ID |
Date |
Author |
Type |
Category |
Subject |
8583
|
Wed May 15 19:32:04 2013 |
rana | Summary | CDS | Accounting of ADC/DAC channel availability |
- What are we using 16 DAC channels for in the LSC?
- What are the functions of those IOO DAC channels which go to cross-connects? If they're not properly sending, then we may have malfunctioning MC or MCWFS.
- Can we just use the SLOW DAC (4116) for the ALS PZTs? We used this for a long time for the input steering and it was OK (but not perfect).
|
8585
|
Wed May 15 22:47:11 2013 |
Jamie | Summary | CDS | Accounting of ADC/DAC channel availability |
Quote: |
- What are we using 16 DAC channels for in the LSC?
|
For the new input and output tip-tilts. Two input, two output, each requires four channels.
Quote: |
- What are the functions of those IOO DAC channels which go to cross-connects? If they're not properly sending, then we may have malfunctioning MC or MCWFS.
|
I have no idea. I don't know what the hardware is, or is supposed to be, connected to. DAC for WFS?? Was there at some point supposed to be fast output channels in the PSL?
Quote: |
- Can we just use the SLOW DAC (4116) for the ALS PZTs? We used this for a long time for the input steering and it was OK (but not perfect).
|
Probably. I'm not as familiar with that system. I don't know what the availability of hardware channels is there. I'll investigate tomorrow. |
9429
|
Wed Nov 27 16:29:21 2013 |
Jenne | Update | CDS | Accidentally turned off SUS IO chassis |
[Jenne, Koji]
I was trying to lock the Yarm, and saw that I was not getting signals to go between the LSC and SCY models. I had digital zeros for TRY, and when I overrode the trigger and tried to force signal to ETMY, I had digital zeros at the SUS-ETMY_LSC input. The corresponding filter bank in the rfm model was receiving signals, so the Dolphin connection between LSC and SUS was okay, it was just the RFM connection going to the end station that wasn't succeeding.
Koji restarted the c1scy model, and then went inside the IFO room, and found that the SUS IO chassis power was off. We must have accidentally turned it off while we were in there earlier. Koji turned on the power, and also restarted the rfm model, and we now have real signals going back and forth.
Yarm is locked, ASS worked nicely, etc, etc, so things seem normal again (with the Yarm....ETMX stuff is still out of order). |
830
|
Tue Aug 12 21:38:19 2008 |
John | Update | LSC | Accidental higher order mode resonances in the arms |
Recently we had been having some trouble locking the full IFO in the spring configuration (SRC on +166).
It was thought that an accidental higher order mode resonance in the arms may have been causing problems.
I previously calculated the locations of the resonances using rough arm cavity parameters(Elog #690). Thanks to Koji
and Alberto I have been able to update this work with measured arm length and g factors for the y arm (Elog #801,#802).
I have also included the splitting of the modes caused by the astigmatic ETM. Code is attached.
I don't see any evidence of +166MHz resonances in the y arm.
In the attached plot different colours denote different frequencies +33, -33, +166, -166 & CR.
The numbers above each line are the mn of TEMmn.
Solid black line is the carrier resonance. |
5289
|
Tue Aug 23 16:23:33 2011 |
Jenne | Update | VAC | Access connector in place |
[Steve, Bob, Jamie, Kiwamu, Valera, Jenne]
The access connector is now in place, in preparation for pump-down. Tomorrow (hopefully) we will do all the other doors.
|
1692
|
Tue Jun 23 23:14:36 2009 |
Clara | Configuration | PEM | Accelerometers relocated |
Both accelerometers have been moved in an attempt to optimize their positions. The MC1 accelerometer was moved from one green bar to the other (I don't know what to call them) at the base of the MC1 and MC3 chambers. That area is pretty tight, as there is an optical table right there, and I did my best to be careful, but if you suspect something has been knocked loose, you might check in that area. The MC2 accelerometer was moved from the horizontal bar down to the metal table on which the MC2 chamber rests. |
2078
|
Fri Oct 9 17:41:04 2009 |
Jenne | Update | PEM | Accelerometers relocated |
[Sanjit, Jenne]
The set of 6 accelerometers which were semi-randomly placed underneath the MC2 tank are now back into 2 separate sets of 3 - one set at MC2 and one set at MC1. The channel names once again reflect reality, i.e. MC1_Y is actually under the MC1 tank, and aligned with the y direction. Also, the Guralp under MC1 was moved a little bit to the left, because Sanjit wanted to put the accelerometers where the seismometer had been. |
2079
|
Sun Oct 11 04:12:44 2009 |
rana | Update | PEM | Accelerometers relocated |
Some of these channels are not like the others. |
11389
|
Wed Jul 1 16:16:46 2015 |
Ignacio | Update | General | Accelerometers reinstalled for future huddle test |
Today, I installed the Wilcoxon accelerometers in the table near the end of the mode cleaner. I only set three of them up instead of all six. They were set up just as Rana suggeted we should have them properly set up, i.e. cables being tighten up, and a box on top to prevent any airflow introducing any disturbances. We are planning on running the huddle test on these guys once the upgrade? to the interferometer is done.

The cables were tightly clamped to the table as shown below, I used a thick piece of shock absorbing rubber to do this.

A small piece of thin rubber was used to hold each of the accelerometers tightly to the table in order not to damage them.

We had to borrow Megan's and Kate's piece of black foam in order to seal one of the sides properly, as the cable had to come out through somewhere. We didn't want to mess with drilling any holes into the box!

There was a small crack even after using the foam. I sealed it up with duck tape.

The box isn't perfect, so there were multiple cracks along the bottom and top of it that could potentially allow for air to flow to the inside. Eric suggested that we should be super careful this time and do it right, so every crack was sealed up with ducktape.


Finally, we needed something heavy to be placed on top of the box to hold everything well. We used Rana's baby to accomplish this goal.

Just kidding! Rana's baby is too delicate for our purposes. A layman box of heavy cables was used instead.

|
11359
|
Mon Jun 15 16:55:39 2015 |
ericq | Update | PEM | Accelerometers installed |
The accelerometers have been installed at MC1 and MC2. MC2 data is live, I haven't yet run the cables from the MC1 set to the preamp yet, though.
 

|
11362
|
Wed Jun 17 15:31:50 2015 |
ericq | Update | PEM | Accelerometers fully installed |
MC1 accelerometer has been plugged in. The modecleaner locking has been intermittent today, but I looked at a 15 minute lock in DTT, looking at the STS1 seismometer and both accelerometer triplets. Plot and DTT xml attached.
For the sake of not cluttering up everything with legends, the coherence plots are organized by direction (x, y, z), and include the coherence of each of the three sensors (sts, acc1, acc2) with the IMC control signal and the IMC transmitted RIN.
Some remarks:
- The 1 Hz pendulum motion is about equal amounts of X and Y, which makes sense, as MC1 and 3 are at an angle
- The ~3 Hz stack motion seems to be entirely in the X direction. Why?
- The bounce/roll bands are strongly coherent with Z motion at MC2.
- The STS does not appear to have any low frequency advantage over the accelerometers, in terms of coherence, contrary to what I would expect even without a thermal enclosure.
- The control signal and RIN RMSs are clearly dominated by noise in the 1-3Hz band, where we have reasonable coherence. Good prospects for noise subtraction...

|
172
|
Wed Dec 5 23:19:03 2007 |
Andrey | Configuration | PEM | Accelerometers are turned on |
All accelerometers have been turned on, as Alan asked during Wednesday meeting.
Typical power spectra and coherence plots are attached below.
"East" in the name means that the previous location of accelerometrs was to the east from "Beamsplitter" (the location for "east" accelerometers was not changed, actually, it is still near ITMX), while "west" means that previously accelerometers were to the west from the BS, but now their new location is near the ETMX.
I will change the names of the channels tomorrow (Thursday) when someone (Tobin?) will show to me how to do it.
P.S. (addition made on Dec. 19th, 2007, by Andrey) I intended to change the names of accelerometers the next day, Thursday Dec. 06,
but I did not do it that day (did not understand how to do it), then I fell ill, and eventually
I changed the names of accelerometers on December 19th, see entry to ELOG #204) |
151
|
Fri Nov 30 20:17:26 2007 |
Andrey | Configuration | PEM | Accelerometers and alum.plates for them |
All 6 accelerometers which were located near the ITMX are turned off and disconnected from the power cords.
Actually these accelerometers are now in the office area on the electronics bench (to the left from Steve Vass' place).
I made today 4 new aluminum mounting plates for the accelerometers (I drilled holes and made threads in them). On Monday I will buy short screws and install accelerometers on these new mounting plates. These mounting plates will be screwed directly into the metallic frame which is firmly cemented to the ground. Before yesterday accelerometers were mounted on top of blue stack towers, not on the ground directly, so we hope that new measurements of the ground noise will be more realistic.
The 4 mounting plates are on the same desk -> on the electronics bench (to the left from Steve Vass' place). Please do not displace them.
Attached is a drawing of the aluminum mountain plate. |
17967
|
Wed Nov 8 15:14:39 2023 |
jeff | Update | General | Accelerometers |
I borrowed a small accelerometer from 40m and walked it to the cryo lab. It is pictured in attachment 2 in its box.
There are two accelerometers I can see on the table in the cryo lab. They are both pictured in attachment 1 |
853
|
Tue Aug 19 14:25:38 2008 |
Sharon | Update | PEM | Accelerometer's calibration - update |
Goal - Make sure the accelerometers are calibrated among themselves (have the same power spectrum when they are all together reading the same movements).
What I did - took the accelerometers off their usual X Y Z setting and set the 3 MC2's and 3 MC1's next to each other covered by a box.
Then I brought MC2 X to MC1 X and placed them in a box so I have a referance between the 2 groups.
Result - Seems MC1 accelerometers are much alike and have the same power spectrum when placed together for all frequencies. MC2 accelerometers seem to do the same until approximately 30 Hz. (decided not to correct for that since we don't really care about the accelerometers in such high frequencies).
When comparing the 2 X's, they also seemed to be almost perfectly correlated. I chose the gain by dividing the two and finding the mean of that in the range of 2 to 30 Hz. After correcting for all the accelerometers, I matched the gains of each group to its X accelerometer.
You can see the plots, taking into consideration that the groups were never together (pretty messy getting the cables all around).
Here are the numbers, when the MC2 and MC1 gains are calculated by comparing them to their X direction.
gain MC1 X_over_MC2 X=
1.0870
gain_MC2_Y =
0.9944
gain_MC2_Z =
0.9479
gain_MC1_Y =
1.0394
gain_MC1_Z =
0.9149 |
882
|
Mon Aug 25 17:45:34 2008 |
rana, josephb, rob | HowTo | PEM | Accelerometer range |
Joe shows us by jumping up ~15" in the control rom that the accelerometers are set with not enough gain.
Since this is taken around 5:30 in the evening, so we can take the nearby time series to represent what a
high noise level is. I recommend we up the gain using the ICS-110B .ini file. |
7262
|
Thu Aug 23 21:53:18 2012 |
Yaakov | Update | PEM | Accelerometer location |
The MC1 accelerometer cube (3 accelerometers arranged in x,y,z) is under the PSL table, as I found it at the beginning of the summer.
The MC2 accelerometer cube is on the table where I worked on the STACIS, right when you walk into the lab from the main entrance. Their cables are dangling near the end of the mode cleaner, so the accelerometers are ready to be placed there if wanted.
All accelerometers are also plugged into their ADC channels. |
3355
|
Wed Aug 4 01:44:56 2010 |
Koji | Configuration | PEM | Accelerometer located on and below the PSL table |
[Jenne and Koji]
In order to characterize the seismic vibration of the PSL table, we put the accelerometers on and below the PSL table.
On the PSL: MC2 Accelerometers (X, Y, Z) - being connected to CH1-3 of the preamps
East side of the PSL table. X, Y, and Z is directed to North, East, and Up.
On the ground: MC1 Accelerometers (X, Y, Z) - being connected to CH4-6 of the preamps
Beneath the West side of the PSL table. X, Y, and Z is co-aligned to the MC2 ACC.
I found that the C1:PEM-ACC_MC1_Z has large noise in the low freq (~1Hz) region. I tracked down the noise source
and found the noise is still present in the down stream even when the CH17 (C1:PEM-ACC_MC1_Z ) of the ADC IF BNC
(@1Y7) was terminated.
I consulted with Jenne and decided to connect this channel to CH14, which is vacant and has name
C1:PEM-AUDIO_MIC2 (16k).
(for the details of the channel configurations, see /cvs/cds/caltech/chans/daq/C1ADCU_PEM.ini )
I first tried magnetometer channels to steal, but they didn't seem reacting (and the connected to the wrong channels).
I am feeling that we should once entirely check the I/F box.
Note that there looks the difference of the gain by x10 between C1:PEM-ACC_MC* channels and C1:PEM-AUDIO_MIC2 .
[From Jenne: The gain difference is because the C1:PEM-ACC_MC* channels have gain=10 in the .ini file, while C1:PEM-AUDIO_MIC2 uses the default gain=1. ] |
3395
|
Tue Aug 10 22:40:55 2010 |
Koji | Summary | PEM | Accelerometer located on and below the PSL table |
Result of the accelerometer measurement
Introduction
We wanted to characterize the PSL table before the work before its lifting up.
We put a set of three-axis Wilcoxon accelerometers on the ground and another set on the PSL table through the weekend.
Result
- The data at 9th Aug 00:00(UTC) is used. This was Sunday 5PM in the local time.
- The freq resolution was 0.01Hz. The # of avg was 50.
- The accelerometer signals were calibrated by the value 1.2e-7 V/(m/s^2). We use this absolute value of the spectrum for the comparison purpose.
- The accelerometers were aligned to North(X), East(Y), and Up(Z). There was the coherence observed from 2~20Hz.
The transfer functions are valid only this frequency region although we still can set the lower bound of them.
- The transfer functions in the horizontal directions show huge peaks at around 20Hz. The Q of the peaks are ~30 to ~100.
The vertical transfer function shows somewhat lower peak at around 50Hz with Q of ~10.
Some thoughts
- The low resonant freq and the high Q of the horizontal mode comes from the heaviness of the table.
- We are going to raise the table. This will usually mean that we get the lower resonant freq. This is not nice.
- So, the decision to use 6 tripods rather than 4 was right.
- The steel tripods are expected to give both more rigidity and more damping than the chep-looking hollow Newport legs.
- Concrete grouting of the tripods will also lower the effective height and will benefit for us.
|
930
|
Thu Sep 4 18:02:34 2008 |
rana, josephb | Configuration | PEM | Accelerometer gains increased by 10 |
We increased the Accelerometer gains by 10 by modifying the C1ADCU_PEM.ini file.
[C1:PEM-ACC_MC1_X]
chnnum=15014
gain = 10
etc.
The plot shows the before and after for one channel. The ADC noise floor is ~10^-2 counts/rHz in this plot so now
we can do much better noise subtraction. |
17545
|
Fri Apr 14 07:31:28 2023 |
JC | Update | General | Accelerometer for Tours |
I was able to get this accelerometer going for the next Lab tours. I want to get this guy up on a big screen to give people a nice "wow". I found this accelerometer on the Y end cabinet and there is 1 more available if anyone needs it at 40m. It is a Brüel & Kjær 8318. It contains a PZT so there is no need to input a signal. The accelerometer seemed to only put out roughly 2 mV max, so i had to amplify with an SR560 to get a good looking signal.
RXA: link to Manual |
673
|
Tue Jul 15 11:47:56 2008 |
Jenne | DAQ | PEM | Accelerometer channels in ASS Adapt MEDM screen |
Jenne, Sharon
We have traced which accelerometers correspond to which channels in the C1ASS_TOP MEDM screen.
Accelerometer Channel
------------- --------------------------
MC1-X C1:ASS-TOP_PEM_2_ADAPT_IN1
MC1-Y C1:ASS-TOP_PEM_3_ADAPT_IN1
MC1-Z C1:ASS-TOP_PEM_4_ADAPT_IN1
MC2-X C1:ASS-TOP_PEM_5_ADAPT_IN1
MC2-Y C1:ASS-TOP_PEM_6_ADAPT_IN1
MC2-Z C1:ASS-TOP_PEM_7_ADAPT_IN1
SEISMOMETER C1:ASS-TOP_PEM_1_ADAPT_IN1 |
17801
|
Tue Aug 22 13:36:05 2023 |
Ian MacMillan | Update | SEI | Accelerometer calibration |
[Ian, Torrey Cullen, Sander Vermeulen]
We are trying to calibrate one of the Wilcoxon accelerometers from the cryo lab to do a seismic study of campus. To calibrate it, we took data on Friday afternoon until about 6 pm for the Wilcoxon in the X, Y, and Z orientations and took cross-spectra with the seismometer down the end of the X arm from the channels C1:PEM-SEIS_EX_X_IN1, C1:PEM-SEIS_EX_Y_IN1, C1:PEM-SEIS_EX_Z_IN1. For the Wilcoxon, we used the channel from [17717] that was not being used. In the image of the panel in [17717] we tried channel 5, with the channel name C1:X01-MADC0_EPICS_CH28 but it was a slow channel. We asked Koji if there was a fast channel we could use, and he lent us channel 4 on that board with the channel name C1:ALS-X_SLOW_SERVO1_IN1. We took data from this channel to do our measurements. nothing was plugged into this channel when we started using it so we left it that way when we were done.
I have attached our data.
NOTE: As it turns out the seismometer down the x end is not calibrated. We will recalibrate using the seismometer at the vertex
There is a version of this on the McCuller Logbook. It includes some plots. More non-40m related posts will continue there. |
368
|
Tue Mar 11 23:14:01 2008 |
rana | Configuration | PEM | Accelerometer and Seismometer movements |
Steve and Matt moved the accelerometers and seismometers today.
The accelerometers are now placed around the MC and the seismometer is in-between MC1 & MC2.
We have changed the names of the acc channels to reflect whether they are close to MC1/MC3
or MC2. We tested the accelerometer to channel name mapping by switching gains at the wilcoxon
breakout box and also by tapping. It seems now that the previous setup near the ITMX/ETMX had
some few channels mislabeled which would have given some confusing results.
Alex, Jay, and Rolf came over today and installed, then de-installed some of the hardware for
sending the PEM channels over to the C1ASS machine where the adaptive filter front end will go.
Everything should be back to the way it was...hopefully, the guys will modify the ADCU PEM
code to send the signals to the new FE over the reflective memory net and then send them to the
MCL inputs of the suspensions. So the first incarnation should use the accelerometers and seismometer
to drive MC1 and/or MC3. |
369
|
Wed Mar 12 00:36:52 2008 |
rana | Configuration | PEM | Accelerometer and Seismometer movements |
I used the MISO FIR Wiener matlab code to see how well we might do in principle.
The attached 3 page PDF file shows the MC_L control signal (force on MC2) and the residual
after subtracting off the accelerometer and seismometer using a 32 Hz sample rate and
512 taps (page 1), 1024 taps (page 2), and 2048 taps (page 3). As Matt smarmily points out,
there's not a lot to win by going beyond 512; maybe a factor of sqrt(2) for a factor of 4
tap number. |
370
|
Wed Mar 12 00:40:35 2008 |
rana | Configuration | PEM | Accelerometer and Seismometer movements |
Same as above but with 2048 taps and a 128 Hz sample rate. Does much better at the 16 Hz bounce mode. |
371
|
Wed Mar 12 00:47:26 2008 |
rana | Configuration | PEM | Accelerometer and Seismometer movements |
And this is a cool snapshot showing how this operation used 16 cores on menkar ! |
283
|
Mon Jan 28 19:35:55 2008 |
rana | Summary | PEM | Accelerometer and Seismometer Coherences |
The attached PDF shows that there is some strange behavior at low frequencies.
From the plot it looks like to me that the Wilcoxon accelerometers (which are supposed to have good response down to 0.05 Hz) are not displaying real seismic motion below 0.3 Hz. Because the coherence length for seismic waves at those frequencies should be 100's of meters we should expect that the accelerometers would have good coherence (>0.8) down there. Instead, my guess is that its all air currents, temperature, or electronics noise. These sensors are not reliable indicators for the microseism.
The Ranger seismometer, however, seems to work fine down to just below the microseism. The Ranger is mounted down around the X end and pointing in the z-direction. The coherence I plotted between it and EX_Z is larger than any other acc/seis pair (as expected).
JM and I discussed what could be done; if we get a SURF student who's into building stuff we can ask them to make a styrofoam hut for the Wilcoxons to see if that helps anything. JM also asked what the point of all this is.
IF we want to do good Adaptive Noise subtraction then we need sensors which can sense the motion which disturbs the mirrors and they need to sense it with a good SNR to get a good subtraction ratio. If the styrofoam thing doesn't work, we should probably look into getting a Guralp 3-axis seismometer for the corner area and just move the accelerometers down to the ends. The sites have Guralp CMG-40T units (~ 8k$). I think we should check out the CMG-3T or the CMG-3ESP.
Does anyone know someone in the Geo depts that we can borrow one from? |
330
|
Fri Feb 22 02:51:20 2008 |
Andrey | Update | PEM | Accelerometer ITMX seems to be broken |
As people probably know,
I am trying (for a long time) to create a computational program that calculates the evolution of accelerometer time-domain data through stacks and pendulum transfer functions to test masses, and calculate the RMS of differential arm lenght spectrum.
I noticed on Tuesday that time-domain signals from the two accelerometers (one is near ETMX, the other one is near ITMX) seem to have different amplitudes of fluctuations around the mean value. I suspected that this is the main reason why I cannot get the awaited result of minimum of RMS for equal values of Q-factors for ETMX and ITMX suspensions (because we subtract two very different numbers, so we cannot get anything close to zero). I took amplitude spectra of the accelerometer data (dttfft2), and they look very differently for ETMX and ITMX accelerometers. I believe that spectrum of ETMX accelerometer represents seismic noise, but accelerometer ITMX seems to provide us with irrelevant and wrong data. No peaks, just almost monotoneous decreasing curve, and 10 times smaller amplitude. Therefore, ITMX seems to be broken.
I will try tomorrow to clap my hands, shout, yell, near the broken accelerometer to confirm that the accelerometer is broken (more precisely, that either accelerometer itself is broken,
or cable connections, or DAQ channel, but something is wrong). Now it is very late, and I am going home.
See attached figures: time-scale is 10^(-1), 10^0, 10^1, 10^2 Hz. |
2859
|
Wed Apr 28 16:15:02 2010 |
Kevin | Update | PSL | Accelerometer Calibration |
Koji, Steve, and Kevin looked into calibrating the Wilcoxon accelerometers. Once calibrated, the accelerometers will be used to monitor the motion of the PSL table.
We want to use the shaker to shake each accelerometer and monitor the motion with an OSEM. We will make a plate to attach an accelerometer to the shaker. A flag will also be mounted on this plate.The OSEM will be mounted on the table next to the shaker and positioned so that the flag can block the LED light as the plate moves up and down. We will then measure the motion of the accelerometer as it is shaken from the OSEM signal. The OSEM signal will be calibrated by keeping the plate and the flag still and moving the OSEM down along the flag a known distance with a micrometer. |
11460
|
Wed Jul 29 17:51:56 2015 |
Ignacio | Update | PEM | Accelerators moved back to MC1 and MC2 |
We are done taking accelerator huddle test data. So I moved back all six accelerometers and cables to MC1 and MC2. I also relabel each of the accelerometers properly since the labels on them were confusing.
 
QED
|
2889
|
Thu May 6 18:25:20 2010 |
Jenne | Update | PEM | Acc power supply turned on |
The accelerometer power supply / preamp board has been OFF because of exciting new accelerometer measurements. It's now on, so watch out and make sure to turn it back off before plugging / unplugging accelerometers. |
5100
|
Wed Aug 3 01:30:04 2011 |
Jenne | Update | LSC | Absolute length of Xarm and Yarm measured |
So far, this is just preliminary, because I haven't done full error analysis to determine the error on my measurements. That will hopefully be done by tomorrow afternoon (so before we start taking off doors).
I find that the length of the Xarm is: 37.5918 meters.
I find that the length of the Yarm is: 37.5425 meters.
I used the mass-kicking technique, as summarized by Kiwamu, and fully described by Alberto. More words / description to follow with the full error analysis. |
1115
|
Wed Nov 5 12:41:36 2008 |
Alberto | Update | LSC | Absolute Length and g-factor measurements conclusions |
Absolute Length and g-Factor Measurement for the 40m Arm Cavities, Summary of Results
MOTIVATION OF THE EXPERIMENT
Lately locking the interferometer in the so called spring configuration (SRC on +166 MHz sideband) has been difficult and a possible resonance of an higher order mode of the +166 MHz sideband in the arms was
hypothesized as the cause. We wanted to know the frequencies of the HOMs of the sidebands and see where they are, relatively to the carrier resonance.
THE EXPERIMENTAL TECHNIQUE IN BRIEF
A second laser beam from an NPRO is injected into the interferometer through the AS port. The beam is mode matched to the arm cavities so that it can resonate inside of these. The secondary beam interferes with
the PSL beam and the incident intensity on one end mirror, excluding by now any higher mode, is I(t)=I1+I2+(interference terms)*exp[-i*(f1-f2)*t]. The last term comes from the beat between the two fields at the
relative frequency of the two lasers. For beating frequencies multiple of the FSR of the cavity, the beat gets transmitted and appears at the trans PD.
Whereas the PSL has a constant frequency, the NPRO frequency fluctuates, so that the relative phase between the two is not constant. To prevent that, a PLL servo locks the phase of the NPRO to that of the PSL.
The result is a beat frequency at the steady and tunable value set by the local oscillator of the PLL.
Length Measurement
One arm at a time, the cavity is locked to the TEM00 mode of the main laser. The beat frequency is then scanned for a few cavity FSRs and the transmitted power is measured. A linear fit of the resonant frequencies gives
us the FSR of the cavity.
g-factor Measurement
For non-planar Fabry-Perot cavities, the HOMs of the laser are not degenerate and resonate in the cavity at frequencies different from the correspondent fundamental mode. The shift in frequency is measured by the
Transverse Mode Spacing (TMS) and it is a function of the g-factors of the cavity:
TMS=FSR*acos[sqrt(g1*g2)]/pi
with g1=1-L/R1, where L is the cavity absolute length and R1 the radius of curvature of the input mirror, and similarly for g2 for the end mirror.
We measured the TMS by means of the beat between an HOM of the main laser and the TEM00 of the secondary beam. To do that we locked the cavity to either TEM01/10 and looked at the transmitted power for frequencies
of the beat around the TMS expected from the design parameters of the cavity.
Since the phase of the intensity of the beat between TEM01/10 and TEM00 has only DC components if measured across a symmetric portion of the spot, it is necessary to brake the symmetry of the incident beam on the
PD by chopping it just before it hits the sensor.
We approximated g1=1 for the ITMs. The effect of an astigmatic ETM is to brake the degeneracy of the TEM10 and TEM01 modes and split their resonant frequencies. By measuring that shift, we can evaluate the radius
of curvature of the mirror for the axis of the two transverse modes.
EXPERIMENTAL RESULTSX Arm
FSR = (3897627 +/- 5 ) Hz
L = (38.45833 +/- 0.00005) m
g2x = 0.31197 +/- 0.00004
g2y = 0.32283 +/- 0.00004
R-ETM_x = (55.8957 +/- 0.0045) m
R-ETM_y = (56.7937 +/- 0.0038) m
Y Arm
FSR = ( 3879252 +/- 30 ) Hz
L = (38.6462 +/- 0.0003) m
g2x = 0.31188 +/- 0.00004
g2y = 0.32601 +/- 0.00004
R-ETM_x = (56.1620 +/- 0.0013) m
R-ETM_y = (57.3395 +/- 0.0011) m
CONCLUSIONS
The attached graphs,one for the X arm and the other for the Y arm, plot the distributions of the first HOMs of the sidebands near the carrier resonance in the arm cavities. As it appears, the resonances of
the +166 sideband are far enough for not resonating in the arm cavities if the arms are locked to the carrier.
We have to look for something else to explain the locking problem of the interferometer in the spring configuration. |
2053
|
Mon Oct 5 14:37:29 2009 |
Alberto | Update | ABSL | Absolute Length Meaasurement NPRO is on |
In the revival of the experiement length measurement for the recycling cavities, I turned the auxiliary NPRO back on. The shutter is closed.
I also recollected all the equipment of the experiment after that during the summer it had been scattered around the lab to be used for other purposes (Joe and Zach's cameras and Stephanie and Koji's work with the new EOM). |
2422
|
Wed Dec 16 11:46:25 2009 |
Alberto | Update | ABSL | Absl PLL Open Loop Gain |
Yesterday I measured the Open Loop Gain of the PLL in the absolute length experiment. The servo I used was that of the old Universal PDH box.
The OLG looks like this:

The UGF is at 10 KHz. |
2337
|
Wed Nov 25 20:14:58 2009 |
Alberto | Update | ABSL | AbsL PLL not able to lock: problem fixed |
Quote: |
Last night something happened on the beat between the PSL beam and the auxiliary NPRO beam, that spoiled the quality of the beating I had before. As a result the PLL has become unable to lock the two lasers.
The amplitude of the beat at the spectrum analyzer has gone down to -40 dBm from -10 that it was earlier. The frequency has also become more unstable so that now it can be seen writhing within tens of KHz.
Meanwhile the power of the single beams at the PLL photodiode hasn't changed, suggesting that the alignment of the two beam didn't change much.
Changes in the efficiency of the beating between the two beams are not unusual. Although that typically affects only the amplitude of the beat and wouldn't explain why also its frequency has become unstable. Tuning the alignment of the PLL optics usually brings the amplitude back, but it was uneffective today.
It looks like something changed in either one of the two beams. In particular the frequency of one of the two lasers has become less stable.
Another strange thing that I've been observing is that the amplitude of the beat goes down (several dBm) as the beat frequency is pushed below 50 MHz. Under 10 MHz it even gets to about -60 dBm.
I noticed the change yesterday evening at about 6pm, while I was taking measurements of the PLL open loop tranfer function and everything was fine. I don't know whether it is just a coincidence or it is somehow related to this, but Jenne and Sanjit had then just rebooted the frame builder.
|
Problem found. Inspecting with Koji we found that there was a broken SMA-to-BNC connector in the BNC cable from the photodiode. |
2328
|
Wed Nov 25 10:20:47 2009 |
Alberto | Update | ABSL | AbsL PLL not able to lock |
Last night something happened on the beat between the PSL beam and the auxiliary NPRO beam, that spoiled the quality of the beating I had before. As a result the PLL has become unable to lock the two lasers.
The amplitude of the beat at the spectrum analyzer has gone down to -40 dBm from -10 that it was earlier. The frequency has also become more unstable so that now it can be seen writhing within tens of KHz.
Meanwhile the power of the single beams at the PLL photodiode hasn't changed, suggesting that the alignment of the two beam didn't change much.
Changes in the efficiency of the beating between the two beams are not unusual. Although that typically affects only the amplitude of the beat and wouldn't explain why also its frequency has become unstable. Tuning the alignment of the PLL optics usually brings the amplitude back, but it was uneffective today.
It looks like something changed in either one of the two beams. In particular the frequency of one of the two lasers has become less stable.
Another strange thing that I've been observing is that the amplitude of the beat goes down (several dBm) as the beat frequency is pushed below 50 MHz. Under 10 MHz it even gets to about -60 dBm.
I noticed the change yesterday evening at about 6pm, while I was taking measurements of the PLL open loop tranfer function and everything was fine. I don't know whether it is just a coincidence or it is somehow related to this, but Jenne and Sanjit had then just rebooted the frame builder. |
2329
|
Wed Nov 25 11:02:54 2009 |
Alberto | Update | ABSL | AbsL PLL not able to lock |
Quote: |
Last night something happened on the beat between the PSL beam and the auxiliary NPRO beam, that spoiled the quality of the beating I had before. As a result the PLL has become unable to lock the two lasers.
The amplitude of the beat at the spectrum analyzer has gone down to -40 dBm from -10 that it was earlier. The frequency has also become more unstable so that now it can be seen writhing within tens of KHz.
Meanwhile the power of the single beams at the PLL photodiode hasn't changed, suggesting that the alignment of the two beam didn't change much.
Changes in the efficiency of the beating between the two beams are not unusual. Although that typically affects only the amplitude of the beat and wouldn't explain why also its frequency has become unstable. Tuning the alignment of the PLL optics usually brings the amplitude back, but it was uneffective today.
It looks like something changed in either one of the two beams. In particular the frequency of one of the two lasers has become less stable.
Another strange thing that I've been observing is that the amplitude of the beat goes down (several dBm) as the beat frequency is pushed below 50 MHz. Under 10 MHz it even gets to about -60 dBm.
I noticed the change yesterday evening at about 6pm, while I was taking measurements of the PLL open loop tranfer function and everything was fine. I don't know whether it is just a coincidence or it is somehow related to this, but Jenne and Sanjit had then just rebooted the frame builder.
|
I confirm what I said earlier. The amplitude of the beat is -10 dBm at 300MHz. It goes down at lower frequencies. In particular it gets to-60 dBm below 20 MHz. For some strange reason that I couldn't explain the beating efficiency has become poorer at low frequencies. |
838
|
Thu Aug 14 21:52:51 2008 |
Koji | Summary | General | Abs. Len. Meas. ~ summary of my Summer |
I have made the summary of the absolute length measurement.
It is attached here. The file is a bit big (~8.6MB). |
802
|
Wed Aug 6 11:43:52 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM01 scan |
Analysis of the data on August 3th ~ Part 2
o I already have reported that the resonant freq of TEM10 and TEM01 split.
o Again, note that TEM10/01 were arranged almost in the horizontal/vertical by the observation of the video.
o The peaks of TEM10 and TEM01 were fitted with the same method as of TEM00.
o The peak freqs were:
f_TEM10: 5087040 Hz +/- 20 Hz
f_TEM01: 5068322 Hz +/- 15 Hz
The split is 18.7kHz.
o The additional parameter from the previous entry:
f_TEM00: 3879252 Hz +/- 9 Hz
L_yarm: 38.6462 m +/- 0.0003 m
o Radius of curvature
Rx = L /(1-Cos^2(Pi (f_TEM10 - f_TEM00) / (c/L/2) ))
Ry = L /(1-Cos^2(Pi (f_TEM01 - f_TEM00) / (c/L/2) ))
from these formula we get the value
Rx = 56.1620 +/- 0.0013 [m]
Ry = 57.3395 +/- 0.0011 [m] |
801
|
Wed Aug 6 11:10:34 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM00 scan |
Analysis of the data on August 3th ~ Part 1
From the measurement of the 5 FSRs, the FSR frequency for the Yarm cavity was estimated as
f_FSR = 3878678 Hz +/- 30 Hz
and the Yarm length is
L_yarm = 38.6462 m +/- 0.0003 m
This is the precision of 8ppm. In my opinion, this is a satisfactory result for our purpose.Y-arm length
e-log length [m]
-----------------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 Tape & photo
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
787(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
this(2008-Aug-04) 38.6462 +/- 0.0003 Beam injection, independent PLL, Transmitted RF, five FSRs, freq calibrated
----------------------------- ----------------
o According to the entry 795, all of the scan frequency was calibrated.
o The five peaks of the scanned data for TEM00 were fitted. Each peak was fitted by the following formula:
V(f) = A / Sqrt(1 - ((f-f0)/fc)^2)
Variable
f: scan frequency
Parameters
A: peak amplitude
f0: center frequency
fc: half bandwidth of the peak for -3dB
o The results are shown in the attached figure 1. They look very similar each other but they are different plot! The fittings were extremely good. The center frequencies estimated were as follows:
FSR1: 3879251.9 Hz +/- 8.8 Hz
FSR2: 7757968.1 Hz +/- 10.8 Hz
FSR3: 11636612.9 Hz +/- 10.2 Hz
FSR4: 15515308.1 Hz +/- 8.7 Hz
FSR5: 19393968.7 Hz +/- 8.4 Hz
o The FSR frequencies were fitted by a line. The fitting and the residuals are shown in the attached figure 2.
The fitting results were
f_FSR(n) = 586.4 + 3878678 * n
This means that:
o FSR frequency was 3878678 [Hz].
o The lock of the carrier had detuning of 586 [Hz].
The detuning of the carrier from the resonance can be explained by the alignment drift. In deed, at the end of the measurement, decrease of the transmitted power by -15% was found. Then, the frequency of the 1st FSR was measured before and after the alignment adjustment. This changed the frequency of the FSR1 by 350Hz. This change could not be explained by the cavity length change as this is too big (~3.5mm).
Actually, the spacing of the cavity length is more stable. The residual is rather scattered with in 20-30Hz. So, I took the error of 30Hz as the whole precision of the frequency measurement that includes the fluctuation of the alignment, the cavity length itself, and so on. This yields the FSR and the cavity length of
f_FSR = 3878678 Hz +/- 30 Hz
L_yarm = 38.6462 m +/- 0.0003 m . |
794
|
Mon Aug 4 22:31:10 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Simple Test for TEM01/10 split |
Work log on August 3rd - Part3
Question:
o The TEM01 and TEM10 of the Yarm were found to split with 19kHz separation. Is this true?
o In which direction the eigenmodes are?
Thought:
o The separation of 19kHz is a kind of too big because the cavity bandwidth is several kHz.
o This means that "TEM01 and TEM10 can not resonate at the same time (by the PSL beam)".
Test:
o Imagine we are just using the PSL beam and playing with an arm cavity.
o Tilt the end mirror in pitch. Resonate the TEM01 mode (8-shaped).
o Then tilt the end mirror in yaw.
o a) If the resonances are degenerated within the bandwidth of the laser, it rotates freely.
o b) If the resonances splits, the tilt in yaw does not change the shape. Then suddenly jumps to TEM10 (by an accident).
Result:
o The shape does not change. Just jumps to the other mode. (The case above b.)
o The eigenmode looked like quite horizontal and vertical.
Conclusion: the mode really splits. |
793
|
Mon Aug 4 21:48:24 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Scan for TEM00/01/10 |
Work log on August 3rd - Part2
o I tried to measure the frequency of the FSRs using TEM00 resonances. Also search of TEM01/TEM10 resonances were tried.
-----------
Measurement for TEM00
o The frequency of the injection beam was scanned from 2MHz to 20MHz using the LabVIEW panel with GPIB. The 1st figure attached below is the result of the scan. Equispaced peaks were found as expected. The interval of the peaks are about 3.89MHz. Each peaks were measured with freq intervals of down to 50Hz. I will analyze the center frequency of the peaks precisely later in order to have a final result.
Measurements for TEM01/TEM10
o The beam injection technique is thought to be useful for measureing the frequency of the higher-order resonances. In order to measure the higher-order resonances the modifications of the experimental setup were applied as below.
1) For TEM10 (the beam like "OO" shape), a razor blade which blocked the horizontal half of the transmitted beam was placed. We needed to disturb half of the beam because the beat between the PSL TEM00 and the injection TEM01 cancels if the PD receives all of the light.
2) The injection beam is slightly misaligned in the horizontal direction in order to enhance the coupling of the injection beam to the cavity TEM01 mode.
3) For TEM01 (the beam like "8" shape), a razor blade cutting the vertical half and the misalignment of the inj beam in the vertical direction are applied.
o The frequency of the injection beam was scaned from 1st FSR of TEM00 in the upward direction. The alignment of the arm cavity was left untouched during the measurement. As shown in the 2nd figure attached below, the resonances were found about 1.19MHz away from the TEM00, but they are separated by about 19kHz(!). This could be split of the degenerated modes which corresponds to the difference of the mirror curvature in two directions! This difference is something like 56 m and 57 m. Can you believe this?
(To be continued to the next entry) |
776
|
Thu Jul 31 11:19:30 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Resonance search trial |
Last night, I tried to find the resonance of Yarm by sweeping the frequency of the injection beam.
A strong beat was present at LT_NPRO=48.7856[C_deg], the power coupling of the injection beam was estimated to be 35%.
(Vmax_beat = 1.060[V], Vmin_beat = 0.460[V], Vno_inject = 0.664[V])
The Yarm was locked and the alignment script was executed. The PLL between the PSL beam and the injection beam was
somehow locked.
I tried to scan the freq offset (f_PLL) at around 3.88MHz first, then at around 15.52MHz. They are supporsed to be the
first and fourth FSR of the Yarm cavity. The Yarm transmitted power (DC) was observed to find the resonance of the
injection beam. It would have been better to use the RF power, but so far I didnot have the RF PD prepared at the end
transmission. I just used the DC power.
I think I saw the increase of the transmitted power by 10%, at f_PLL = 15.517 +/- 0.003 [MHz]. This corresponds to the
arm cavity length of 38.640 +/- 0.007 [m]. The previous measurement was not so bad!
Y-arm length
e-log length [m]
-----------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 tape & photo
This 38.640 +/- 0.007
However, I had difficulties to have more precise measurement mainly because of two reasons:
o The PLL servo is too naive, and the freqency stability of the inj beam is not enough.
The injected beam should have the linewidth (=freq stability) narrower than the cavity linewidth.
o The PLL servo may experience change of the transfer function at around the resonance. The PLL works the other
frequencies. However, close to the resonance, it starts to be unstable.
So the next stuffs we should do is
o Build the PLL just using the incident beams to the ifo, not by the reflected beams.
o Build sophisticated servo to have better frequency stability.
o RF PD at the transmission.
Left the lab with Yarm locked, flipper down, shutter for the NPRO closed. |
738
|
Fri Jul 25 10:48:13 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Realignment / beating / PLL trial |
Alberto and Koji
o We worked for the abs length measurement setup on Thursday night.
o At the last of the work Koji left the 40m lab at 2AM. "Last autoalignment" was restored. The flipper for the
inj beam was down. The shutter for the NPRO was closed.
----
o The alignment of the injection beam (NPRO) was re-adjusted.
o The laser crystal temp (LT) of the NPRO was scanned.
o After a long struggle the beat was found at about LT=61deg(!). I think this is almost at the maximum temp
for the NPRO. Note that this is not the diode temp, and therefore it will not damage the laser as far as the
TEC for the crystal works.
o Only the X arm was aligned.
o The alignment of the injection beam was adjusted such that the beating amplitude got maximum.
o At the faraday of the NPRO, we had 2.4V_DC and 1.8V_DC with and without the inj beam, respectively. The
beating amplitude was 200mVpp (at around 2.4V).
o With a simple calculation, the mode overlapping of tghe injection beam is only 0.0023. Ahhh. It is too weak.
In the modematching or something must be wrong.
o The position of the mode matching lens was tweaked a little. It did not help to increase the beat ampitude.
Even worse. (The lens was restored and the values above was obatined with the latest setting.)
o Then tried to build a PLL. It locks easily.
- Put the beat signal into the mixer RF input.
- Connect 10dBm @1MHz-10MHz from the marconi oscillator to the LO input. The supposed nominal LO level was
not checked so far. Just used 10dBm.
- The IF output was connected to an SR560 with 10Hz LPF (6dB/oct) with G=500 or so.We don't need to care
about the sign.
- The output of the SR560 was connected to FAST PZT input of the NPRO.
o The problem was that there was strong intermodulations because of 33MHz. No LPFwas used before the mixer.
Because of this spourious modulations, the PLL servo locks at the local zero crossings. These will be solved
next time.
o Eventually left the 40m lab at 2AM. "Last autoalignment" was restored. The flipper for the inj beam was
down. The shutter for the NPRO was closed. |
787
|
Mon Aug 4 00:37:58 2008 |
Koji | Update | General | Abs. Len. Meas. ~ RF PD at the Y end / Manual frequency scan |
Work log on August 2nd
o Just remind you:
The idea of the absolute length measurement was to detect an RF beat between the injection beam and the PSL beam by resonating both of the beams to the cavity at the same time, but on different londitudinal modes. From the frequency separation between the two beams, we get the FSR of the cavity. In order to have an injection beam with stable frequency separation, a heterodne interferometer was built at the PSL table, and the PLL servo is used to control and stabilize the frequency of the inj. beam.
----------
o An RF PD (Tholab PDA255) and a steering mirror were placed at the Yarm END. Fortunately, I found that an unused BS was already in the optical path. There was a beam block which dump the reflection of the BS and some stray lights of the OPLEV. I moved the beam block to make the BS reflection available, as well as to block the OPLEV stray light still (Photo1). In order to have the RF signal from the PD, a long BNC cable was laid along the Yarm. I did't know any better idea than this. Don't blame me.
o To have an intuitive interpretation of the beat frequency, the injection beam was set to be at higher frequency than the PSL beam. How did I confirm this? When the crystal temp (LT) of the NPRO was tuned to be higher, the beat frequency got lower.
o Frequency of the PLL was manually swept at around 15.51MHz where the 4th FSR was expected to be found. I could see strong RF peak at that frequency! When I tuned the PLL frequency, the peak height changes dramatically! Too cool!
o The amplitude of the RF peak was measured by an RF spectrum analyzer. I did all of this scan by my hands and eyes. The center frequency of the 4th FSR was 15.5149MHz. From the eye I would say the error is +/-150Hz. It is OK so far although I am not sure statistically this is correct or not. This corresponds to the length of 38.64575 +/- 0.00037 [m].
o All of the past measurements are fairly consistent.
Y-arm length
e-log length [m] Measurement Conditions
----------------------------------------------------------------------------------------
556(2008-Jun-24) 38.67 +/- 0.03 Cavity swinging measurement
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
this(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
---------------------------------------------------------------------------------------- |
567
|
Wed Jun 25 13:38:22 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Placement of the 700mW NPRO on the AP table |
This morning I have put the 700mW NPRO on the AP table for the abs length measurement.
The RF amplifier was moved (the cables were not changed). I cleaned up some cable arrangements. I was keen not to disturb any of the other optical path. Even so, please let me know if any suspicious behaviour is found on the AP table. |
599
|
Mon Jun 30 05:33:38 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Optical setup (II) |
o The position of the iris was adjusted so as not to disturub the beam for OMCR CCD.
o The RF spectrum analyzer was returned to the place of the network analyzer.
Quote: |
In the process of making this report, I noticed that one of the iris apertures is about disturbing the beam for OMCR CCD. I will check this before I go to Hanford. Also an RF spectrum analyzer is at the AP table. I try to return this near the PSL on Monday morning.
|
|
590
|
Sun Jun 29 02:33:28 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Optical setup (I) |
I have constructed the beam injection optics for the abs length measurement.
The injection beam was coarsely aligned to the interferometer. The reflected beam from SRM was already seen at AS CCD.
I have attached the optical configration for this measurement and the optics layout at the AP table.
I am going to go to LHO for three weeks. During the absence Alberto tunes the mode matching and the alignment of the interferometer.
In the process of making this report, I noticed that one of the iris apertures is about disturbing the beam for OMCR CCD. I will check this before I go to Hanford. Also an RF spectrum analyzer is at the AP table. I try to return this near the PSL on Monday morning.
Attachment 1: Optical configuration for the abs length measurement.
1) One of the arms is locked to the PSL beam by the main control system (red).
2) A laser beam is injected from the AS port (blue). This laser essentially has different frequency from that of PSL.
3) The injected beam and the outgoing PSL beam appear at the output of the faraday in the injection system.
4) They beat each other at the frequency difference of those two lasers.
5) A PLL is used to lock the frequency difference to a local oscillator (LO).
6) The LO frequency is swept at around 3.87MHz, that is the approximate FSR frequency of the arm cavity.
7) If the LO frequency hits the FSR within the resonant width, the beating also appears at the transmitted light as the injected beam also becomes resonant to the arm cavity.
8) Amplitude of the beating at the transmitted light is measured by a RF spectrum analyzer as a function of the LO frequency. We get the FSR frequency (= the arm cavity length) from the top of the resonance.
Attachment 2: Optics at the AP table for the laser injection
700mW NPRO, laser source. vertically polarized.
Periscope, to raise the beam 1 inch to make the beam at the 4 inch elevation.
INJ_SM1/INJ_SM2, steering mirrors to align the injection beam to the IFO beam.
HWP1, half wave plate to make the beam to the farady horiz-polarized. nominal 42deg on the readout.
FI, Faraday isolator for protection of the NPRO from the returning light, for obtaining the returning light.
HWP2, to make the beam from the Faraday horiz-polarized. nominal 357deg on the readout.
MM_Lens, f=125mm to match the laser mode to the IFO beam.
SM1/SM2, steering mirrors to align the IFO beam to the Farady Isolator.
IRIS1/IRIS2, for the coarse alignment of the injection beam.
FLIP, flipper mount to turn on/off the injection optics.
Alignment procedure of the injection system
0) Ignite NPRO several hours before the experiment so that the laser frequency can be stable.
1) Turn up FLIP. Close the shutter of NPRO.
2) Adjust SM1/SM2 so that the ifo beam can appear at the output of FI.
3) Adjust height and position of IRIS1/IRIS2 with regard to the ifo beam so that the ifo beam goes through IRIS1/IRIS2 even when they are closed.
4) Turn down FLIP. Open the shutter of NPRO.
5) Adjust INJ_SM1/INJ_SM2 so that the injection beam can go through IRIS1/IRIS2 even when they are closed.
6) At this time, it is expected that the reflection of the injection beam from SRM appears at AS CCD, if SRM is aligned.
7) Adjust INJ_SM1/INJ_SM2 so that the injection beam at AS CCD can overlap to the IFO beam.
8) Confirm the beam at the output of the FI also overlaps.
---- We are here ----
9) Change the ifo configuration to the X or Y arm only.
10) Scan the crystal temperature of the 700mW NPRO in order to try to have the beating of the two beams at the PD. AS OSA may be useful to obtain the beating.
11) Once the beating is obtained, adjust INJ_SM1/INJ_SM2 such that the beating amplitude is maximized. |