time: Wed May 1 15:40:46 2019     Reply to this: 357
Author: Koji 
Type: Optics 
Category: Characterization 
Subject: OMC(004): Spot positions and the scattering 

Tried a few things.

1. Replaced CM1 (PZT ASSY #10=M21+PZT#22+C12) with PZT ASSY #7 (=M1+PZT#13+C13)

We tried PZT ASSY #7 at the beginning and had the spots at almost at the top edge of the curved mirrors. As we found a particle on the bottom of the M1 prism (and removed it), I gave it a try again. Resulting spots are again very high. This results in rejecting PZT ASSY #7 and we set the combination of the PZT ASSYs as #8 (M7+P11+C11) and #10 (M21+P22+C12). This combination nominally gives the spot ~1mm above the center of the curved mirrors.

2. Swapped FM1 and FM2. Now FM1=A5 and FM2=A14.

No significant change of the scattering features on the FMs. The transmitted power was 14.85mW (Ref PD Vin = 3.42V), Reflection PD Vrefl,lock = 54.3mV and Vrefl,unlock = 2.89V (Vin=3.45V), Vrefl,offset = -6.39mV. The incident power was 17.43mW (Vin 3.69V).

==> Coupling 0.979 , OMC transmission 0.939 (This includes 0.6% loss to the QPD path) ...Not so great number

3. Built better camera setups to check the spot position and the scattering from the cavity mirrors.

Now the spot heights are fixed and safe to move the camera up for inches to obtain better views of the mirror faces. The camera was set 15" away from the mirrors with 1.5" height from the beam elevation. This is 0.1rad (~ 5 deg) and Cos(0.1)~0.995 so the distortion (compression) of the view is negligible. (Attachment) The spot photo were taken with the fixed CCD gain, the focus on the glass, and  lens aperture F=8.0. Later the focus and aperture were adjusted to have clear view of the scattring points.

The intensity of each scattering was constant at different views. I suppose this is because the scattering is coming from a spot smaller than the wavelength. The bright spots does not show any visible feature on the mirror surfaces when they were inspected with a green flash light.

CM2 has the excellent darkness and we want to keep this spot position. FM1, FM2, and CM1 showed bright scattering.

The spot at CM1 is not well centered on the mirror. And this is the way to avoid this scattering point. So let's think about to move the spot on CM1 by 1.3mm towards the center while the spot on the CM2 is fixed. Note that this is going to be done by the micrometers for CM1 and CM2.

By turning right micrometer of CM1 forward (50um = 5div = 1/10 turn) and the left micrometer of CM2 backward (60um = 6div) moves the spots on FM1, FM2, CM1, and CM2 by (0.43, 0.87, 1.3, 0)mm. This basically moves the spots toward the center of each mirror. Let's give it a try.

 

Attachment 1: misalignment.pdf  8.275 MB  Uploaded Wed May 1 17:26:55 2019  | Show | Show all
ELOG V3.1.3-