40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 89 of 339  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  13585   Thu Jan 25 16:39:09 2018 KiraUpdatePEMSeismometer can insulation test

The final temperature reached in about 4.5 hours is 30.5C, while the starting temperature is about 24C. I can't seem to screenshot the data for some reason.

Also, I will calibrate the lab temperature sensor to Celcius in the near future so that we would have a working sensor inside the lab.

Quote:

After almost 3 hours the temperature rose by about 3.5C. Seems a bit slow, but we can drive it more if necssary. The heating curve itself is exponentiial, which is a good sign.

Quote:

We started the actual heating test today and it seems to be working so far. Hoping to heat it to about 40C. We also set up another temperature sensor to measure the lab temperature and connected it to J7, bottom.

 

 

  13598   Thu Feb 1 16:09:13 2018 KiraUpdatePEMSeismometer can insulation test

After taking the measurements, calibrating them (approximately), and filterting them, I created the following plot. The exponential fit is quite good, as the error is not more than 0.03 C. I used the python function curve_fit in order to get this, and it gave me the time constant as well, which came out to 0.357 hr. From my previous calculations here, I plugged in the values we have (m = 12.2 kg, c = 500 J/kg*k, d = 0.0762 m, k = 0.26 W/(m^2*K), A = 1 m^2), and got that

\tau = \frac{mcd}{kA}=0.496hr

This is a bit off, but it's probably due to the parameters not being exactly what I supposed them to be, and heat losses through the bottom of the can.

  13605   Mon Feb 5 12:12:41 2018 KiraUpdatePEMSeismometer can insulation test

Attached the program I used to create the plot

Quote:

After taking the measurements, calibrating them (approximately), and filterting them, I created the following plot. The exponential fit is quite good, as the error is not more than 0.03 C. I used the python function curve_fit in order to get this, and it gave me the time constant as well, which came out to 0.357 hr. From my previous calculations here, I plugged in the values we have (m = 12.2 kg, c = 500 J/kg*k, d = 0.0762 m, k = 0.26 W/(m^2*K), A = 1 m^2), and got that

\tau = \frac{mcd}{kA}=0.496hr

This is a bit off, but it's probably due to the parameters not being exactly what I supposed them to be, and heat losses through the bottom of the can.

 

  13611   Tue Feb 6 16:58:19 2018 KiraUpdatePEMtemperature measurements

I decided to plot the temperatures measured over two days for the sensor inside the can and inside the lab just to see if there was any significant difference between the two, and obtained the following plot. This shows that there is a difference in measurements of a few 0.01 C. The insulated seismometer can didn't change temperature as much as the lab did, which is as expected. I'll work on properly calibrating the sensors sometime in the future so that we can use the sensor that's just in the lab as an accurate thermometer.

  13614   Wed Feb 7 12:35:56 2018 KiraUpdatePEMSeismometer can insulation test

I subtracted out the lab temperature change during the period of cooling to see if it would have a significant effect on the time constant, but when I fit the new data, the time constant came out to 0.355 hr, which is not a significant change from the value of 0.357 that I got earlier.

  13624   Thu Feb 8 12:24:37 2018 KiraUpdatePEMPID test plan

Some points before we can set up the can:

  1. Cable length and type
    • For the DAC, we can use the LEMO outputs and change it to BNC, then have a long BNC cable running over the top of the lab and to the can 
    • ADC is also LEMO, which we can convert to BNC and have a cable run from that to the temperature sensors
    • Sorensens use plain cables, so we need to find ones that can take a few amps of current and have them be long enough to reach the can and temperature sensors
  2. Making sure that there is enough space for the can
    • Can measures about 59 cm in diameter, which does fit in the space we chose
  3. Finding Sorensens that work and can provide +/-24V to the heater circuit (since Rana said we want the heater to have its own supply)
    • Found two Sorensens, but only one works for our purpose (update: found a second one that works)
    • The other can only proviide up to 20V before shorting and has been labeled
    • Grounding (see point 5) - we want to have these power supplies be independent, but we must still specify a ground
    • There is exactly enough space to fit in the two Sorensens below the ones that are currently there
  4. DIN fuses for 15V and 24V
    • 15V fuses can be easily installed since we don't need a very high current for the temperature sensors
    • the 24V fuses seem to be able to handle 6.3A according to the datasheet, but it only says 4V on the fuse itself. Not sure if this is the wrong darasheet...
  5. Connecting the crcuit to the DAC and what connectors to use
    • Using the rightmost DAC because there's less important things connected to it, and use the LEMO conncectors to provide the input
    • Connect the grounds of the DAC and the new Sorensens that we're going to install to the grounds of the rest of the Sorensens
    • *confirm that this setup will work and if not find an alternative
  6. Which channels to use for the ADC
    • channels 29, 30, 31 are available, so we can use any two of those (one for each sensor)

Also, I need to eventually remake the connections on my circuit board because they are all currently test points. I also need to find a box for the heater circuit and figure out what to do with the MOSFET and heat sink for it. This can either be done before setting everything up, or we can just change it later once we have the final setup for the can ready.

If all of this looks good then we can begin the setup.


gautam:

  1. I recommend using a DAC output from the rightmost AI board because (i) only the green steering mirror PZTs are hooked up to it while the other has ETMX suspension channels and (ii) the rightmost AI board has differential receiving from the DAC, and in light of the recent discussions about ground loops, this seems to be the way to go. Outputs 5-8 are currently unused, while outputs 1-4 are used for the EX green input steering mirror control.
  2. Converters required:
    • 2 pin LEMO to BNC --- 2pcs for each temp sensor.
    • Single pin LEMO to BNC --- 1pc for AI board to heater circuit input (readily available)
  13626   Thu Feb 8 17:32:44 2018 KiraUpdatePEMPID test plan

[Kira, Steve]

We set up a new rail for the Sorensens (attachment 1) and placed one of them down on this new rail (attachment 2). Unfortunately the older rail that had been used to support the other Sorensens (the top one in attachment 1) is thick and does not allow another one of the Sorensens to slide in between the current ones. So we will have to support all the ones on top with a temporary support, take out the old rail, and then insert the new ones before letting the new bottom rail carry the weight of all of the Sorensens. We will do that tomorrow.

In addition, we have to figure out how to lead all the cables to the can, but there are no holders on the side of the lab to do so. So, we decided that we would have a new one installed on the side shown in attachment 3 so that we wouldn't have to place the wires along the floor.

Also, there has been some space made for the can along with the new insulation. The stuff mounted on the wall was removed and will be reattached tomorrow so that it doesn't get in the way of the can anymore.

  13629   Fri Feb 9 15:29:32 2018 KiraUpdatePEMPID test plan

[Kira, Steve]

We installed and labeled the Sorensens today.

  13634   Thu Feb 15 16:03:57 2018 KiraUpdatePEMPID test plan

I checked channels 6 and 7 on the ADC and they have long wires leading to BNC ends and are currently not being used, so we could probably just attach the temperature sensors to those channels.

  13651   Thu Feb 22 16:16:43 2018 KiraUpdatePEMtemp sensor input

Rewired the temperature sensor inputs to Molex connectors so that we can now attach them to the +/- 15V Sorensens for input instead of using a power supply.

  13656   Mon Feb 26 16:22:10 2018 KiraUpdatePEMtemp sensor input

[Kira, Gautam]

We began the setup for the lab temperature sensor today. First, we needed to add in a DIN fuse for both temperature sensors, which required us to shut down everything else first. To avoid having to do that next time, we made three instead of two spaces where we have + and - 15V. Attachment 1 shows the new fuses we installed, along with the fuses they connect to. Attachment 2 shows the wiring that we used to connect all the fuses. Attachment 3 shows the labeled long wires that are attached to the lab temperature sensor. The other end is labeled as well. I measured the voltage at the other end of the long cables, and while the -15V one looks good, the +15V one shows only about 13.5V. 

-----

edit (Tuesday) - I set up the other set of cables that will eventually lead to the sensor in the can, but neither of them are showing any voltage on the other end. I'll work on this issue tomorrow.


gautam: some additional remarks about the procedure followed:

  • Wires were tinned with solder to facilitate easier insertion into DIN fuse blocks.
  • ETMX watchdog was shutdown. I then unplugged the satellite box at the X end to avoid any sort of electrical impulse being sent to the optic.
  • Shut down all the sorensens in the EX rack.
  • Tapped new +15VDC and -15 VDC outputs at the EX rack in the locations Kira indicated.
  • Turned Sorensens back on. Checked that all voltages as reported by front panel monitor points were as they were expected to be.
  • Had some trouble getting the modbus IOC going after this work. Kept throwing an error that modbus couldn't be initialized by procserv. Ended up having to reboot c1auxex2, after which it worked fine.
  13660   Wed Feb 28 12:31:28 2018 KiraUpdatePEMtemp sensor input

I switched out the DIN fuses for the long cables and it fixed the issue of them not showing any votage on the other end. At first, the +15V cable worked and the -15V didn't, but when I switched the fuse for the -15V it began working, but the +15V stopped working. I then switched out the fuse for +15V and both cables began showing voltage. But for both the long cables and the shorter ones, they show +13.4V instead of +15V. Not sure what's going on there.

  13676   Fri Mar 9 12:59:53 2018 KiraUpdatePEMADC noise measurement

[Kira, Gautam]

I ceated a simple circuit that takes in 15V and outputs precisely 5V by using a 12V voltage regulator LM7812 and an AD586 that takes the output of the voltage regulator and outputs 5V (attachment 1). We plugged this into the slow channel and will leave it running for a few hours to see if we still have the fluctuations we observed earlier and also fit the noise curve. We'll also test the fast channel later as well. Attachment 2 shows the setup we have in the lab, with the red and white cable plugged into the +15V power supply and the red and black cable connected to the slow channel.

  13684   Thu Mar 15 17:33:56 2018 KiraUpdatePEMtest setup

I have attached the setup I completed today. The metal box contains the heater circuit and the board for the temperature sensor is right above it. This is basically the same setup as before, but I've just packaged everything up neater. I expect to be able to perform the test tomorrow and begin implementing PID control. I still need a DAC input for the heater circuit and the temperature sensor is having some issues as well.

  13691   Tue Mar 20 16:56:01 2018 KiraUpdatePEMtest setup

The MOSFET was getting pretty hot, so I switched it out to a larger heat sink and it's fine now. I then used a function generator in place of the DAC to provide ~3.5V. I got the current in the circuit to 1.7A, which is as expected, since we have 24V input, the heater resistance is 12.5ohm and the resistor we are using is 1ohm, so 24V/(12.5+1)ohm = 1.7A. The temperature inside the can rose about 5 degrees in half an hour. The only issue now is the voltage regulators and OP amp inside the box get hot, though it doesn't seem to be dangerous. I switched the function generator input to a DAC and Gautam set it to 1.5V. If it works, then we'll leave this on overnight and work on the PID control tomorrow. I've attached images of the current heater circuit box when it is open and the new heat sink for the MOSFET.


gautam: we also tried incorporating the EPICS channels from the Acromag into the RTCDS so that we can implement PID control by using Foton. I tried doing this using the "EpicsIn" and "EpicsOut" blocks from CDS_PARTS. While the model recompiled smoothly, I saw no signals in the filter module i had connected in series with the EpicsIn block. So I just reverted c1pem to its original state and recompiled the model. Guess we will stick to python script PID reading EPICS channels to implement the PID servo.

  13701   Fri Mar 23 12:45:08 2018 KiraUpdatePEMtest setup

I fit the data that we got from the test. The time constant for the cooling came out to be about 4.5 hours. The error is quite large and we should add a low pass filter to the temperature sensor eventually in order to minimize the noise of the measurements.

  13704   Mon Mar 26 16:10:33 2018 KiraUpdatePEMfinal setup sketch

I made sketches of the final setup. There will be a box in the rack that contains both the heater circuit and the temperature sensor boards. One of them is in the loop while the other isn't. Instead of having many cables leading to the can, there will only be these three, though they can be made into a single wire. It will be connected to the can through a D-9 connector. The second attachment is what will be inside of the box, with all the major wires and components labeled.

-----

Edit: I've canged the layout to (hopefully) make the labels easier to read. I've also added in a cable to the ADC that reads out the voltage across the 1 ohm resistor. I also attached the circuit diagrams for the heater circuit and the temperature sensors. The one for the heater circuit was made by Kevin and I used the same design, except I have LM7818 and LM7918, since the 15V ones were not available at the time I made the circuit. 

In addition, all the wires leading to the can will all be part of one bundle of wires (I didn't clearly indicate it as such). There will be a total of 6 wires: two are needed for the wire to supply power to the heater and will have a LEMO connector on the rack end and two are needed for each temperature sensor, which will be attached to the board directly on the rack end. 

Also, we don't need two voltage regulators for each temperature circuit. We can just have one of each of LM7815 and LM7915 to supply +/- 15V to the boards.

  13710   Tue Mar 27 11:11:16 2018 KiraUpdatePEMChannel setup

[Kira, Gautam]

We setup the channels for PID control of the seismometer can. First, we ssh into c1auxex and went to /cvs/cds/caltech/target/c1auxex2 and found ETMXaux.db. We then added in new soft channels that we named C1:PEM-SEIS_EX_TEMP_SLOWKP, C1:PEM-SEIS_EX_TEMP_SLOWKI, C1:PEM-SEIS_EX_TEMP_SLOWKD that will control the proportional, integral and differential gain respectively. These channels are used in the script FSSSlow.py for PID control. We then had to restart the system, but first we turned off the LSC mode and then shut down the watchdog on the X end. After doing the restart, we disabled the OPLEV as well before restarting the watchdog. Then, we enabled the LSC mode again. This is done to not damage any of the optics during the restart. The restart is done by using sudo systemctl restart modbusIOC.service and restarted with sudo systemctl status modbusIOC.service. Then, we made sure that the channels existed and could be read and writtten to, so we tried z read [channel name] and it read 0.0. We then did z write [channel name] 5, and it wrote 5 to that channel. Now that the channels work, we can implement the PID script and check to make sure that it works as well.

  13718   Thu Mar 29 17:14:42 2018 KiraUpdatePEMPID test

[Kira, Gautam]

We closed the loop today and implemented the PID script. I have attached the StripTool graph for an integral value of 0.5 and proportional value of 20. We had some issues getting it to work properly and it would oscillate between some low values of the control voltage. The set point here was -3.20, which corresponds to about a 20 degree increase in temperature. The next step would be to find which values of Kp, Ki, and Kd would work in this case and low pass filter the signal from the temperature sensor, and also create an MEDM screen for easier PID control.

  13723   Fri Mar 30 16:10:46 2018 KiraUpdatePEMPID test

I created two new channels today, C1:PEM-SEIS_EX_TEMP_MON_CELCIUS, which turns the output voltage signal into degrees C, and C1:PEM-SEIS_EX_TEMP_CTRL_WATTS, which takes the input voltage from the DAC and turns it into a value of watts. I'm trying to stabilize the temperature at 35 degrees, but it's taking a lot longer than expected. Perhaps we'll need to use different values for P and I and decrease the noise in the sensor, since right now there's about a 10 degree variation between the highest and lowest values.

  13726   Wed Apr 4 16:23:10 2018 KiraUpdatePEMPID test

I did a step response for the loop from 35 degrees to 40 degrees. The PID is not properly tuned, so the signal oscillates. In the graph, the blue curve is the temperature of the can in celcius and the green curve is the heating power in watts. The x-axis is in minutes. Before, the signal was too noisy to do a proper step response, so I placed a 3.3 microF capacitor in parallel with the resistor in my temperature sensor circuit (I'll draw and attach this updated version). This created a 5 Hz low pass filter and the signal is now pretty clean.

-----

I also added in new Epics channels so that we could log the data using Data Viewer. The channels I added were C1:PEM-SEIS_EX_TEMP_MON_CELCIUS and C1:PEM-SEIS_EX_TEMP_CTRL_WATTS. I used 13023 as a guide on how to do this.

Update: the channels work and show data in Data Viewer

-----

Edit: I've attached a photo of the circuit with the capacitor indicated. It is in parallel with the resistor below it. I've attached an updated circuit diagram as well.

  13735   Fri Apr 6 16:17:20 2018 KiraUpdatePEMPID tuning

I have been trying to tune the PID and have managed to descrease the oscillations without saturating the actuator. I'm going to model the system to calculate the exact values of P, I and D in order to get rid of the oscillations altogether. I was going to record the data using Data Viewer, but there seems to be some issue with that, so I'm using StripTool for now.

  13740   Mon Apr 9 16:30:21 2018 KiraUpdatePEMMEDM setup

I created an MEDM screen for the PID control. In addition, I added a new EPICS channel for the setpoint so that it could be adjusted using the MEDM screen.

Edit: forgot to mention the channel name is C1:PEM-SEIS_EX_TEMP_SETPOINT

Edit #2: the path for the MEDM is /opt/rtcds/caltech/c1/medm/c1pem/C1PEM_SEIS_EX_TCTRL.adl

  13745   Tue Apr 10 15:42:08 2018 KiraUpdatePEMMEDM setup

An update to the screen. I changed the min/max values for some of the parameters, as well as changing the script so that I could specify the integral gain in terms of 1e-5. I've also added this screen to the PEM tab in the sitemap.

  13748   Thu Apr 12 10:15:33 2018 KiraUpdatePEMMEDM setup

Another update. I've changed the on/off button so that it's visible which state it's in. I did that by changing the type of C1:PEM-SEIS-EX_TEMP_SLOWLOOP from ai to bi (I checked the FSS script and copied the entry for the slowloop). Previously, MEDM was giving me an error that it wasn't an ENUM value when I wanted to use a choice button to indicate the value of slowloop, and this solved the issue. I've also added a StripTool button.

  13759   Wed Apr 18 12:18:39 2018 KiraUpdatePEMfinal setup sketch

I've updated the sketches and added in front panels for the seismometer block and the 1U panel (attachments 3 and 4). There was an issue when it came to the panel on the block because the hole is only big enough for the cable that already exists there and there is no space to add in the D-9 connector. Not quite sure how to resolve this issue. Attachment 7 is the current panel on the seismometer block. Attachments 5 and 6 are the updated temperature circuit and the heater circuit.

The boxes will be located in the short racks at EX and EY to minimize cable length.

  13769   Thu Apr 19 12:23:30 2018 KiraUpdatePEMfinal setup sketch update

I've added in the dimensions to my sketch.

It seems like placing the two connectors right next to each other would allow both cables to just barely go through the hole in the block.

Quote:

Can you please add dimensions to the drawing, so we can see if things fit and what the cable lenghts need to be?

For the panel on the granite slab, we should use a thinner piece of metal and mount it with an offset so that the D-sub cable can be fished through the hole in the slab. The hole is wide enough for 2 cables, but not 2 connectors.

 

  13771   Thu Apr 19 18:23:51 2018 KiraUpdatePEMfinal setup sketch update

since we're just going from the short rack (not the tall rack) to the seismometer, can't we use a cable shorter than 45' ?

Quote:

I've added in the dimensions to my sketch.

the panel should be completely replaced like I described. We don't want to try to squeeze it in artificially and torque the wires. It just needs to be separated from the slab by a few more cm.

  13774   Fri Apr 20 15:07:45 2018 KiraUpdatePEMfinal setup sketch update

If we lay the cable along the floor then it should be around 6' to the current setup and about 20' to the actual seismometer.

Edit: 16 gauge wire should be good.

Quote:

since we're just going from the short rack (not the tall rack) to the seismometer, can't we use a cable shorter than 45' ?

 

  13782   Tue Apr 24 09:10:20 2018 KiraUpdatePEMfinal setup sketch

I've attached the final sketch for the panel on the granite block.

  13800   Mon Apr 30 15:36:18 2018 KiraUpdatePEMfinal setup sketch

I've attached a sketch of how the panel will be mounted. We should make a small rectangular box that would raise the panel from the block by 1 cm or so to allow the cables to fit into the hole in the block without getting bent. It also has to be airtight so maybe having a thin layer of rubber between the mount and block would be good.

  13803   Tue May 1 11:15:19 2018 KiraUpdatePEMPID Quixote

I added an out of loop sensor to the can by placing the lab temperature sensor inside the can. I'm not sure which channel is logging this temperature though. I also noticed that the StripTool still had the old misspelled name for the temperature readout so I fixed that as well.

I've attached a picture of the setup.

Quote:

Increased the Integral gain (from -1 to -4) on the EX temperature controller. This didn't work a few weeks ago, but now with the added P gain, it seems stable. Daily temperature swings are now ~3x smaller.

Notes for Kira on what we need to do tomorrow (Friday):

  1. add the MEDM screen EPICS values to the DAQ so that we can plot those trends DONE
  2. add the out-of-loop sensor to the EX can
  3. reboot the AUX-EX so we can pick up the new channels and the fixed spelling of the old channels DONE
  4. Re-install EX seismometer and hook up seismometer channels to PEM DAQ so we can start testing its performance.

For those who are flabbergasted by the way I calibrated the TEMP_MON channel from volts to deg C, here's how:

XMgrace->Data->Transformations->Geometric Transforms...

use the 'scale' and 'translate' fields to change the slope and offset for calibration in the obvious ways

 

  13804   Tue May 1 15:23:18 2018 KiraUpdatePEMnew ADC channel setup issue

[Kira, Johannes]

I connected up the channels for the ADC Acromag a while back and we were planning to install it today so that we could set up a new channel for the out of loop sensor. Unfortunately, the Acromag seems to be broken. We connected up a precision 10V voltage to one of the channels, but the Acromag read out ~7V and it kept fluctuating. Even after calibration, we still got the same result. When enabling the legacy support, we got ~11V. But when we measured the voltage at the screw terminals with a multimeter and it showed 10V, so the issue is not with the wiring. All of the channels have this same issue. We will be ordering more Acromags soon, so hopefully we'll be able to set up the channel soon. I've attached a picture of the Acromag along with the front panel with the channels labeled

  13825   Tue May 8 10:24:10 2018 KiraSummaryPEMplan for this week

Here are a few things I will be working on:

  • Design PCB boards for the heater circuit and temperature sensor circuits [by wednesday]
  • Order the front panel I've designed for the seismometer block [today]
  • [next week?] install the new Acromag when it comes
  13844   Tue May 15 15:13:23 2018 KiraSummaryPEMAcromag issues

I tried calibrating the other channels today, but they still fluctuate. Sometimes they do stabilize at +/- 10V, but then suddenly drop to 5 or 6 V before climbing back up to 10. Turning the legacy off made it go only up to 6.67V. This happens for all the channels, even after doing a factory reset and recalibrating. Not sure what's happening here.

  13859   Thu May 17 15:38:19 2018 KiraUpdatePEMtest setup with seismometer

I've moved my setup to the actual seismometer. I attached the temperature sensor to the seismometer (attachment 1) with duct tape, though this is temporary. I will be monitoring the temperature fluctuations of the seismometer for a whole day then take the can off and repeat the test. The can isn't clamped down so the insulation isn't perfect, so I'd expect to see some noticeable fluctuations even with the can on. I've also labeled the long cable for the temperatuse sensor readout (attachments 2 and 3). There will also be an out of loop sensor added in later, but for this test since I am not running the loop it doesn't matter which sensor I monitor. Attachment 4 is a picture of the current setup.

  13864   Fri May 18 14:33:34 2018 KiraUpdatePEMtest setup with seismometer

Here is the result of my test. I think I'll leave the can on over the weekend because there's a long period of time where the seismometer heated up by 0.8 degrees so I can't fully see the fluctuations over a full 24 hour period.

  13872   Mon May 21 14:17:28 2018 KiraUpdatePEMtest setup with seismometer

I have attached the graph for the seismometer temperature fluctuations over 3 days. As we can see, there is a noticeable fluctuation in daily temperature as well as a difference between days in the maximum and minimum temperatures. I will repeat this test but take the can off to see if there's any difference between having the can on or off.

  13877   Tue May 22 14:49:03 2018 KiraUpdatePEMtest setup with seismometer

It appears that one of the wires was disconnected overnight or this morning so I wasn't able to gather data over a full 24 hour period. Perhaps someone accidentally kicked it. I placed some cones in that area so hopefully the wires won't be in the way as much and I can get the data tomorrow. From the data I do have it seems that the seismometer is at a colder temperature when the can is not on, though it is difficult to see by how many degrees the temperature fluctuates. I've included the data from 5 days back to see the comparison.

  13882   Wed May 23 14:50:33 2018 KiraUpdatePEMtest setup with seismometer

This time the test went without issue. The first attachment is the data for the past 24 hours and the second attachment is the full data over 6 days. The average temperature fluctuations (from highest point to lowest point) for the can on was 0.43 C and for the can off it came out to 0.55 C. In addition the seismometer with the can off is about 1 C cooler than with the can on. I'd like to leave the can off until the end of the week so we can get a comparable data set for both the can on and off. Eventually I'll need to figure out a way to clamp the can down to the block in order to get better insulation and hopefully get even smaller temperature fluctuations.

  13887   Thu May 24 15:18:12 2018 KiraUpdatePEMPID loop restarted

Rana said that it wasn't necessary to gather more data on the temperature fluctuations so I have reconnected the heater circuit and restarted the PID loop with the can on the seismometer.

  13888   Thu May 24 16:08:12 2018 KiraUpdatePEMparts list

We will need to order a few things for our final setup.

  1. 1U box to place the heater circuit and temperature circuits in. The minimum depth that will fit all the electronics is 10 inches according to my sketch.
    • I found two possibilities online for this. I don't know exactly what our budget is, but this one is $144. According to the datasheet, the front panel is less than 19 inches wide, so if we are to order this one, I've adjusted the width of the panel I designed to match the width of the panel that comes with it I've labeled it in the attached file as 1U-panel-1.
    • The other possibility is this one. It comes with handles already which is quite nice. I wasn't able to find a price for it on the website.
  2. Front panel for the 1U box and block panel. I've attached them as .fpd files below in one .zip file. Not sure if this is the correct way to attach them, though.
  3. We'll also need a 16 gauge cable that has 6 wires bunched together. This is to connect up the heater circuit and AD590s. The other cables that we will need can be found in the lab.
  13894   Tue May 29 16:22:43 2018 KiraUpdatePEMparts list

I've updated the parts list to be an excel document and included every single part we will need. This is ony a first draft so it will probably be updated in the future. I also made a mistake in hole sizing for the front panel so I've updated it and attached it as well (second attachment).

Edit: re-attached the EX can panel fpd file so that everything is in one place

  13903   Thu May 31 15:48:16 2018 KiraUpdatePEMrunning PID script with seismometer

I have attached the result of running the PID script on the seismometer with the can on. The daily fluctuations are no more than 0.07 degrees off from the setpoint of 39 degrees. Not really sure what happened in the past day to cause the strange behavior. It seems to have returned back to normal today.

  13922   Wed Jun 6 15:12:29 2018 KiraUpdatePEMparts from lab

Got this 1U box from the Y arm that we could potentially use (attachment 1). It doesn't have handles on the front but I guess we could attach them if necessary. Attachment 2 is a switch that could be used instead of a light up switch, but now we need to add LEDs on the front panel that indicate that the switch is functional. Attachment 3 is a terminal block that we can use to attach the 16 gage wire to since it is thick and attaching it directly to the board would be difficult. If this is alright to use then I'll change up my designs for the front panel and PCB to accomodate these parts.

  13979   Mon Jun 18 11:12:23 2018 KiraSummaryPEMfinishing up work at the lab

Since I am finishing my job at the lab, I have stored all my electronics in a box (attachment 1) and placed it under the table in the control room where some other electronics are stored. The box contains the heater circuit box, two temperature sensor boards, one temperature sensor, a short power cable and +/- 15V supply cables. In the lab I left the wires for the current setup and tied them down to the wall so that they aren't in the way (attachment 2). I left the can as is and the other temperature sensor is still attached to the inside of the can. I have labeled the wires going from the sensor as 'in' and 'out'. I've also left the wires for the heater there as well (attachment 3). I turned off the PID control and deactivated the tmux session on megatron.

Thanks to Rana and the LIGO team for giving me the opportunity to work at the 40m on this project with the seismometer.

  1326   Thu Feb 19 22:40:33 2009 KiwamuUpdateElectronicsPSL angle QPD

I checked a broken QPD, which was placed for PSL angle monitor, and finally I cocluded one segment of the quadrant diode was broken.

The broken segment has a offset voltage of -0.7V after 1st I-V amplifier. It means the diode segment has a current offset without any injection of light.

Tomorrow I will check a new QPD for replacement.

Kiwamu IZUMI

 

  1363   Fri Mar 6 01:04:49 2009 Kiwamu IZUMIConfigurationIOO!! lock-in amp disconnected !!

The power supply of a lock-in amp, which is on the Y-arm side of PSL clean room, was pulled out by my mistake.

Then I reconnected it, but I don't know whether it is re-adjusted properly.

I'm sorry about this. If you are using that amp, it should be checked.

  3540   Tue Sep 7 23:34:15 2010 Kiwamu, SanjitConfigurationComputerse-log

e-log was repeatedly hanging and several attempts to start the daemon failed.

problem was solved after clearing the (firefox) browser cache, cookie, everything!!

 

  10682   Thu Nov 6 14:41:49 2014 KoijUpdateLSC3F RFPD RF spectra

That's not what I'm asking.

Also additional cables are left connected to the signal path. I removed it.

ELOG V3.1.3-