40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m elog, Page 335 of 357  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  16328   Tue Sep 14 17:14:46 2021 KojiUpdateSUSSOS Tower Hardware

Yup this is OK. No problem.

 

  16330   Tue Sep 14 17:22:21 2021 AnchalUpdateCDSAdded temp sensor channels to DAQ list

[Tega, Paco, Anchal]

We attempted to reboot fb1 daqd today to get the new temperature sensor channels recording. However, the FE models got stuck, apparantely due to reasons explaine din 40m/16325. Jamie cleared the /var/logs in fb1 so that FE can reboot. We were able to reboot the FE machines after this work successfully and get the models running too. During the day, the FE machines were shut down manually and brought back on manually, a couple of times on the c1iscex machine. Only change in fb1 is in the /opt/rtcds/caltech/c1/chans/daq/C0EDCU.ini where the new channels were added, and some hacking was done by Jamie in gpstime module (See 40m/16327).

  16332   Wed Sep 15 11:27:50 2021 YehonathanUpdateCDSc1auxey assembly

{Yehonathan, Paco}

We turned off the ETMX watchdogs and OpLevs. We went to the X end and shut down the Acromag chassi. We labeled the chassi feedthroughs and disconnected all the cables from it.

We took it out and tied the common wire of the power supplies (the commons of the 20V and 15V power supplies were shorted so there is no difference which we connect) to the RTNs of the analog inputs.

The chassi was put back in place. All the cables were reconnected. Power turn on.

We rebooted c1auxex and the channels went back online. We turned on the watchdogs and watched the ETMX motion get damped. We turned on the OpLev. We waited until the beam position got centered on the ETMX.

Attachment shows a comparison between the OSEM spectra before and after the grounding work. Seems like there is no change.

We were able to lock the arms with no issues.

 

  16333   Wed Sep 15 23:38:32 2021 KojiUpdateALSALS ASX PZT HV was off -> restored

It was known that the Y end ALS PZTs are not working. But Anchal reported in the meeting that the X end PZTs are not working too.

We went down to the X arm in the afternoon and checked the status. The HV (KEPCO) was off from the mechanical switch. I don't know this KEPCO has the function to shutdown the switch at the power glitch or not.
But anyway the power switch was engaged. We also saw a large amount of misalignment of the X end green. The alignment was manually adjusted. Anchal was able to reach ~0.4 Green TRX, but no more. He claimed that it was ~0.8.

We tried to tweak the SHG temp from 36.4. We found that the TRX had the (local) maximum of ~0.48 at 37.1 degC. This is the new setpoint right now.

  16335   Thu Sep 16 00:00:20 2021 KojiUpdateGeneralRIO Planex 1064 Lasers in the south cabinet

RIO Planex 1064 Lasers in the south cabinet

Property Number C30684/C30685/C30686/C30687

  16336   Thu Sep 16 01:16:48 2021 KojiUpdateGeneralFrozen 2

It happened again. Defrosting required.

  16337   Thu Sep 16 10:07:25 2021 AnchalUpdateGeneralMelting 2

Put outside.

Quote:

It happened again. Defrosting required.

 

  16338   Thu Sep 16 12:06:17 2021 TegaUpdateComputer Scripts / ProgramsTemperature sensors added to the summary pages

We can now view the minute trend of the temperature sensors under the PEM tab of the summary pages. See attachment 1 for an example of today's temperature readings. 

  16340   Thu Sep 16 20:18:13 2021 AnchalUpdateGeneralReset

Fridge brought back inside.

Quote:

Put outside.

Quote:

It happened again. Defrosting required.

 

 

  16341   Fri Sep 17 00:56:49 2021 KojiUpdateGeneralAwesome

The Incredible Melting Man!

 

  16342   Fri Sep 17 20:22:55 2021 KojiUpdateSUSEQ M4.3 Long beach

EQ  M4.3 @longbeach
2021-09-18 02:58:34 (UTC) / 07:58:34 (PDT)
https://earthquake.usgs.gov/earthquakes/eventpage/ci39812319/executive

  • All SUS Watchdogs tripped, but the SUSs looked OK except for the stuck ITMX.
  • Damped the SUSs (except ITMX)
  • IMC automatically locked
  • Turned off the damping of ITMX and shook it only with the pitch bias -> Easily unstuck -> damping recovered -> realignment of the ITMX probably necessary.
  • Done.
  16344   Mon Sep 20 14:11:40 2021 KojiUpdateBHDEnd DAC Adapter Unit D2100647

I've uploaded the schematic and PCB PDF for End DAC Adapter Unit D2100647.

Please review the design.

  • CH1-8 SUS actuation channels.
    • 5CHs out of 8CHs are going to be used, but for future extensions, all the 8CHs are going to be filled.
    • It involves diff-SE conversion / dewhitening / SE-diff conversion. Does this make sense?
  • CH9-12 PZT actuation channels. It is designed to send out 4x SE channels for compatibility. The channels have the jumpers to convert it to pass through the diff signals.
  • CH13-16 are general purpose DIFF/SE channels. CH13 is going to be used for ALS Laser Slow control. The other 3CHs are spares.

The internal assembly drawing & BOM are still coming.

  16346   Mon Sep 20 15:23:08 2021 YehonathanUpdateComputersWifi internet fixed

Over the weekend and today, the wifi was acting bad with frequent disconnections and no internet access. I tried to log into the web interface of the ASUS wifi but with no success.

I pushed the reset button for several seconds to restore factory settings. After that, I was able to log in. I did the automatic setup and defined the wifi passwords to be what they used to be.

Internet access was restored. I also unplugged and plugged back all the wifi extenders in the lab and moved the extender from the vertex inner wall to the outer wall of the lab close to the 1X3.

Now, there seems to be wifi reception both in X and Y arms (according to my android phone).

 

  16349   Mon Sep 20 20:43:38 2021 TegaUpdateElectronicsSat Amp modifications

Running update of Sat Amp modification work, which involves the following procedure (x8) per unit:

  1. Replace R20 & R24 with 4.99K ohms, R23 with 499 ohms, and remove C16.
  2. (Testing) Connect LEDDrive output to GND and check that
    • TP4 is ~ 5V
    •  TP5-8 ~ 0V. 
  3. Install 40m Satellite to Flange Adapter (D2100148-v1)

 

Unit Serial Number Issues Status
S1200740 NONE DONE
S1200742 NONE DONE
S1200743 NONE DONE
S1200744

TP4 @ LED1,2 on PCB S2100568 is 13V instead of 5V

TP4 @ LED4 on PCB S2100559 is 13V instead of 5V

DONE
S1200752 NONE DONE

 

 

 

  16350   Mon Sep 20 21:56:07 2021 KojiUpdateComputersWifi internet fixed

Ug, factory resets... Caltech IMSS announced that there was an intermittent network service due to maintenance between Sept 19 and 20. And there seemed some aftermath of it. Check out "Caltech IMSS"

 

  16356   Wed Sep 22 17:22:59 2021 TegaUpdateElectronicsSat Amp modifications

[Koji, Tega]

 

Decided to do a quick check of the remaining Sat Amp units before component replacement to identify any unit with defective LED circuits. Managed to examine 5 out of 10 units, so still have 5 units remaining. Also installed the photodiode bias voltage jumper (JP1) on all the units processed so far.

Unit Serial Number Issues Debugging Status
S1200738

TP4 @ LED3 on chan 1-4 PCB was ~0.7 V instead of 5V

Koji checked the solder connections of the various components, then swapped out the IC OPAMP. Removed DB9 connections to the front panel to get access to the bottom of the board. Upon close inspection, it looked like an issue of a short connection between the Emitter & Base legs of the Q1 transistor.

Solution - Remove the short connection between the Emitter & Base legs of the Q1 transistor legs.

DONE
S1200748 TP4 @ LED2 on chan 1-4 PCB was ~0.7 V instead of 5V

This issue was caused by a short connection between the Emitter & Base legs of the Q1 transistor.

Solution - Remove the short connection between the Emitter & Base legs of the Q1 transistor legs.

DONE
S1200749 NONE N/A DONE
S1200750 NONE N/A DONE
S1200751 NONE N/A DONE

 

Defective unit with updated resistors and capacitors in the previous elog

Unit Serial Number Issues Debugging Status
S1200744

TP4 @ LED1,2 on PCB S2100568 is 13V instead of 5V

TP4 @ LED4 on PCB S2100559 is 13V instead of 5V

This issue was caused by a short between the Collector & Base legs of the Q1 transistor.

Solution - Remove the short connection between the Collector & Base legs of the Q1 transistor legs

 

Complications - During the process of flipping the board to get access to the bottom of the board, a connector holding the two middle black wires, on P1, came loose. I resecured the wires to the connector and checked all TP4s on the board afterwards to make sure things are as expected.

DONE

 

 

 

Quote:

Running update of Sat Amp modification work, which involves the following procedure (x8) per unit:

  1. Replace R20 & R24 with 4.99K ohms, R23 with 499 ohms, and remove C16.
  2. (Testing) Connect LEDDrive output to GND and check that
    • TP4 is ~ 5V
    •  TP5-8 ~ 0V. 
  3. Install 40m Satellite to Flange Adapter (D2100148-v1)

 

Unit Serial Number Issues Status
S1200740 NONE DONE
S1200742 NONE DONE
S1200743 NONE DONE
S1200744

TP4 @ LED1,2 on PCB S2100568 is 13V instead of 5V

TP4 @ LED4 on PCB S2100559 is 13V instead of 5V

DONE
S1200752 NONE DONE

 

 

 

 

  16357   Thu Sep 23 14:17:44 2021 TegaUpdateElectronicsSat Amp modifications debugging update

Debugging complete.

All units now have the correct TP4 voltage reading needed to drive a nominal current of 35 mA through to OSEM LED. The next step is to go ahead and replace the components and test afterward that everything is OK.

 

Unit Serial Number Issues Debugging Status
S1200736 TP4 @ LED4 on chan 1-4 PCB reads 13V instead of 5V

This issue was caused by a short between the Collector & Base legs of the Q1 transistor.

Solution - Remove the short connection between the Collector & Base legs of the Q1 transistor legs

DONE
S1200737 NONE N/A DONE
S1200739 NONE N/A DONE
S1200746 TP4 @ LED3 on chan 5-8 PCB reads 0.765 V instead of 5V

This issue was caused by a short between the Emitter & Base legs of the Q1 transistor.

Solution - Remove the short connection between the Emitter & Base legs of the Q1 transistor legs

 

Complications - I was extra careful this time because of the problem of loose cable from the last flip-over of the right PCB containing chan 5-8. Anyways, after I was done I noticed one of the pink wires (it carries the +14V to the left PCB) had come off on P1. At least this time I could also see that the corresponding front panel green LED turn off as a result. So I resecured the wire to the connector (using solder as my last attempt yesterday to reattach the via crimping didn't work after a long time trying. I hope this is not a problem.) and checked the front panel LED turns on when the unit is powered before closing the unit. These connectors are quite flimsy.

DONE
S1200747 TP4 @ LED2 on chan 1-4 PCB reads 13V instead of 5V

This issue was caused by a short between the Collector & Base legs of the Q1 transistor.

Solution - Remove the short connection between the Collector & Base legs of the Q1 transistor legs

DONE

 

 

 

  16359   Thu Sep 23 18:18:07 2021 YehonathanUpdateBHDSOS assembly

I have noticed that the dumbells coming back from C&B had glue residues on them. An example is shown in attachment 1: it can be seen that half of the dumbell's surface is covered with glue.

Jordan gave me a P800 sandpaper to remove the glue. I picked the dumbells with the dirty face down and slid them over the sandpaper in 8 figures several times to try and keep the surface untilted. Attachment 2 shows the surface from attachment 1 after this process.

Next, the dumbells will be sent to another C&B.

  16364   Wed Sep 29 09:36:26 2021 JordanUpdateSUS2" Adapter Ring Parts for SOS Arrived 9/28/21

The remaining machined parts for the SOS adapter ring have arrived. I will inspect these today and get them ready for C&B.

  16368   Thu Sep 30 14:13:18 2021 AnchalUpdateLSCHV supply to Xend Green laser injection mirrors M1 and M2 PZT restored

Late elog, original date Sep 15th

We found that the power switch of HV supply that powers the PZT drivers for M1 and M2 on Xend green laser injection alignment was tripped off. We could not find any log of someone doing it, it is a physical switch. Our only explanation is that this supply might have a solenoid mechansm to shut off during power glitches and it probably did so on Aug 23 (see 40m/16287). We were able to align the green laser using PZT again, however, the maximum power at green transmission from X arm cavity is now about half of what it used to be before the glitch. Maybe the seed laser on the X end died a little.

  16370   Fri Oct 1 12:12:54 2021 StephenUpdateBHDITMY (3002) CAD layout pushed to Box

Koji requested current state of BHD 3D model. I pushed this to Box after adding the additional SOSs and creating an EASM representation (also posted, Attachment 1). I also post the PDF used to dimension this model (Attachment 2). This process raised some points that I'll jot down here:

1) Because the 40m CAD files are not 100% confirmed to be clean of any student license efforts, we cannot post these files to the PDM Vault or transmit them this way. When working on BHD layout efforts, these assemblies which integrate new design work therefore must be checked for most current revisions of vault-managed files - this Frankenstein approach is not ideal but can be managed for this effort. 

2) Because the current files reflect the 40m as built state (as far as I can tell), I shared the files in a zip directory without increasing the revisions. It is unclear whether revision control is adequate to separate [current 40m state as reflected in CAD] from [planned 40m state after BHD upgrade]. Typically a CAD user would trust that we could find the version N assembly referenced in the drawing from year Y, so we wouldn't hesitate to create future design work in a version N+1 assembly file pending a current drawing. However, this form of revision control is not implemented. Perhaps we want to use configurations to separate design states (in other words, create a parallel model of every changed component, without creating paralle files - these configurations can be selected internal to the assembly without a need to replace files)? Or more simply (and perhaps more tenuously), we could snapshot the Box revisions and create a DCC page which notes the point of departure for BHD efforts?

Anyway, the cold hard facts:

 - Box location: 40m/40m_cad_models/Solidworks_40m (LINK)

 - Filenames: 3002.zip and 3002 20211001 ITMY BHD for Koji presentation images.easm (healthy disregard for concerns about spaces in filenames)

  16373   Mon Oct 4 15:50:31 2021 HangUpdateCalibrationFisher matrix estimation on XARM parameters

[Anchal, Hang]

What: Anchal and I measured the XARM OLTF last Thursday.

Goal: 1. measure the 2 zeros and 2 poles in the analog whitening filter, and potentially constrain the cavity pole and an overall gain. 

          2. Compare the parameter distribution obtained from measurements and that estimated analytically from the Fisher matrix calculation.

          3. Obtain the optimized excitation spectrum for future measurements.   

How: we inject at C1:SUS-ETMX_LSC_EXC so that each digital count should be directly proportional to the force applied to the suspension. We read out the signal at C1:SUS-ETMX_LSC_OUT_DQ. We use an approximately white excitation in the 50-300 Hz band, and intentionally choose the coherence to be only slightly above 0.9 so that we can get some statistical error to be compared with the Fisher matrix's prediction. For each measurement, we use a bandwidth of 0.25 Hz and 10 averages (no overlapping between adjacent segments). 

The 2 zeros and 2 poles in the analog whitening filter and an overall gain are treated as free parameters to be fitted, while the rest are taken from the model by Anchal and Paco (elog:16363). The optical response of the arm cavity seems missing in that model, and thus we additionally include a real pole (for the cavity pole) in the model we fit. Thus in total, our model has 6 free parameters, 2 zeros, 3 poles, and 1 overall gain. 

The analysis codes are pushed to the 40m/sysID repo. 

===========================================================

Results:

Fig. 1 shows one measurement. The gray trace is the data and the olive one is the maximum likelihood estimation. The uncertainty for each frequency bin is shown in the shaded region. Note that the SNR is related to the coherence as 

        SNR^2 = [coherence / (1-coherence)] * (# of average), 

and for a complex TF written as G = A * exp[1j*Phi], one can show the uncertainty is given by 

        \Delta A / A = 1/SNR,  \Delta \Phi = 1/SNR [rad]. 

Fig. 2. The gray contours show the 1- and 2-sigma levels of the model parameters using the Fisher matrix calculation. We repeated the measurement shown in Fig. 1 three times, and the best-fit parameters for each measurement are indicated in the red-crosses. Although we only did a small number of experiments, the amount of scattering is consistent with the Fisher matrix's prediction, giving us some confidence in our analytical calculation. 

One thing to note though is that in order to fit the measured data, we would need an additional pole at around 1,500 Hz. This seems a bit low for the cavity pole frequency. For aLIGO w/ 4km arms, the single-arm pole is about 40-50 Hz. The arm is 100 times shorter here and I would naively expect the cavity pole to be at 3k-4k Hz if the test masses are similar. 

Fig. 3. We then follow the algorithm outlined in Pintelon & Schoukens, sec. 5.4.2.2, to calculate how we should change the excitation spectrum. Note that here we are fixing the rms of the force applied to the suspension constant. 

Fig. 4 then shows how the expected error changes as we optimize the excitation. It seems in this case a white-ish excitation is already decent (as the TF itself is quite flat in the range of interest), and we only get some mild improvement as we iterate the excitation spectra (note we use the color gray, olive, and purple for the results after the 0th, 1st, and 2nd iteration; same color-coding as in Fig. 3).   

 

 

 

  16377   Mon Oct 4 18:35:12 2021 PacoUpdateElectronicsSatellite amp box adapters

[Paco]

I have finished assembling the 1U adapters from 8 to 5 DB9 conn. for the satellite amp boxes. One thing I had to "hack" was the corners of the front panel end of the PCB. Because the PCB was a bit too wide, it wasn't really flush against the front panel (see Attachment #1), so I just filed the corners by ~ 3 mm and covered with kapton tape to prevent contact between ground planes and the chassis. After this, I made DB9 cables, connected everything in place and attached to the rear panel (Attachment #2). Four units are resting near the CAD machine (next to the bench area), see Attachment #3.

  16378   Mon Oct 4 20:46:08 2021 KojiUpdateElectronicsSatellite amp box adapters

Thanks. You should be able to find the chassis-related hardware on the left side of the benchtop drawers at the middle workbench.

Hardware: The special low profile 4-40 standoff screw / 1U handles / screws and washers for the chassis / flat-top screws for chassis panels and lids

  16379   Mon Oct 4 21:58:17 2021 TegaUpdateElectronicsSat Amp modifications

Trying to finish 2 more Sat Amp units so that we have the 7 units needed for the X-arm install. 

S2100736 - All good

S2100737 - This unit presented with an issue on the PD1 circuit of channel 1-4 PCB where the voltage reading on TP6, TP7 and TP8 are -15.1V,  -14.2V, and +14.7V respectively, instead of ~0V.  The unit also has an issue on the PD2 circuit of channel 1-4 PCB because the voltage reading on TP7 and TP8 are  -14.2V, and +14.25V respectively, instead of ~0V.

 

  16380   Tue Oct 5 17:01:20 2021 KojiUpdateElectronicsSat Amp modifications

Make sure the inputs for the PD amps are open. This is the current amplifier and we want to leave the input pins open for the test of this circuit.

TP6 is the first stage of the amps (TIA). So this stage has the issue. Usual check if the power is properly supplied / if the pins are properly connected/isolated / If the opamp is alive or not.

For TP8, if TP8 get railed. TP5 and TP7 are going to be railed too. Is that the case, if so, check this whitening stage in the same way as above.
If the problem is only in the TP5 and/or TP7 it is the differential driver issue. Check the final stage as above. Replacing the opamp could help.

 

  16384   Wed Oct 6 15:04:36 2021 HangUpdateSUSPRM L2P TF measurement & Fisher matrix analysis

[Paco, Hang]

Yesterday afternoon Paco and I measured the PRM L2P transfer function. We drove C1:SUS-PRM_LSC_EXC with a white noise in the 0-10 Hz band (effectively a white, longitudinal force applied to the suspension) and read out the pitch response in C1:SUS-PRM_OL_PIT_OUT. The local damping was left on during the measurement. Each FFT segment in our measurement is 32 sec and we used 8 non-overlapping segments for each measurement. The empirically determined results are also compared with the Fisher matrix estimation (similar to elog:16373).

Results:

Fig. 1 shows one example of the measured L2P transfer function. The gray traces are measurement data and shaded region the corresponding uncertainty. The olive trace is the best fit model. 

Note that for a single-stage suspension, the ideal L2P TF should have two zeros at DC and two pairs of complex poles for the length and pitch resonances, respectively. We found the two resonances at around 1 Hz from the fitting as expected. However, the zeros were not at DC as the ideal, theoretical model suggested. Instead, we found a pair of right-half plane zeros in order to explain the measurement results. If we cast such a pair of right-half plane zeros into (f, Q) pair, it means a negative value of Q. This means the system does not have the minimum phase delay and suggests some dirty cross-coupling exists, which might not be surprising. 

Fig. 2 compares the distribution of the fitting results for 4 different measurements (4 red crosses) and the analytical error estimation obtained using the Fisher matrix (the gray contours; the inner one is the 1-sigma region and the outer one the 3-sigma region). The Fisher matrix appears to underestimate the scattering from this experiment, yet it does capture the correlation between different parameters (the frequencies and quality factors of the two resonances).

One caveat though is that the fitting routine is not especially robust. We used the vectfit routine w/ human intervening to get some initial guesses of the model. We then used a standard scipy least-sq routine to find the maximal likelihood estimator of the restricted model (with fixed number of zeros and poles; here 2 complex zeros and 4 complex poles). The initial guess for the scipy routine was obtained from the vectfit model.  

Fig. 3 shows how we may shape our excitation PSD to maximize the Fisher information while keeping the RMS force applied to the PRM suspension fixed. In this case the result is very intuitive. We simply concentrate our drive around the resonance at ~ 1 Hz, focusing on locations where we initially have good SNR. So at least code is not suggesting something crazy... 

Fig. 4 then shows how the new uncertainty (3-sigma contours) should change as we optimize our excitation. Basically one iteration (from gray to olive) is sufficient here. 

We will find a time very recently to repeat the measurement with the optimized injection spectrum.

  16386   Wed Oct 6 16:31:02 2021 TegaUpdateElectronicsSat Amp modifications

[Tega, Koji]

(S2100737) - Debugging showed that the opamp, AD822ARZ, for PD2 circuit was not working as expected so we replaced with a spare and this fixed the problem. Somehow, the PD1 circuit no longer presents any issues, so everything is now fine with the unit.

(S2100741) - All good.

Quote:

Trying to finish 2 more Sat Amp units so that we have the 7 units needed for the X-arm install. 

S2100736 - All good

S2100737 - This unit presented with an issue on the PD1 circuit of channel 1-4 PCB where the voltage reading on TP6, TP7 and TP8 are -15.1V,  -14.2V, and +14.7V respectively, instead of ~0V.  The unit also has an issue on the PD2 circuit of channel 1-4 PCB because the voltage reading on TP7 and TP8 are  -14.2V, and +14.25V respectively, instead of ~0V.

 

 

  16387   Thu Oct 7 02:04:19 2021 KojiUpdateElectronicsSatellite amp adapter chassis

The 4 units of Satellite Amp Adapter were done:
- The ears were fixed with the screws
- The handles were attached (The stock of the handles is low)
- The boards are now supported by plastic stand-offs. (The chassis were drilled)
- The front and rear panels were fixed to the chassis
- The front and rear connectors were fixed with the low profile 4-40 stand-off screws (3M 3341-1S)
 

  16388   Fri Oct 8 17:33:13 2021 HangUpdateSUSMore PRM L2P measurements

[Raj, Hang]

We did some more measurements on the PRM L2P TF. 

We tried to compare the parameter estimation uncertainties of white vs. optimal excitation. We drove C1:SUS-PRM_LSC_EXC with "Normal" excitation and digital gain of 700.

For the white noise exciation, we simply put a butter("LowPass",4,10) filter to select out the <10 Hz band.

For the optimal exciation, we use butter("BandPass",6,0.3,1.6) gain(3) notch(1,20,8) to approximate the spectral shape reported in elog:16384. We tried to use awg.ArbitraryLoop yet this function seems to have some bugs and didn't run correctly; an issue has been submitted to the gitlab repo with more details. We also noticed that in elog:16384, the pitch motion should be read out from C1:SUS-PRM_OL_PIT_IN1 instead of the OUT channel, as there are some extra filters between IN1 and OUT. Consequently, the exact optimal exciation should be revisited, yet we think the main result should not be altered significantly.

While a more detail analysis will be done later offline, we post in the attached plot a comparison between the white (blue) vs optimal (red) excitation. Note in this case, we kept the total force applied to the PRM the same (as the RMS level matches).

Under this simple case, the optimal excitation appears reasonable in two folds.

First, the optimization tries to concentrate the power around the resonance. We would naturally expect that near the resonance, we would get more Fisher information, as the phase changes the fastest there (i.e., large derivatives in the TF).

Second, while we move the power in the >2 Hz band to the 0.3-2 Hz band, from the coherence plot we see that we don't lose any information in the > 2 Hz region. Indeed, even with the original white excitation, the coherence is low and the > 2 Hz region would not be informative. Therefore, it seems reasonable to give up this band so that we can gain more information from locations where we have meaningful coherence.

  16389   Mon Oct 11 11:13:04 2021 ranaUpdateSUSMore PRM L2P measurements

For the oplev, there are DQ channels you can use so that its possible to look back in the past for long measurements. They have names like PERROR

  16390   Mon Oct 11 13:59:47 2021 HangUpdateSUSMore PRM L2P measurements

We report here the analysis results for the measurements done in elog:16388

Figs. 1 & 2 are respectively measurements of the white noise excitation and the optimized excitation. The shaded region corresponds to the 1-sigma uncertainty at each frequency bin. By eyes, one can already see that the constraints on the phase in the 0.6-1 Hz band are much tighter in the optimized case than in the white noise case. 

We found the transfer function was best described by two real poles + one pair of complex poles (i.e., resonance) + one pair of complex zeros in the right-half plane (non-minimum phase delay). The measurement in fact suggested a right-hand pole somewhere between 0.05-0.1 Hz which cannot be right. For now, I just manually flipped the sign of this lowest frequency pole to the left-hand side. However, this introduced some systematic deviation in the phase in the 0.3-0.5 Hz band where our coherence was still good. Therefore, a caveat is that our model with 7 free parameters (4 poles + 2 zeros + 1 gain as one would expect for an ideal signal-stage L2P TF) might not sufficiently capture the entire physics. 

In Fig. 3 we showed the comparison of the two sets of measurements together with the predictions based on the Fisher matrix. Here the color gray is for the white-noise excitation and olive is for the optimized excitation. The solid and dotted contours are respectively the 1-sigma and 3-sigma regions from the Fisher calculation, and crosses are maximum likelihood estimations of each measurement (though the scipy optimizer might not find the true maximum).

Note that the mean values don't match in the two sets of measurements, suggesting potential bias or other systematics exists in the current measurement. Moreover, there could be multiple local maxima in the likelihood in this high-D parameter space (not surprising). For example, one could reduce the resonant Q but enhance the overall gain to keep the shoulder of a resonance having the same amplitude. However, this correlation is not explicit in the Fisher matrix (first-order derivatives of the TF, i.e., local gradients) as it does not show up in the error ellipse. 

In Fig. 4 we show the further optimized excitation for the next round of measurements. Here the cyan and olive traces are obtained assuming different values of the "true" physical parameter, yet the overall shapes of the two are quite similar, and are close to the optimized excitation spectrum we already used in elog:16388

 

  16399   Wed Oct 13 15:36:38 2021 HangUpdateCalibrationXARM OLTF

We did a few quick XARM oltf measurements. We excited C1:LSC-ETMX_EXC with a broadband white noise upto 4 kHz. The timestamps for the measurements are: 1318199043 (start) - 1318199427 (end).

We will process the measurement to compute the cavity pole and analog filter poles & zeros later.

  16400   Thu Oct 14 09:28:46 2021 YehonathanUpdatePSLPMC unlocked

PMC has been unlocked since ~ 2:30 AM. Seems like the PZT got saturated. I moved the DC output adjuster and the PMC locked immidiatly although with a low transmission of 0.62V (>0.7V is the usual case) and high REFL.

IMC locked immidiately but IFO seems to be completely misaligned. The beams on the AS monitor are moving quite alot syncronously. BS watchdog tripped. I enabled the coil outputs. Waiting for the RMS motion to relax...

Its not relaxing. RMS motion is still high. I disabled the coils again and reenabled them. This seems to have worked. Arms were locked quite easily but the ETMs oplevs were way off and the ASS couldn't get the TRX and TRY more than 0.7. I align the ETMs to center the oplev. I realign everything else and lock the arms. Maximium TR is still < 0.8.

 

 

  16401   Thu Oct 14 11:25:49 2021 YehonathanUpdatePSLPMC unlocked

{Yehonathan, Anchal}

I went to get a sandwich around 10:20 AM and when I came back BS was moving like crazy. We shutdown the watchdog.

We look at the spectra of the OSEMs (attachment 1). Clearly, the UR sensing is bad.

We took the BS sattelite box out. Anchal opened the box and nothing seemed wrong visually. We returned the box and connected it to the fake OSEM box. The sensor spectra seemed normal.

We connected the box to the vacuum chamber and the spectra is still normal (attachment 2).

We turn on the coils and the motion got damped very quickly (RMS <0.5mV).

Either the problem was solved by disconnecting and connecting the cables or it will come back to haunt us.

 

 

 

  16403   Thu Oct 14 16:38:26 2021 Ian MacMillanUpdateGeneralKicking optics in freeSwing measurment

[Ian, Anchal]

We are going to kick the optics tonight at 2am.

The optics we will kick are the PRM BS ITMX ITMY ETMX ETMY

We will kick each one once and record for 2000 seconds and the log files will be placed in users/ian/20211015_FreeSwingTest/logs.

  16405   Thu Oct 14 20:16:22 2021 YehonathanUpdateGeneralPRMI free swinging

{Yehonathan, Raj}

We aligned the IFO in the PRMI state and let it swing freely.

  16406   Fri Oct 15 12:14:27 2021 Ian MacMillanUpdateGeneralKicking optics in freeSwing measurment

[Ian, Anchal]

we ran the free swinging test last night and the results match up with in 1/10th of a Hz. We calculated the peak using the getPeakFreqs2 script to find the peaks and they are close to previous values from 2016.

In attachment 1 you will see the results of the test for each optic.

The peak values are as follows:

Optic POS (Hz) PIT (Hz) YAW (Hz) SIDE (Hz)
PRM 0.94 0.96 0.99 0.99
MC2 0.97 0.75 0.82 0.99
ETMY 0.98 0.98 0.95 0.95
MC1 0.97 0.68 0.80 1.00
ITMX 0.95 0.68 0.68 0.98
ETMX 0.96 0.73 0.85 1.00
BS 0.99 0.74 0.80 0.96
ITMY 0.98 0.72 0.72 0.98
MC3 0.98 0.77 0.84 0.97

The results from 2016 can be found at: /cvs/cds/rtcdt/caltech/c1/scripts/SUS/PeakFit/parameters2.m

  16410   Mon Oct 18 10:02:17 2021 KojiUpdateVACVent Started / Completed

[Chub, Jordan, Anchal, Koji]

- Checked the main volume is isolated.
- TP1 and TP2 were made isolated from other volumes. Stopped TP1. Closed V4 to isolate TP1 from TP2.
- TP3 was made isolated. TP3 was stopped.
- We wanted to vent annuli, but it was not allowed as VA6 was open. We closed VA6 and vented the annuli with VAVEE.
- We wanted to vent the volume between VA6, V5, VM3, V7 together with TP1. So V7 was opened. This did not change the TP1 pressure (P2 = 1.7mmTorr) .
- We wanted to connect the TP1 volume with the main volume. But this was not allowed as TP1 was not rotating. We will vent TP1 through TP2 once the vent of the main volume is done.

- Satrted venting the main volume@Oct 18, 2021 9:45AM PDT

- We started from 10mTorr/min, and increased the vent speed to 200mTorr/min, 700mTorr/min, and now it is 1Torr/min @ 20Torr
- 280Torr @11:50AM
- 1atm  @~2PM


We wanted to vent TP1. We rerun the TP2 and tried to slowly introduce the air via TP2. But the interlock prevents the action.

Right now the magenta volume in the attachment is still ~1mTorr. Do we want to open the gate valves manually? Or stop the interlock process so that we can bypass it?

  16411   Mon Oct 18 16:48:32 2021 TegaUpdateElectronicsSat Amp modifications

[S2100738, S2100745, S2100751] Completed three more Sat Amp units modification with seven remaining.

 

  16412   Tue Oct 19 10:59:09 2021 KojiUpdateVACVent Started / Completed

[Chub, Jordan, Yehonathan, Anchal, Koji]

North door of the BS chamber opened

 

  16413   Tue Oct 19 11:30:39 2021 KojiUpdateVACHow to vent TP1

I learned that TP1 was vented through the RGA room in the past. This can be done by opening VM2 and a manual valve ("needle valve")
I checked the setup and realized that this will vent RGA. But it is OK as long as we turns of the RGA during vent and bake it once TP1 is back.

Additional note:

- It'd be nice to take a scan for the current background level before the work.
- Turn RGA EM and filament off, let it cool down overnight. 
- Vent with clean N2 or clean air. (Normal operating temp ~80C is to minimize accumulation of H-C contaminations.)
- There is a manual switch and indicators on the top of the RGA amp. It has auto protection to turn filament off if the pressure increase over ~1e-5.

  16418   Wed Oct 20 15:58:27 2021 KojiUpdateVACHow to vent TP1

Probably the hard disk of c0rga is dead. I'll follow up in this elog later today.

Looking at the log in /opt/rtcds/caltech/c1/scripts/RGA/logs , it seemed that the last RGA scan was Sept 2, 2021, the day when we had the disk full issue of chiara.
I could not login to c0rga from control machines.
I was not aware of the presence for c0rga until today, but I could locate it in the X arm.
The machine was not responding and it was rebooted, but could not restart. It made some knocking sound. I am afraid that the HDD failed.

I think we can
- prepare a replacement linux machine for the python scripts
or
- integrate it with c1vac

  16419   Thu Oct 21 11:38:43 2021 JordanUpdateSUSStandoffs for Side Magnet on 3" Adapter Ring SOS Assembly

I had 8 standoffs made at the Caltech chemistry machine shop to be used as spacers for the side magnets on the 3" Ring assembly. This is to create enough clearance between the magnet and the cap screws directly above on the wire clamp.

These are 0.075" diameter by .10" length. Putting them through clean and bake now.

  16426   Tue Oct 26 10:17:14 2021 YehonathanUpdateBHDSOS assembly

Things that I need to start suspending optics:

1. Winch adapter plate (D970314). Might need to make one.

2. Quad photodetector

3. Camera and camera mount

4. Beam height target

5. Height gauge

  16428   Tue Oct 26 14:53:24 2021 KojiUpdateElectronicsRack

1. We have a rack at the 40m storage. We are free to take it to the lab. If there is a tag, tell the info to Liz. Let's move it to the lab tomorrow right after the meeting.

2. We have a few racks in WB B1 (Attachment 1). Liz and I checked a rack which looks suitable for us. 46U height. Caltech transport will move it to the lab.

  16439   Thu Oct 28 23:13:19 2021 YehonathanUpdateBHDSOS assembly

{Tega, Yehonathan, Koji}

Suspension of a Dummy Optic

We gathered the components needed for suspending a 2" optic housed in a 3" ring adapter:

1. SOS Tower

2. Winches+Winch adapter plate (Attachment 3)

2. HeNe Laser + Power supply

3. A steering mirror

4. QPD + ND2 Filter + Electronic amplifier

5. Oscilloscope

6. Dummy optic housed in a ring adapter (Attachment 2)

An OpLev was built using the HeNe laser, steering mirror, suspended optic, QPD (Attachment 1).

The beam height was set with a ruler. The QPD was placed in front of the laser and its height was adjusted until the Y signal vanished.

The beam was made parallel to the table. First, roughly by using an iris. Then, more accurately, by measuring the beam directed at the suspended optic with the QPD and zeroing the Y signal by adjusting the steering mirror.

We suspended the dummy optic using a music wire we found in the cleanroom cabinet.

All the wire clamps on the ring adapter, SOS, and winches were loosened.

About 0.5m of music wire was cut. Then, the wire was threaded through the wire clamp on the adapter side block, around the ring adapter, and through the wire clamp on the other side block, keeping the wire untwisted. The optic was put on the safety stop and the height was roughly adjusted using the lower EQ stops.

The wire pair was then threaded through the wire clamp on the suspension block and held near the winches. The wire was made to go through the groves at the side blocks. The wire was clamped to the side blocks. The wires were clamped on the winches. The wires were pulled by the winches until the magnet marking on the side blocks was centered on the OSEMs' holes on the side plates of the SOS (attachment 4).

Once the heights were set, the wire was clamped at the suspension block.

We balanced the dummy optic using a counterweight.

We placed the QPD at the laser reflection from the optic. We adjusted the screw set going through the counterweights to adjust the balance. The pitch imbalance was monitored by observing the Y signal on the oscilloscope.

Comments:

1. Turns out that for a 1/4" thick optic, the rear counterweight needs to be removed for achieving balance.

2. To fix the counterweight on the setscrew we will use some epoxy.

3. Seems like the left optical table in the cleanroom is slightly tilted. We need to fix it.

4. The bottom long EQ stop is not touching the adapter due to the balancing mass socket. We might want to put a nut on it.

5. Still need to glue 3 more side magnet+dumbell assemblies to rods and then glue them before gluing them to the side blocks which will take at least 2 more days until we can start suspending a real optic.

  16442   Mon Nov 1 14:51:34 2021 KojiUpdateGeneralChecking the vent plan

The vent team described a detailed vent plan (and reports where the actions have been performed)

https://wiki-40m.ligo.caltech.edu/vent/Fall2021

- [Sec.4] We should decide the final PR2 mirror through table-top measurements.

- [Sec 6] BS alignment is probably "unknown" now. So it'd be better to use the ITMY spot as the reference, then align BS for ITMX. For temporary alignment, it's OK though.

- [Sec 9-11] RIght now there is no mounts to place LO3/LO4/AS2/AS3/BHDBS. But we probably want to test something before the installation of the BHD? Just place the BHDBS on a optics mount so that we get an interfered beam on ITMY?

At this point we are supposed to have all the electronics all the CDS necessary for the new SOS control. Otherwise, they are just swinging and the alignment work will just be impossible.

- [Sec 15] The OPLEV mirrors can be freely moved as long as it does not block the main IR beams. Moving ITMXOL1 makes the reflection blocked by ITMXOL2. And moving ITMXOL2 would make the IR beams clipped. Consider replacing the mounts with a fixed mount. (The OPLEV mirrors are 1.5" in dia. It is not common vacuum compatible 1.5inch mounts. If 1" Al mirror is sufficient, we can use it.

https://wiki-40m.ligo.caltech.edu/vent/Fall2021/FinalAlignment

- The arms are the most strict alignment requirement. Everything else will follow the arm alignment. So start from the arms and propagate the alignment to Michelson / PRMI / SRMI.

- We reestablish arm alignment using the end green beams.

- Then recover IR arm alignment. Consider using ASS if possible

  16443   Tue Nov 2 15:02:03 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Tega}

We took the free-swinging spectra of the OpLev in the X and Y direction.

To make the motion of the optic quiet we turned off the airflow on the optical bench and moved the QPD close to the SOS so that the laser beam stays more or less within the QPD sensitive area.

In the process, we realized that the cleanroom HeNe went bad. It turned off after a few minutes after turning it on. The behavior repeated with another power supply. We replaced the HeNe and realigned it coarsely.

The data was taken using an oscilloscope while the optic was swinging freely. The PSD was calculated afterward (attachment 1).

Surprisingly, the pitch has a resonance frequency of ~ 2.5 Hz. And this is after we removed the back counterweight.

Additionally, we aligned the tilt of the optical table. Using a spirit bubble we adjusted the tilt by using a wrench on the table legs. As we suspected, the table was slightly tilted in the north-south direction.

  16445   Tue Nov 2 18:54:41 2021 Anchal, PacoUpdateBHDOptical fibres laid for BHD upgrade

We successfully laid down all required optical fibre fiber cables from 1X4-1X7 region to 1Y1-1Y3 region today. This includes following cables:

  • Timing fibre fiber from Master Timing Synchornizer D050239 on 1X6 to C1SU2 I/O chassis on 1Y1.
  • Timing fibre fiber from Master Timing Synchornizer D050239 on 1X6 to C1BHD I/O chassis on 1Y3.
  • CX4 cable from Dolphin Card on 1X4 to C1SU2 FE on 1Y1 for IPC.
  • CX4 cable from Dolphin Card on 1X4 to C1BHD FE on 1Y3 for IPC.
  • DAQ Network extension fibre fiber optic cable from DAQ Network Switch on 1X7 to another switch we mounted on 1Y3 for local DAQ network distribution.
ELOG V3.1.3-