40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 339 of 357  Not logged in ELOG logo
IDup Date Author Type Category Subject
  17053   Tue Aug 2 01:10:26 2022 KojiUpdateIOOWFS investigation

Continued to work on the WFS repair

Demod phase adjustment:

- Use the PDH signal to adjust the demodulation phase to have uniform signals between the segments.

- Excited laser frequency at 1234Hz by injecting 10mVpp into IMC Servo Board IN2. The input was enabled on the MC Servo screen and given the input gain of 0dB.

- Looked at the ~real time spectrum in WFS1/2 SEG1/2/3/4 I&Q after the phase rotators. Changed the demod phases 1) to have ~0deg transfer function between C1:IOO-MC_F to C1:IOO-WFSi_Ij 2) to minimize the freq signal in Q phases.
(See Attachment 1)

- Resulting change of the demod phases:

WFS1 SEG1  52.0 -> 38.0deg
WFS1 SEG2  54.0 -> 53.0deg
WFS1 SEG3  16.6 -> 33.2deg
WFS1 SEG4 103.9 ->-37.1deg

WFS2 SEG1  17.0 -> 57.8deg
WFS2 SEG2  26.6 -> 51.5deg
WFS2 SEG3  24.5 -> 44.0deg
WFS2 SEG4 -58.0 ->103.7deg

SEG4 of both WFSs had significant phase rotation. A quick check of the power spectrum indicates that the Q signals have significantly (<x1/10) lower signals (Attachment 2/3/4). So that's good.

Transfer function measurement

Now the ASCPIT/ASCYAW of the MC1/2/3 suspension were excited and the transfer functions to WFS1/2 SEG1/2/3/4 and MC Trans P/Y were measured. The analysis will come later.

Again here the Q signals have significantly lower sensitivity to the mirror motion. So it is consistent with the above observation of the spectra.

However, the quick check of the transfer functions indicated that the conventional input matrices result in the flipped dependence of the combined error signals in pitch and yaw.
This might indicate that some of the cables were not inserted into the demod board properly although the cables at the demod boards show no indication of anomaly. (See the photos in ELOG 17048)

It might be the case that the cable had been inserted with a special unusual arrangement.

In any case, this can be fixed at the input matrix. Native change of the input matrix made WFS1PIT/WFS1YAW/WFS2PIT/WFS2YAW/MC2Trans YAW servos running (after some adjustment of the servo signs).
The MC2TRANS PIT servo didn't seem to settle and run away no matter which sign is used.

It's probably better to look at the sensing matrix and figure out the proper input/output matrix carefully. So at this moment, no WFSs are working.

Note that I left the new demod phases in the system


During the transfer function measurement some filters were turned off to make the shaking smoother:

IMC ASC filters were turned off to make the FResp flat:
- MC1 ASCP/Y FM1/FM5 OFF
- MC2 ASCP/Y FM1/FM5/FM6 OFF
- MC3 ASCP/Y FM1/FM5 OFF

60Hz comb OSEM Input filters were also turned off to make the transfer functions simpler:
- MC1 INPUT FM2 OFF (60Hz comb)
- MC2 INPUT FM2 OFF (60Hz comb)
- MC3 INPUT FM2 OFF (60Hz comb)


cf. Past IMCWFS commissioning http://nodus.ligo.caltech.edu:8080/40m/12684

  17054   Tue Aug 2 17:25:18 2022 TegaConfigurationBHDc1sus2 dolphin IPC issue solved

[Yuta, Tega, Chris]

We did it!laugh

Following Chris's suggestion, we added "pciRfm=1" to the CDS parameter block in c1x07.mdl - the IOP model for c1sus2. Then restarted the FE machines and this solved the dolphin IPC problem on c1sus2. We no longer see the RT Netstat error for 'C1:HPC-LSC_DCPD_A' and 'C1:HPC-LSC_DCPD_B' on the LSC IPC status page, see attachement 1.

Attachment 2 shows the module dependencies before and after the change was made, which confirms that the IOP model was not using the dolphin driver before the change.


We encountered a burt restore problem with missing snapfiles from yesterday when we tried restoring the EPICS values after restarting the FE machines. Koji helped us debug the problem, but the summary is that restarting the FE models somehow fixed the issue.

Log files:
/opt/rtcds/caltech/c1/burt/burtcron.log
/opt/rtcds/caltech/c1/burt/autoburt/autoburtlog.log
 
Request File list:
/opt/rtcds/caltech/c1/burt/autoburt/requestfilelist
 
Snap files location:
/opt/rtcds/caltech/c1/burt/autoburt/today
/opt/rtcds/caltech/c1/burt/autoburt/snapshots
 
Autoburt crontab on megatron:
19 * * * * /opt/rtcds/caltech/c1/scripts/autoburt/autoburt.cron > /opt/rtcds/caltech/c1/burt/burtcron.log 2>&1
  17055   Wed Aug 3 15:01:13 2022 KojiUpdateGeneralBorrowed Dsub cables

Borrowed DSUB cables for Juan's SURF project

- 2x D25F-M cables (~6ft?)

- 2x D2100103 ReducerCables

  17056   Wed Aug 3 16:00:51 2022 yutaUpdateBHDBHD fringe aligned with reduced LO and AS beam clipping

Last week, we could find an alignment which realizes LO beam and AS beam both unclipped, but it was not consistent with an alignment which realize BHD fringe (40m/17046).
Today, we tweaked the alignment of SR2, AS1, AS4 to have BHD fringe with reduced LO and AS beam clipping.
AS beams on AP table and BHD both still look clipped, but much better now.
Ideally, SR2 and AS1 will unclip AS beam, and LO1, LO2, AS4 would make BHD fringe, but it is hard right now since LO beam seem to have little room and LO2 have little actuation range.
BHD optics on ITMY table, including camera, and AS55/ASDC were realigned after the aglinment work (Note that DCPD_A path have a pick-off for camera path, and this pick-off mirror have quite significant incident angle dependence of R/T ratio).

Current alignment scheme:
Current alignment scheme I figured out is the following.
 - Check Y green. If it is transmitted at good spot on GTRY camera, Yarm is OK. If not, tweak ITMY/ETMY. alignment.
 - Mis-align AS4, align TT1, TT2, LO1 to have DCPD_A_OUT of ~130 and DCPD_B_OUT of ~125.
 - Align PR3, PR2 to maximize TRY_OUT to ~1.05.
 - Tweak ITMY/ETMY if the beam spot on them are not good.
 - Align BS, ITMX to have good MICH fringe and TRX_OUT to ~1.1.
 - Tweak ITMX/ETMX if the beam spot on them are not good.
 - Misalign ETMY, ETMX, ITMY to have LO-ITMX fringe in BHD DCPDs, and align AS beam with SR2 and AS4 differentially, with ratio of AS4/SR2=3.6.

DC PD values in various configurations:
Both arms locked with POX/POY, MICH free, PRM/SRM misaligned

                          Mean     Max      Min
C1:IOO-MC_TRANS_SUM :     14088.57 13947.52 14167.04
C1:LSC-ASDC_OUT16 :           0.16    -0.02     0.34
C1:LSC-POPDC_OUT16 :        369.34   -74.88   854.34
C1:LSC-REFLDC_OUT16 :         0.03    -0.00     0.06
C1:LSC-TRY_OUT16 :            1.00     0.95     1.04
C1:LSC-TRX_OUT16 :            1.07     1.04     1.08

Only LO beam to BHD DCPDs
                          Mean     Max      Min
C1:IOO-MC_TRANS_SUM :     14121.32 14057.71 14159.38
C1:HPC-DCPD_A_OUT16 :       129.80   128.37   130.68 (Consistent with, 40m/17046. Power as expected within 20%. Squashed shape)
C1:HPC-DCPD_B_OUT16 :       123.42   121.92   124.48

ITMX single bounce (ITMY, ETMX, ETMY, PRM, SRM, LO misalgined)
                          Mean     Max      Min
C1:IOO-MC_TRANS_SUM :     14105.13 14000.89 14171.91
C1:HPC-DCPD_A_OUT16 :        92.54    91.45    93.30 (Consistent with 40m/17040, Power as expected within 40%. Clipped to the left in camera)
C1:HPC-DCPD_B_OUT16 :       137.70   136.55   138.53 (Note that DCPD_A/B ratio is different from LO, due to BHD BS R/T unbalance; 40m/17044)
C1:LSC-ASDC_OUT16 :           0.10     0.09     0.10 (Power as expected 40m/16952. Clipped to the right in camera)
C1:LSC-POPDC_OUT16 :        309.19   288.93   327.10 (Power as expected within 30% 40m/17042.)
C1:LSC-REFLDC_OUT16 :         0.02     0.01     0.02

ITMY single bounce (ITMX, ETMX, ETMY, PRM, SRM, LO misalgined)
                          Mean     Max      Min
C1:IOO-MC_TRANS_SUM :     14112.09 14025.37 14154.51
C1:HPC-DCPD_A_OUT16 :        92.58    92.01    93.26
C1:HPC-DCPD_B_OUT16 :       137.68   136.81   138.27
C1:LSC-ASDC_OUT16 :           0.10     0.09     0.10
C1:LSC-POPDC_OUT16 :        308.48   290.49   319.73
C1:LSC-REFLDC_OUT16 :         0.02     0.01     0.02

MICH fringe only (ETMX, ETMY, PRM, SRM, LO misalgined)
                          Mean     Max      Min
C1:IOO-MC_TRANS_SUM :     14090.34 13979.15 14143.86
C1:HPC-DCPD_A_OUT16 :       325.60    91.92   714.57
C1:HPC-DCPD_B_OUT16 :       400.27    18.37   762.57
C1:LSC-ASDC_OUT16 :           0.19    -0.05     0.41
C1:LSC-POPDC_OUT16 :        595.66  -119.21  1334.11
C1:LSC-REFLDC_OUT16 :         0.03    -0.01     0.07

LO-ITMX fringe only (ITMY, ETMX, ETMY, PRM, SRM misalgined)
                          Mean     Max      Min
C1:IOO-MC_TRANS_SUM :     14062.58 13968.05 14113.67
C1:HPC-DCPD_A_OUT16 :       224.31    89.57   371.66
C1:HPC-DCPD_B_OUT16 :       259.74    85.37   421.86


Next:
 - Measure contrast (40m/17020) and estimate mode-matching of LO-AS again (40m/17041)
 - Now that we have better LO-AS fringe, lock LO phase in MICH (40m/17037)
 - Now that Dolphin issue was fixed, try double-demodulation to lock LO phase

  17057   Thu Aug 4 11:28:22 2022 AnchalUpdatePSLFSSSlow/MCAutolocker issue (docker)

Added C1:IOO-MC_LOCK to ALConfigMC.yml which solved the isse with FSS Slow. We should tune the FSS Slow Servo PID coefficients for a better performance.

the C1PSL_SLOW.adl screen is not obsolete. It can be used to change the PID coefficients, engage/disengage the PID loop, monitor the PID script blinker, and monitor FAST actuator value C1:PSL-FSS_FAST. the functionality of this screen has not changed from before.

I've also added a wiki page for scripts documentation.

  17058   Thu Aug 4 19:01:59 2022 TegaUpdateComputersFront-end machine in supermicro boxes

Koji and JC looked around the lab today and found some supermicro boxes which I was told to look into to see if they have any useful computers.

 

Boxes next to Y-arm cabinets (3 boxes: one empty)

We were expecting to see a smaller machine in the first box - like top machine in attachement 1 - but it turns out to actually contain the front-end we need, see bottom machine in attachment 1. This is the same machine as c1bhd currently on the teststand. Attachment 2 is an image of the machine in the second box (maybe a new machine for frambuilder?). The third box is empty.

 

Boxes next to X-arm cabinets (3 boxes)

Attachement 3 shows the 3 boxes each of which contains the same FE machine we saw earlier at the bottom of attachement 1. The middle box contains the note shown in attacment 4.

 

Box opposite Y-arm cabinets (1 empty box)

 

In summary, it looks like we have 3 new front-ends, 1 new front-end with networking issue and 1 new tower machine (possibly a frame builder replacement).

  17059   Thu Aug 4 21:58:18 2022 KojiUpdateIOOWFS investigation

OK... It seems that all the 6 dof of the IMC WFS servo loops were closed with some condition...

- Measured the transfer functions from ASCPIT/YAW_EXC of each suspensions to WFS segs.
- FInd the proper input matrix for PIT and YAW for WFS1 and WFS2
- Closed loops one by one => This was not so successful because the loop shape was quite conditional.
- Closed WFS1/WFS2 loops one by one only with FM4 (0.8Hz Zero / (100Hz pole)^2). Adjust the gains to have the UGF at a few Hz.

- Found that the separation between WFS1P and WFS2P was not good. This caused instability of these loops when the gains were matched. I ended up lowering the gain of WFS1P by a factor of 10. This made the loop OK to work. FM3 (Integrator below 0.8Hz) worked fine.

- FM9 Rolloff filters (RLP12) makes the loops unstable.

- The MC2 spot loops (MC2_TRANS_PIT/YAW) are supposed to be slow loops. From the time series behavior it looks they are working.


MEDM Snapshots (Attchaments 1~4)

  17060   Thu Aug 4 22:14:20 2022 KojiUpdateIOOWFS investigation

Sensing matrix measurement

MCx_ASCyyy_EXC was shaken with the amplitude of 3000 cnt. Measure the transfer functions to each segment of the WFS I&Q demod outputs.

- Pitch excitations consistently indicated WFS1 SEG2&3 / SEG1&4, and WFS2 SEG 1&2 / SEG 3&4 are the pairs.
- Yaw excitations consistently indicated WFS1 SEG1&2 / SEG3&4, and WFS2 SEG 1&4 / SEG 2&3 are the pairs.

---> WFS1P matrix {1,-1,-1,1}, WFS1Y matrix {1,1,-1,-1}, WFS2P matrix {1,1,-1,-1}, WFS2Y matrix {-1,1,1,-1}

Now look at the servo input. The following lists show the important numbers for the actuation to sensor matrices. The numbers were the measured transfer function between 7~10Hz and the unit is 1/f^2 [cnt/cnt].

CHA:, C1:SUS-MC1_ASCPIT_EXC, CHB:, C1:IOO-WFS1_I_PIT_OUT, -77.4602 +/- 18.4495
CHA:, C1:SUS-MC1_ASCPIT_EXC, CHB:, C1:IOO-WFS2_I_PIT_OUT, -22.6042 +/- 5.289
CHA:, C1:SUS-MC1_ASCPIT_EXC, CHB:, C1:IOO-MC_TRANS_PIT_OUT, -0.0007949 +/- 0.00019046
CHA:, C1:SUS-MC1_ASCYAW_EXC, CHB:, C1:IOO-WFS1_I_YAW_OUT, -60.5557 +/- 14.1008
CHA:, C1:SUS-MC1_ASCYAW_EXC, CHB:, C1:IOO-WFS2_I_YAW_OUT, -206.3526 +/- 47.1332
CHA:, C1:SUS-MC1_ASCYAW_EXC, CHB:, C1:IOO-MC_TRANS_YAW_OUT, 0.00027094 +/- 6.6131e-05

CHA:, C1:SUS-MC2_ASCPIT_EXC, CHB:, C1:IOO-WFS1_I_PIT_OUT, 57.8636 +/- 35.3874
CHA:, C1:SUS-MC2_ASCPIT_EXC, CHB:, C1:IOO-WFS2_I_PIT_OUT, -185.079 +/- 104.679
CHA:, C1:SUS-MC2_ASCPIT_EXC, CHB:, C1:IOO-MC_TRANS_PIT_OUT, 0.00089367 +/- 0.00052603
CHA:, C1:SUS-MC2_ASCYAW_EXC, CHB:, C1:IOO-WFS1_I_YAW_OUT, -349.7898 +/- 202.967
CHA:, C1:SUS-MC2_ASCYAW_EXC, CHB:, C1:IOO-WFS2_I_YAW_OUT, -193.7146 +/- 111.2871
CHA:, C1:SUS-MC2_ASCYAW_EXC, CHB:, C1:IOO-MC_TRANS_YAW_OUT, 0.003911 +/- 0.0023028

CHA:, C1:SUS-MC3_ASCPIT_EXC, CHB:, C1:IOO-WFS1_I_PIT_OUT, 65.5405 +/- 14.305
CHA:, C1:SUS-MC3_ASCPIT_EXC, CHB:, C1:IOO-WFS2_I_PIT_OUT, 78.8535 +/- 17.1719
CHA:, C1:SUS-MC3_ASCPIT_EXC, CHB:, C1:IOO-MC_TRANS_PIT_OUT, -0.00087661 +/- 0.00020837
CHA:, C1:SUS-MC3_ASCYAW_EXC, CHB:, C1:IOO-WFS1_I_YAW_OUT, -130.7286 +/- 29.6898
CHA:, C1:SUS-MC3_ASCYAW_EXC, CHB:, C1:IOO-WFS2_I_YAW_OUT, 129.0654 +/- 28.6328
CHA:, C1:SUS-MC3_ASCYAW_EXC, CHB:, C1:IOO-MC_TRANS_YAW_OUT, -0.00024944 +/- 5.9112e-05

Put these numbers in the matrix calculation and take the inverse for pitch and yaw separately.

We obtained

WFS1P    WFS2P    MCTP    
-4.017   -4.783   -7.306e5   MC1P
 3.611   -5.252   -2.025e5   MC2P
 7.323   -1.017   -6.847e5   MC3P

WFS1Y    WFS2Y    MCTY    
-3.457   -4.532   -5.336e5   MC1Y
-0.1249   0.3826   2.635e5   MC2Y
-5.714    1.076   -4.578e5   MC3Y

Basically we can put these numbers into the output matrix. The last column corresponds to the spot position servo and we want to make this slow.
So used x1e-5 values (i.e. removed e5) instead of these huge numbers.

 

  17061   Thu Aug 4 22:14:38 2022 KojiUpdateIOOWFS investigation

WFS/MCTRANS_QPD Power Spectra

Attachment 1: HEPA ON

WFS1/2 PIT/YAW Spectra are stabilized below 1Hz (0.1Hz for WFS1P)

MC2 TRANS PIT is largely contaminated by the other WFS loops.
MC2 TRANS YAW is slightly contaminated but not much compared to the one for pitch.

Attachment 2: HEPA OFF

Again, WFS1/2 PIT/YAW Spectra are stabilized below 1Hz (0.1Hz for WFS1P)

MC2 TRANS PIT is still contaminated but better.
MC2 TRANS YAW is not contaminated.


Observation

WFS1/2 signals are largely disturbed when PSL HEPA is ON. Probably the amount of HEPA air flow was not optimized.
Above 1Hz, invacuum suspension are quieter than the beam incident on the IMC.

The dirty WFS signals are fedback to the mirrors. Due the large motion of the beam and also the imperfection of the actuator matrix cause the MC2 spot rather moves than stabilized.

This means that the WFS loops should leave the mirrors untouched above 1Hz i.e. The loop bandwidths should be low (~<0.1Hz). (Yes I know)
However, the simple gain reduction (x10) does make the servos unstable. So more adjustment is necessary. (<-Not for today)

  17062   Thu Aug 4 22:32:31 2022 KojiUpdateIOOUpon leaving the lab (WFS investigation)

Upon leaving the lab:

- HEPA is ON at the original speed (i.e. same speed at 5PM today)

- WFS servo is ON, partly because we want to see how stable it is. It is not handled with the autolocker right now.
So there is a possibility that the WFS servo goes wild and make the IMC totally misaligned (and does not come back)
In such a case, go to the WFS servo screen and push "CH" (clear history) of each servo filters.

  17063   Fri Aug 5 12:42:12 2022 KojiUpdateIOOIMC WFS: Overnight observation

The IMC lock survived overnight and the WFS servo loops kept it aligned. The IMC was unlocked in the morning.
The left 6 plots are the WFS servo outputs and the right most two plot show the transmission and reflection of the IMC.

If the WFS is making the lock unstable under high seismic conditions, please turn the loops off.

 

  17064   Fri Aug 5 17:03:31 2022 YehonathanSummaryGeneralTesting 950nm laser found in trash pile

I set out to test the actuation bandwidth of the 950nm laser. I hooked the laser to the output of the bias tee of PD testing setup. I connected the fiber coming out of the laser to the fiber port of 1611 REF PD.

The current source was connected to the DB9 input of the PD testing setup. I turned on the current source and set the current to 20mA. I measured with a fluke ~ 2V at the REF PD DC port.

I connected the AC port of the bias tee to the RF source of the network analyzer and the AC port of the REF PD to the B port of the network analyzer. Attachment 2 shows the setup.

I took a swept sine measurement (attachment) from 100kHz to 500MHz.

It seems like the bandwidth is ~ 1MHz which is weird considering the spec sheet says that the pulse rise time is 0.5ns. To make sure we are not limited by the bandwidth of the cables I looped the source and the input of the network analyzer using the cables used for the previous measurement and observed that the bandwidth is a few 100s of MHz.

  17065   Mon Aug 8 14:47:10 2022 ranaUpdatePSLFSSSlow/MCAutolocker issue (docker)

can't we just go back to the old python script that was working for many years, and tested? I imagine that as soon as someone besides you tries to debug the docker setup, this is what will happen.

Quote:

Added C1:IOO-MC_LOCK to ALConfigMC.yml which solved the isse with FSS Slow. We should tune the FSS Slow Servo PID coefficients for a better performance.

the C1PSL_SLOW.adl screen is not obsolete. It can be used to change the PID coefficients, engage/disengage the PID loop, monitor the PID script blinker, and monitor FAST actuator value C1:PSL-FSS_FAST. the functionality of this screen has not changed from before.

I've also added a wiki page for scripts documentation.

 

  17066   Mon Aug 8 17:16:51 2022 TegaUpdateComputersFront-end machine setup

Added 3 FE machines - c1ioo, c1lsc, c1sus -  to the teststand following the instructions in elog15947. Note that we also updated /etc/hosts on chiara by adding the names and ip of the new FE since we wish to ssh from there given that chiara is where we land when we connect to c1teststand.

Two of the FE machines - c1lsc & c1ioo - have the 6-core X5680 @ 3.3GHz processor and the BIOS were already mostly configured because they came from LLO I believe. The third machine - c1sus - has the 6-core X5650 @ 2.67GHz processor and required a complete BIOS config according to the doc.

Next Step:  I think the next step is to get the latest RTS working on the new fb1 (tower machine), then boot the frontends from there.


KVM switch note:

All current front-ends have the ps/2 keyboard and mouse connectors except for fb1, which only has usb ports. So we may not be able to connect to fb1 using a ps/2 KVM switch that works for all the current front-ends. The new tower machine does have a ps/2 connector so if we decide to use that as the bootserver and framebuilder, then we should be fine.

  17067   Tue Aug 9 15:33:12 2022 yutaUpdateBHDBHD fringe contrast improved from 43% to 74%

[Anchal, Yehonathan, Yuta]

We did the constrast measurement with the method same as 40m/17020.
Contrast between ITM single bounce and LO beam increased to 74% (we had 43% before unclipping LO beam in 40m/17056).
From equations in 40m/17041 and measured ITM sigle bounce power (93 or 138 counts @ BHD DCPD) and LO power (130 or 124 counts @ BHD DCPD) from 40m/17056,  expected visibility for perfectly mode-matched case is 99%.
Measured constrast of 74% indicate mode-matching of 56%.

Both arms locked, MICH fringe (20% percentile)
Contrast measured by C1:LSC-ASDC_OUT is 80.66 +/- 0.20 %
Contrast measured by C1:LSC-POPDC_OUT is 92.27 +/- 0.66 %
Contrast measured by C1:LSC-REFLDC_OUT is 89.59 +/- 0.84 %
Contrast measured by all is 87.51 +/- 1.69 %

Both arms misaligned, MICH fringe (20% percentile)
Contrast measured by C1:LSC-ASDC_OUT is 82.50 +/- 0.61 %
Contrast measured by C1:LSC-POPDC_OUT is 94.18 +/- 0.26 %
Contrast measured by C1:LSC-REFLDC_OUT is 92.78 +/- 0.19 %
Contrast measured by all is 89.82 +/- 1.75 %

ITMX-LO fringe (40% percentile)
Contrast measured by C1:HPC-DCPD_A_OUT is 73.93 +/- 1.52 %
Contrast measured by C1:HPC-DCPD_B_OUT is 73.56 +/- 1.22 %
Contrast measured by all is 73.74 +/- 0.98 %

ITMY-LO fringe (40% percentile)
Contrast measured by C1:HPC-DCPD_A_OUT is 73.45 +/- 0.61 %
Contrast measured by C1:HPC-DCPD_B_OUT is 75.27 +/- 0.50 %
Contrast measured by all is 74.36 +/- 0.54 %

  17068   Tue Aug 9 15:50:22 2022 KojiUpdateBHDBHD fringe contrast improved from 43% to 74%

For both 40m/17020 and 40m/17024, what does the contrast mean if the numbers are leaking out to ~-100cnt?
Also how much is it if you convert this contrast into the mode matching?

  17069   Tue Aug 9 19:54:31 2022 yutaSummaryLSCFPMI locking tonight

[Tega, Anchal, Yuta]

We resored FPMI locking settings. Below is the summary of locking configurations tonight.
To ease the lock acquisition, the step to feedback POX11_I to ETMX and POY11_I to MC2 before POX and POY mixing was necessary tonight.

CARM (YARM):
 - 0.5 * POX11_I + 0.5 * POY11_I handed to 0.5 * REFL55_I
 - YARM filter module, FM4,5 for acquisition, FM1,2,3,6,8 triggered, C1:LSC-YARM_GAIN = 0.012
 - Actuation on -0.77 * MC2
 - UGF ~ 250 Hz

DARM (XARM):
 - 0.5 * POX11_I - 0.5 * POY11_I handed to 4.6 * AS55_Q (it was 2.5 in 40m/17012)
 - XARM filter module, FM5 for acquisition (no FM4), FM1,2,3,6,8 triggered, C1:LSC-XARM_GAIN = 0.015
 - Actuation on 0.5 * ETMX - 0.5 * ETMY
 - UGF ~ 120 Hz

MICH:
 - 1 * REFL55_Q (turned on after XARM and YARM acquisition)
 - MICH filter module, FM4,5,8 for acquisition, FM2,3 triggered, C1:LSC-MICH_GAIN = +40
 - Actuation on 0.5 * BS
 - UGF ~ 100 Hz

Measured sensing matrix:
Sensing Matrix with the following demodulation phases
{'AS55': 200.41785156862835, 'REFL55': 93.7514468401475, 'POX11': 105.08325063571438, 'POY11': -11.343909976281823}
Sensors              DARM                    CARM                   MICH
C1:LSC-AS55_I_ERR_DQ 5.27e-02 (-154.105 deg) 2.83e-01 (132.395 deg) 1.17e-04 (-40.1051 deg)
C1:LSC-AS55_Q_ERR_DQ 3.99e-02 (-151.048 deg) 1.42e-02 (125.504 deg) 1.41e-04 (-2.42846 deg)
C1:LSC-REFL55_I_ERR_DQ 5.59e-02 (77.6871 deg) 1.15e+00 (-44.589 deg) 3.55e-04 (69.2585 deg)
C1:LSC-REFL55_Q_ERR_DQ 1.84e-03 (16.3186 deg) 3.35e-03 (125.67 deg) 4.59e-05 (4.18718 deg)
C1:LSC-POX11_I_ERR_DQ 1.54e-01 (-157.852 deg) 6.07e-01 (-42.1078 deg) 5.55e-05 (73.3963 deg)
C1:LSC-POX11_Q_ERR_DQ 6.83e-05 (-148.591 deg) 6.37e-04 (121.983 deg) 1.35e-06 (43.7201 deg)
C1:LSC-POY11_I_ERR_DQ 1.85e-01 (36.1624 deg) 5.73e-01 (-43.1776 deg) 2.12e-04 (82.16 deg)
C1:LSC-POY11_Q_ERR_DQ 2.16e-05 (130.937 deg) 6.38e-05 (-173.194 deg) 1.40e-06 (47.5416 deg)

FPMI locked periods:
  - 1344129143 - 1344129520
  - 1344131106 - 1344131305
  - 1344133503 - 1344134020

Next:
- Restore CM servo for CARM

  17070   Wed Aug 10 15:33:59 2022 CiciUpdateGeneralWorking Red Pitaya VNA

TL;DR: I am now able to inject a swept sine and measure a transfer function with python on my Red Pitaya! Attached is a Bode plot for a swept sine from 1 - 30 MHz, going through a band pass filter of 9.5 - 11.5 MHz.

------------------------------------------------------------------------------------

  • Spent too long trying to get pyRPL to work, do not recommend. The code on their website has a lot of problems (like syntax-error level problems), and is ultimately designed to open up and start a GUI, which is not what I want even if it did work.
  • Found some code on the git repository of someone at Delft University of Technology, worked better but still not great (oscilloscope/spectrum analyzer functions were alright, but couldn't successfully run a VNA with it, and overcomplicated). Helped me figure out appropriate decimation factors. Realized it was not using the FPGA to get TF data but instead just collecting a lot of time trace data and then taking an FFT in the code to get the TF, which wasn't ideal.
  • Eventually switched to using the Red Pitaya SCPI server to talk to the Red Pitaya myself, successful! I inject a swept sine with a for loop that just cycles through frequencies and takes the transfer function at each one.
    • Was originally getting the transfer function by using scipy.signal.csd() and scipy.signal.welch() to get Pxy and Pxx and dividing, and then just finding the closest point in the frequency spectrum to the frequency I was inserting.
    • Switched to doing IQ demodulation myself: where x(t) is the measurement before the band pass filter and y(t) is the measurement after, taking the mean of (x(t) * cos(2pi*freq)) = a1, mean(x*sin()) = a2, mean(y*cos()) = b1, mean(y*sin()) = b2, and then TF(freq) = (b1 + i b2)/(a1 + i a2).
    • Unfortunately still taking time trace data and then calculating the TF instead of using the FPGA, but I have not found anything online indicating that people are able to get VNA capabilities on the Red Pitaya without collecting and sending all the time trace data... I'm still not sure if that's actually a Red Pitaya capability yet.

-------------------------------------------------------------------------------------

To do:

  • Will go take measurements of the AUX laser loop with the RPi! Have a good diagram of when I did it with the SR785 so it shouldn't be too hard hopefully.
  • Figure out how to get coherence data!!
  • Figure out how to get the RPi on the wifi. Right now I'm just plugging the RPi into my computer. Paco and I were working on this before and had trouble finding old passwords... Hopefully will not be too much of a roadblock.
  17071   Wed Aug 10 19:24:19 2022 ranaUpdateGeneralWorking Red Pitaya VNA

                 Boom!

 

  17072   Wed Aug 10 19:36:45 2022 KojiBureaucracyGeneralLab cleaning and discovery

During the cleaning today, we found many legacy lab items. Here are some policies what should be kept / what should be disposed

Dispose

  • VME crates and VME electronics as long as they are not in use
  • Eurocard SUS modules that are not in use.
  • Eurocard crates (until we remove the last Eurocard module from the lab)
  • Giant steel plate/palette (like a fork lift palette) along the Y arm. (Attachment 1)
  • An overhead projector unit.

Keep

  • Spare Eurocard crates / ISC/PZT Eurocard modules
  • Boxes of old 40m logbooks behind the Y arm (see Attachment 2/3).
  • Ink-plotter time-series data (paper rolls) of 1996 IFO locking (Attachment 4). Now stored in a logbook box.
  • A/V type remnants: Video tapes / video cameras / casette tapes as long as they hold some information in it. i.e. Blank tapes/blank paper rolls can be disposed.
  17073   Wed Aug 10 20:30:54 2022 TegaSummarySUSCharacterisation of suspension damping

[Yuta, Tega]

We diagnosed the suspension damping of the IMC/BHD/recycling optics by kicking the various degree of freedom (dof) and then tuning the gain so that we get a residual Q of approx. 5 in the cases where this can be achieved.

MC1: Good
MC2: SIDE-YAW coupling, but OK
MC3: Too much coupling between dofs, NEEDS ATTENTION
LO1: Good
LO2: Good
AS1: POS-PIT coupling, close to oscillation, cnt2um off, NEEDS ATTENTION
AS4: PIT-YAW coupling, cannot increase YAW gain because of coupling, No cnt2um, No Cheby, NEEDS ATTENTION
PR2: No cnt2um, No Cheby
PR3: POS-PIT coupling, cannot increase POS/PIT/YAW gain because of coupling, No cnt2um, No Cheby, NEEDS ATTENTION
SR2: No cnt2um

  17074   Wed Aug 10 20:51:14 2022 TegaUpdateComputersCDS upgrade Front-end machine setup

Here is a summary of what needs doing following the chat with Jamie today.

 

Jamie brought over the KVM switch shown in the attachment and I tested all 16 ports and 7 cables and can confirm that they all work as expected.

 

TODO

1. Do a rack space budget to get a clear picture of how many front-ends we can fit into the new rack

2. Look into what needs doing and how much effort would be needed to clear rack 1X7 and use that instead of the new rack. The power down on Friday would present a good opportunity to do this work on Monday, so get the info ready before then. 

3. Start mounting front-ends, KVM and dolphin network switch

4. Add the BOX rack layout to the CDS upgrade page.

  17075   Thu Aug 11 16:48:59 2022 ranaUpdateComputer Scripts / ProgramsNDS2 updates

We had several problems with our NDS2 server configuration. It runs on megatron, but I think it may have had issues since perhaps not everyone was aware of it running there.

  1. channel lists were supposed to updated regularly, but the nds2_nightly script did not exist in the specified directory. I have moved it from Joe Areeda's personal directory (/home/nds2mgr/joework/server/src/utils/) to nds2mgr/channel-tracker/.
  2. The channel history files (/home/nds2mgr/channel-tracker/channel_history/) are stored on the local megatron disk. These files had grown up to ~50 GB over tha past several years. I backed these up to /users/rana/, and then wiped them out so that the NDS could regen them. Now that the megatron local disk is not full, it seems to work in giving raw data.
  3. Need to confirm that this serves up trend data (second and minute)
  4. I think there is a nds2-server package for Debian, so we should update megatrons OS to the preferred flavour of DebIan and use that. Who to get to help in this install?

Since Megatron is currently running the "Shanghai" Quad-core Opteron processor from ~2009,  its ~time to replace it with a more up to date thing. I'll check with Neo to see if he has any old LDAS leftovers that are better.

  17076   Thu Aug 11 17:15:33 2022 CiciUpdateGeneralMeasuring AUX Laser UGF with Red Pitaya

TL;DR: Have successfully measured the UGF of the AUX laser on my Red Pitaya! Attached is one of my data runs (pdf + txt file). 

---------------------------------------------------------------

  • Figured out how to get a rudimentary coherence (use scipy.signal.coherence to get Cxy = abs(Pxy)**2/(Pxx*Pyy), then find what point is the closest to the frequency I'm inserting on that iteration of the swept sine and get the coherence closest to that). Not precisely the coherence at the frequency I'm inserting though, so not perfect... more of a lower bound of coherence.
  • Figured out how to get the UGF from the data automatically (no error propagation yet... necessary next step)
  • Put my red pitaya in the X-arm AUX laser control electronics (thank you to Anchal for help figuring out where to put it and locking the x-arm.) Counts dropped from 4500 to 1900 with the x-arm locked, so 58% mode matching. I lose lock at an amplitude >0.05 or so.
  • Wrote a little script to take data and return a time-stamped text file with all the parameters saved and a time-stamped pdf of the TF magnitude, UGF, phase, and coherence, so should be easy to take more data next time!

----------------------------------------------------------------

  • need to take more accurate coherence data
  • need to propagate uncertainty on UGF (probably high...)
  • take more data with higher coherence (the file attached doesn't have great coherence and even that was one of my better runs, will probably increase averaging since increasing amplitude was a problem)
  17077   Fri Aug 12 02:02:31 2022 KojiUpdateGeneralPower Outage Prep: nodus /home/export backup

Took the backup (snapshot) of /home/export as of Aug 12, 2022

controls@nodus> cd /cvs/cds/caltech/nodus_backup
controls@nodus> rsync -ah --progress --delete /home/export ./export_220812 >rsync.log&

As the last backup was just a month ago (July 8), rsync finished quickly (~2min).

  17078   Fri Aug 12 13:40:36 2022 JCUpdateGeneralPreparing for Shutdown on Saturday, Aug 13

[Yehonathan, JC]

Our first step in preparing for the Shutdown was to center all the OpLevs. Next is to prepare the Vacuum System for the shutdown.

 

  17079   Mon Aug 15 10:27:56 2022 KojiUpdateGeneralRecap of the additional measures for the outage prep

[Yuta Koji]

(Report on Aug 12, 2022)

We went around the lab for the final check. Here are the additional notes.

  • 1X9: The x-end frontend machine still had the AC power. The power strip to which the machine is connected was disconnected from the AC at the side of the rack. (Attachment 1)
  • 1X8: The vacuum rack still supplied the AC to c1vac. This was turned off at the UPS. (Attachment 2)
  • 1X6: VMI RFM hub still had the power. This was turned off at the rear switch. (Attachment 3)
  • PSL: The PSL door was open (reported above). Closed. (Attachment 4)
  • 1Y2: The LSC rack still had the DC power. The supplies were turned off at the KEPCO rack (the short rack). (Attachment 5)
    Note that the top-right supply for the +15V is not used. (The one in the empty slot got busted). We may need some attention to the left-most one in the second row. It indicated a negative current. Is this just the current meter problem or is the supply broken?
  • Control room: The CAD WS was turned off.

I declare that now we are ready for the power outage.

  17080   Mon Aug 15 15:43:49 2022 AnchalUpdateGeneralComplete power shutdown and startup documentation

All steps taken have been recorded here:
https://wiki-40m.ligo.caltech.edu/Complete_power_shutdown_2022_08

  17081   Mon Aug 15 18:06:07 2022 AnchalUpdateGeneralc1vac issues, 1 pressure gauge died

[Anchal, Paco, Tega]


Disk full issue:

c1vac was showing /var disk to be full. We moved all gunzipped backup logs to /home/controls/logBackUp. This emptied 36% of space on /var. Ideally, we need not log so much. Some solution needs to be found for reducing these log sizes or monitoring them for smart handling.


Pressure sensor malfunctioning:

We were unable to opel the PSL shuttter, due to the interlock with C1:Vac-P1a_pressure. We found that C1:Vac-P1a_pressure is not being written by serial_MKS937a service on c1vac. The issue was the the sensor itself has become bad and needs to be replaced. We believe that "L 0E-04" in the status (C1:Vac-P1a_status) message indicates a malfunctioning sensor.

Quick fix:

We removed writing of C1:Vac-P1a_pressure and C1:Vac-P1a_status from MKS937a and mvoed them to XGS600 which is using the sensor 1 from main volume. See this commit.

Now we are able to open PSL shutter. The sensor should be replaced ASAP and this commit can be reverted then.

  17082   Mon Aug 15 20:09:18 2022 KojiUpdateGeneralc1vac issues, 1 pressure gauge died

- Disk Full: Just use the usual /etc/logrotate thing

- Vacuum gauge

I rather feel not replacing P1a. We used to have Ps and CCs as they didn't cover the entire pressure range. However, this new FRG (=Full Range Gauge) does cover from 1atm to 4nTorr.

Why don't we have a couple of FRG spares, instead?

Questions to Tega: How many FRGs can our XGS-600 controller handle?

 

  17083   Tue Aug 16 18:22:59 2022 TegaUpdateComputersc1teststand rack mounting for CDS upgrade

[Tega, Yuta]

I keep getting confused about the purpose of the teststand. The view I am adopting going forward is its use as a platform for testing the compatibility of new hardware upgrade, instead of thinking of it as an independent system that works with old hardware.

The initial idea of clearing 1X7 cannot be done for now, because I missed the deadline for providing a detailed enough plan before Monday power up of the lab, so we are just going to go ahead and use the new rack as was initially intended and get the latest hardware and software tested here.

We mounted the DAQ, subnet and dolphin IX switches, see attachement 1. The mounting ears that came with the dolphin switch did not fit and so could not be used for mounting. We looked around the lab and decided to used one of the NavePoint mounting brackets which we found next to the teststand, see attachment 2.

We plan to move the new rack to the current location of the teststand and use the power connection from there. It is also closer to 1X7 so that moving the front-ends and switches to 1X7 should be straight forward after we complete all CDS upgrade testing.

  17084   Wed Aug 17 01:18:54 2022 KojiUpdateGeneralNotice: SURF SUS test setup blocking the lab way

Juan and I built an analog setup to measure some transfer functions of the MOS suspension. The setup is blocking the lab way around the PD test bench.
Excuse us for the inconvenience. It will be removed/cleared by the end of the week.

  17085   Wed Aug 17 07:35:48 2022 yutaBureaucracyGeneralMy wish list for IFO commissioning

FPMI related
- Better suspension damping HIGH
 - Investigate ITMX input matrix diagonalization (40m/16931)
 - Output matrix diagonalization
 * FPMI lock is not stable, only lasts a few minutes for so. MICH fringe is too fast; 5-10 fringes/sec in the evening.
- Noise budget HIGH
 - Calibrate error signals (actually already done with sensing matrix measurement 40m/17069)
 - Make a sensitivity curve using error and feedback signals (actuator calibration 40m/16978)
 * See if optical gain and actuation efficiency makes sense. REFL55 error signal amplitude is sensitive to cable connections.
- FPMI locking
 - Use CARM/DARM filters, not XARM/YARM filters
 - Remove FM4 belly
 - Automate lock acquisition procedure
- Initial alignment scheme
 - Investigate which suspension drifts much
 - Scheme compatible with BHD alignment
 * These days, we have to align almost from scratch every morning. Empirically, TT2 seems to recover LO alignment and PR2/3 seems to recover Yarm alignment (40m/17056). Xarm seems to be stable.
- ALS
 - Install alignment PZTs for Yarm
 - Restore ALS CARM and DARM
 * Green seems to be useful also for initial alignment of IR to see if arms drifted or not (40m/17056).
- ASS
 - Suspension output matrix diagonalization to minimize pitch-yaw coupling (current output matrix is pitch-yaw coupled 40m/16915)
 - Balance ITM and ETM actuation first so that ASS loops will be understandable (40m/17014)
- Suspension calibrations
 - Calibrate oplevs
 - Calibrate SUSPOS/PIT/YAW/SIDE signals (40m/16898)
 * We need better understanding of suspension motions. Also good for A2L noise budgeting.
- CARM servo with Common Mode Board
 - Do it with single arm first

BHD related
- Better suspension damping HIGH
 - Invesitage LO2 input matrix diagonalization (40m/16931)
 - Output matrix diagonalization (almost all new suspensions 40m/17073)
 * BHD fringe speed is too fast (~100 fringes/sec?), LO phase locking saturates (40m/17037).
- LO phase locking
 - With better suspensions
 - Measure open loop transfer function
 - Try dither lock with dithering LO or AS with MICH offset (single modulation)
 - Modify c1hpc/c1lsc so that it can modulate BS and do double demodulation, and try double demodulation
- Noise Budget HIGH
 - Calibrate MICH error signal and AS-LO fringe
 - Calibrate LO1, LO2, AS1, AS4 actuation using ITM single bounce - LO fringe
 - Check BHD DCPD signal chain (DCPD making negative output when fringes are too fast; 40m/17067)
 - Make a sensitivity curve using error and feedback signals
- AS-LO mode-matching 
 - Model what could be causing funny LO shape
 - Model if having low mode-matching is bad or not
 * Measured mode-matching of 56% sounds too low to explain with errors in mode-matching telescope (40m/16859, 40m/17067).

IMC related
- WFS loops too fast (40m/17061)
- Noise Budget
- Investigate MC3 damping (40m/17073)
- MC2 length control path

  17086   Wed Aug 17 10:23:05 2022 TegaUpdateGeneralc1vac issues, pressure gauge replacement

- Disk full

I updated the configuration file '/etc/logrotate.d/rsyslog' to set a file sise limit of 50M on 'syslog' and 'daemon.log' since these are the two log files that capture caget & caput terminal outputs. I also reduce the number of backup files to 2.

controls@c1vac:~$ cat /etc/logrotate.d/rsyslog
/var/log/syslog
{
    rotate 2
    daily
    size 50M
    missingok
    notifempty
    delaycompress
    compress
    postrotate
        invoke-rc.d rsyslog rotate > /dev/null
    endscript
}

/var/log/mail.info
/var/log/mail.warn
/var/log/mail.err
/var/log/mail.log
/var/log/daemon.log
{
    rotate 2
    missingok
    notifempty
    size 50M
    compress
    delaycompress
    postrotate
        invoke-rc.d rsyslog rotate > /dev/null
    endscript
}
/var/log/kern.log
/var/log/auth.log
/var/log/user.log
/var/log/lpr.log
/var/log/cron.log
/var/log/debug
/var/log/messages
{
    rotate 4
    weekly
    missingok
    notifempty
    compress
    delaycompress
    sharedscripts
    postrotate
        invoke-rc.d rsyslog rotate > /dev/null
    endscript
}

- Vacuum gauge

The XGS-600 can handle 6 FRGs and we currently have 5 of them connected. Yes, having a spare would be good. I'll see about placing an order for these then.

Quote:

- Disk Full: Just use the usual /etc/logrotate thing

- Vacuum gauge

I rather feel not replacing P1a. We used to have Ps and CCs as they didn't cover the entire pressure range. However, this new FRG (=Full Range Gauge) does cover from 1atm to 4nTorr.

Why don't we have a couple of FRG spares, instead?

Questions to Tega: How many FRGs can our XGS-600 controller handle?

 

 

  17087   Wed Aug 17 10:27:49 2022 CiciUpdateGeneralLocking X-arm AUX laser

TL;DR: Got the x-arm aux laser locked again and took more data - my fit on my transfer functions need improvement and my new method for finding coherence doesn't work so I went back to the first way! See attached file for an example of data runs with poor fits. First one has the questionable coherence data, second one has more logical coherence. (ignore the dashed lines.)

------------------------------------------------------------------------------------

  • The aux laser on the x-arm was still off after the power shutdown, so Paco and I turned it back on, and realigned the oplev of the ETMX - initial position was P = -0.0420, Y = -5.5391.
  • Locked the x-arm and took another few runs - was calculating coherence by I/Q demodulation of the buffers and then recombining the I/Q factors and then taking scipy.signal.coherence(), but for some reason this was giving me coherence values exclusively above 0.99, which seemed suspicious. When I calculated it the way I had before, by just taking s.s.coherence() of the buffers, I got a coherence around 1 except for in noisy areas of the data where it dropped more significantly, and seemed to be more correlated to the data. So I'll go back to using that way.
  • I also think my fits are not great - my standard error of the fits (calculated using the coherence as weight, see Table 9.6 of Random Data by Piersol and Bendat for the formula I'm using) are enormous. Now that I have a good idea that the UGF is between 1 - 15 kHz, I'm going to restrict my frequency band and try to fit just around where the UGF would be. 

--------------------------------------------------------------------------------

To do:

  • Reduce frequency band and take more data
  • Get fit with better standard error, use that error to calculate the uncertainty in the UGF!
  17088   Wed Aug 17 11:10:51 2022 ranaUpdateComputersc1teststand rack mounting for CDS upgrade

we want to be able to run SimPlant on the teststand, test our new controls algorithms, test watchdogs, and any other software upgrades. Ideally in the steady state it will run some plants with suspensions and cavities and we will develop our measurement scripts on there also (e.g. IFOtest).

Quote:

[Tega, Yuta]

I keep getting confused about the purpose of the teststand. The view I am adopting going forward is its use as a platform for testing the compatibility of new hardware upgrade, instead of thinking of it as an independent system that works with old hardware.

  17089   Thu Aug 18 14:49:35 2022 YehonathanSummaryLSCFPMI Sensitivity

{Yuta, Yehonathan}

We wrote a notebook found on Git/40m/measurements/LSC/FPMI/NoiseBudget/FPMISensitivity.ipynb for calculating the MICH, DARM (currently XARM), CARM (currently YARM) sensitivities in the FPMI lock which can be run daily.

The IN and OUT channels of each DOFs are measured at a certain GPS time and calibrated using the optical gains and actuation calibration measured in the previous post.

Attachment shows the results.

It seems like the UGFs for MICH and DARM (currently XARM) match the ones that were estimated previously (100Hz for MICH, 120Hz for DARM) except for CARM for which the UGF was estimated to be 250Hz and here seems to be > 1kHz.

Indeed one can also see that the picks in the CARM plot don't match that well. Calculation shows that at 250Hz OUT channel is 6 times more than the IN channel. Calibrations for CARM should be checked.

MICH sensitivity using REFL55 at high frequencies is not much better than what was measured with AS55.

DARM sensitivity at 10Hz is a factor of a few better than the single arm lock sensitivity.

Now it is time to do the budgeting.

  17090   Thu Aug 18 16:35:29 2022 CiciUpdateGeneralUGF linked to optical gain!

TL;DR: When the laser has good lock, the OLTF moves up and the UGF moves over!

-----------------------------------------------------------

Figured out with Paco yesterday that when the laser is locked but kind of weakly (mirrors on the optical table sliiightly out of alignment, for example), we would get a UGF around 5 kHz, but when we had a very strong lock (adjusting the mirrors until the spot was brightest) we would get a UGF around 13-17 kHz. Attached are some plots of us going back and forth (you can kind of tell from the coherence/error that the one with the lower UGF is more weakly locked, too). Error on the plots is propagated using the coherence data (see Bendat and Piersol, Random Data, Table 9.6 for the formula). 

-------------------------------------------------------------

Want to take data next week to quantitatively compare optical gain to UGF!

  17091   Thu Aug 18 18:10:49 2022 KojiSummaryLSCFPMI Sensitivity

The overlapping plot of the calibrated error and control signals gives you an approximately good estimation of the freerun fluctuation, particularly when the open-loop gain G is much larger or much smaller than the unity.
However, when the G is close to the unity, they are both affected by "servo bump" and both signals do not represent the freerun fluctuation around that frequency.

To avoid this, the open-loop gain needs to be measured every time when the noise budget is calculated. In the beginning, it is necessary to measure the open-loop gain over a large frequency range so that you can refine your model. Once you gain sufficient confidence about the shape of the open-loop gain, you can just use measurement at a frequency and just adjust the gain variation (most of the cases it comes from the optical gain).

I am saying this because I once had a significant issue of (project-wide) incorrect sensitivity estimation by omitting this process.

  17092   Fri Aug 19 14:46:32 2022 AnchalUpdateSUSOpen loop transfer function measurements for local damping loops of BHD optics

[Anchal, Tega]

As a first step to characterize all the local damping loops, we ran an open loop transfer function measurement test for all BHD optics, taking transfer function using band-limited (0.3 Hz to 10 Hz) gaussian noise injection at error points in different degrees of freedom. Plots are in the git repo. I'll make them lighter and post here.

We have also saved coherence of excitation at the IN1 test points of different degrees of freedom that may be later used to determine the cross-coupling in the system.

The test ran automatically using measSUSOLTF.py script. The script can run the test parallelly on all suspensions in principle, but not in practice because the cdsutils.getdata apparently has a limitation on how many real-time channels (we think it is 8 maximum) one can read simultaneously. We can get around this by defining these test points at DQ channels but that will probably upset the rtcds model as well. Maybe the thing to do is to separate the c1su2 model into two models handling 3 and 4 suspensions. But we are not sure if the limitation is due to fb or DAQ network (which will persist even if we reduce the number of testpoints on one model) or due to load on a single core of FE machines.

The data is measured and stored here. We can do periodic tests and update data here.


Next steps:

  • Run the test for old optics as well.
  • Fit the OLTF model with the measured data, and divide by the digital filter transfer function to obtain the plant transfer function for each loop.
  • Set maximum noise allowed in the local damping loop for each degree of freedom, and criteria for Q of the loop.
  • Adjust gains and or loop shape to reach the requirements on all the suspensions in a quantitative manner.
  • (optional) Add a BLRMS calculation stream in SUS models for monitoring loop performance and in-loop noise levels in the suspensions.
  • More frequency resolution, please. (KA)
  17093   Fri Aug 19 15:20:14 2022 KojiUpdateGeneralNotice: SURF SUS test setup blocking the lab way

The setup was (at least partially) cleared.

  17095   Fri Aug 19 15:36:10 2022 KojiUpdateGeneralSR785 C21593 CHA+ BNC broken

When Juan and I were working on the suspension measurement, I found that CHA didn't settle down well.

I inspected and found that CHA's + input seemed broken and physically flaky. For Juan's measurements, I plugged + channels (for CHA/B) and used - channels as an input. This seemed work but I wasn't sure the SR functioned as expected in terms of the noise level.

We need to inspect the inputs a bit more carefully and send it back to SRS if necessary.

How many SR785's do we have in the lab right now? And the measurement instruments like SR785 are still the heart of our lab, please be kind...

  17096   Sat Aug 20 20:26:10 2022 AnchalUpdateSUSOpen loop transfer function measurements for local damping loops of Core optics

I made measurements of old optics OLTF today. I have reduced the file sizes of the plots and data now. It is interesting that it is allowed to read 9 channels simultaneously from c1mcs or c1sus models, even together. The situation with c1su2 is a bit unclear. I was earlier able to take measurements of 6 channels at once from c1su2 but not I can't read more than 1 channel simultaneously. This suggests that the limit is dictated by how much a single model is loaded, not how much we are reading simultaneously. So if we split c1su2 into two models, we might be able to read more optics simultaneously, saving time and giving us the ability to measure for longer.

Attached are the results for all the core optics. Inferences will be made later in the week.

Note: Some measurements have very low coherence in IN2 channels in most of the damping frequency region, these loops need to be excited harder. (eg PIT, POS, YAW, on ITMs and ETMs).

 

  17097   Mon Aug 22 14:36:49 2022 ranaUpdateSUSOpen loop transfer function measurements for local damping loops of Core optics

for damping and OL loops, we typically don't measure the TF like this because it takes forever and we don't need that detailed info for anything. Just use the step responses in the way we discussed at the meeting 2 weeks ago. There's multiple elog entries from me and others illustrating this. The measurement time is then only ~30 sec per optic, and you also get the cross-coupling for free. No need for test-point channels and overloading, just use the existing DQ channels and read back the response from the frames after the excitations are completed.

  17098   Mon Aug 22 19:02:15 2022 TegaUpdateComputersc1teststand rack mounting for CDS upgrade II

[Tega, JC]

Moved the rack to the location of the test stand just behind 1X7 and plan to remove the other two small test stand racks to create some space there.  We then mounted the c1bhd I/O chassis and 4 front-end machines on the test stand (see attachment 1).

Installed the dolphin IX cards on all 4 front-end machines: c1bhd, c1ioo, c1sus, c1lsc. I also removed the dolphin DX card that was previously installed on c1bhd.

Found a single OneStop host card with a mini PCI slot mounting plate in a storage box (see attachment 2). Since this only fits into the dual PCI riser card slot on c1bhd, I swapped out the full-length PCI slot OneStop host card on c1bhd and installed it on c1lsc, (see attachments 3 & 4).

 

  17099   Tue Aug 23 14:59:15 2022 JCUpdateToolsNew Toolbox at Y-End

A new tool box has been placed at the Y-end! Each drawer has its label so PLEASE put the tools back in their correct location. In addition to this, Each tool has its assigned tool box, so PLEASE RETURN all tools to their designated tool box. The tools can be distinguished by a writing or heat shrink which corresponds to the color of the tool chest or location. Photo #2 is an example of how the tools have been marked.

Each toolbox from now on will contain a drawer for the folllowing: Measurements, Allen Keys, Pliers and Cutters, Screwdrivers, Zipties and Tapes, Allen Ball Drivers, Crescent Wrenches, Clamps, and Torque Wrenches/ Ratchets.

  17100   Tue Aug 23 22:30:24 2022 TegaUpdateComputersc1teststand OS upgrade - I

[JC, Tega, Chris]

After moving the test stand front-ends, chiara (name server) and fb1 (boot server) to the new rack behind 1X7, we powered everything up and checked that we can reach c1teststand via pianosa and that the front-ends are still able to boot from fb1. After confirming these tests, we decided to start the software upgrade to debian 10. We installed buster on fb1 and are now in the process of setting up diskless boot. I have been looking around for cds instructions on how to do this and I found the CdsFrontEndDebian10page which contains most of the info we require. The page suggests that it may be cleaner to start the debian10 installation on a front-end that is connected to an I/O chassis with at least 1 ADC and 1 DAC card, then move the installation disk to the boot server and continue from there, so I moved the disk from fb1 to one of the front-ends but I had trouble getting it to boot. I decided to do a clean install on another disk on the c1lsc front-end which has a host adapter card that can be connected to the c1bhd I/O chassis. We can then mount this disk on fb1 and use it to setup the diskless boot OS.

  17101   Wed Aug 24 10:49:43 2022 CiciUpdateGeneralMeasuring DFD output/X-arm laser PZT TF with Moku

We measured the TF of the X-arm laser PZT using the Moku so we can begin fitting to that data and hopefully creating a digital filter to cancel out PZT resonances. 

-------------------------------------------------------------

We calculated the DFD calibration (V/Hz) using:

Vrf = 0.158 mV (-6 dBm), Km = 1 (K_phi = Km*Vrf), cable length = 45m,  Tau = cable length/(0.67*3*10^8 m/s) ~ 220 ns. 

We've taken some preliminary data and can see the resonances around 200-300 kHz.

---------------------------------------------------------

Next steps are taking more data around the resonances specifically, calibrating the data using the DFD calibration we calculated, and adjusting parameters in our model so we can model the TF.

 

  17102   Wed Aug 24 12:02:24 2022 PacoUpdateSUSITMX SUS is sus UL glitches?

[Yehonathan, Paco]

This morning, while attempting to align the IFO to continue with noise-budgeting, we noted the XARM lock was not stable and showed glitches in the C1:LSC-TRX_OUT (arm cavity transmission). Inspecting the SUS screens, we found the ULSEN rms ~ 6 times higher than the other coils so we opened an ndscope with the four face OSEM signals and overlay the XARM transmission. We immediately noticed the ULSEN input is noisy, jumping around randomly and where bigger glitches correlated with the arm cavity transmission glitches. This is appreciated in Attachment #1.


Signal chain investigation

We'll do a full signal investigation on ITMX SUS electronics to try and narrow down the issue, but it seems the glitches come and go... Is this from the gold satamp box? ...

  17103   Wed Aug 24 16:37:52 2022 CiciUpdateGeneralMore DFD/AUX PZT resonance measurements

Some more measurements of the PZT resonances (now zoomed in!) I'm adjusting parameters on our model to try and fit to it by hand a bit, definitely still needs improvements but not bad for a 2-pole 2-zero fit for now. I don't have a way to get coherence data from the moku yet but I've got a variety of measurements and will hopefully use the standard deviation to try and find a good error prediction...

 

ELOG V3.1.3-