ID |
Date |
Author |
Type |
Category |
Subject |
802
|
Wed Aug 6 11:43:52 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM01 scan |
Analysis of the data on August 3th ~ Part 2
o I already have reported that the resonant freq of TEM10 and TEM01 split.
o Again, note that TEM10/01 were arranged almost in the horizontal/vertical by the observation of the video.
o The peaks of TEM10 and TEM01 were fitted with the same method as of TEM00.
o The peak freqs were:
f_TEM10: 5087040 Hz +/- 20 Hz
f_TEM01: 5068322 Hz +/- 15 Hz
The split is 18.7kHz.
o The additional parameter from the previous entry:
f_TEM00: 3879252 Hz +/- 9 Hz
L_yarm: 38.6462 m +/- 0.0003 m
o Radius of curvature
Rx = L /(1-Cos^2(Pi (f_TEM10 - f_TEM00) / (c/L/2) ))
Ry = L /(1-Cos^2(Pi (f_TEM01 - f_TEM00) / (c/L/2) ))
from these formula we get the value
Rx = 56.1620 +/- 0.0013 [m]
Ry = 57.3395 +/- 0.0011 [m] |
801
|
Wed Aug 6 11:10:34 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM00 scan |
Analysis of the data on August 3th ~ Part 1
From the measurement of the 5 FSRs, the FSR frequency for the Yarm cavity was estimated as
f_FSR = 3878678 Hz +/- 30 Hz
and the Yarm length is
L_yarm = 38.6462 m +/- 0.0003 m
This is the precision of 8ppm. In my opinion, this is a satisfactory result for our purpose.Y-arm length
e-log length [m]
-----------------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 Tape & photo
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
787(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
this(2008-Aug-04) 38.6462 +/- 0.0003 Beam injection, independent PLL, Transmitted RF, five FSRs, freq calibrated
----------------------------- ----------------
o According to the entry 795, all of the scan frequency was calibrated.
o The five peaks of the scanned data for TEM00 were fitted. Each peak was fitted by the following formula:
V(f) = A / Sqrt(1 - ((f-f0)/fc)^2)
Variable
f: scan frequency
Parameters
A: peak amplitude
f0: center frequency
fc: half bandwidth of the peak for -3dB
o The results are shown in the attached figure 1. They look very similar each other but they are different plot! The fittings were extremely good. The center frequencies estimated were as follows:
FSR1: 3879251.9 Hz +/- 8.8 Hz
FSR2: 7757968.1 Hz +/- 10.8 Hz
FSR3: 11636612.9 Hz +/- 10.2 Hz
FSR4: 15515308.1 Hz +/- 8.7 Hz
FSR5: 19393968.7 Hz +/- 8.4 Hz
o The FSR frequencies were fitted by a line. The fitting and the residuals are shown in the attached figure 2.
The fitting results were
f_FSR(n) = 586.4 + 3878678 * n
This means that:
o FSR frequency was 3878678 [Hz].
o The lock of the carrier had detuning of 586 [Hz].
The detuning of the carrier from the resonance can be explained by the alignment drift. In deed, at the end of the measurement, decrease of the transmitted power by -15% was found. Then, the frequency of the 1st FSR was measured before and after the alignment adjustment. This changed the frequency of the FSR1 by 350Hz. This change could not be explained by the cavity length change as this is too big (~3.5mm).
Actually, the spacing of the cavity length is more stable. The residual is rather scattered with in 20-30Hz. So, I took the error of 30Hz as the whole precision of the frequency measurement that includes the fluctuation of the alignment, the cavity length itself, and so on. This yields the FSR and the cavity length of
f_FSR = 3878678 Hz +/- 30 Hz
L_yarm = 38.6462 m +/- 0.0003 m . |
800
|
Tue Aug 5 17:56:23 2008 |
Alberto | Configuration | General | SRM and PRM inspection |
Yoichi, Koji, Rana, Steve, Alberto
Today we opened the BSC to inspect the optics, and in particular the SRM and PRM.
We found that one of the side magnets of the SRM was broken and a piece of it fell and got stuck to the LR magnet.
We removed the LR OSEM and took off the broken part with tweezers. Since we couldn’t replace the magnet on the side,
we decided to just switch the OSEM to the other side were a second magnet was available. Then we centered the OSEMs.
Using the optical levers we aligned both the ITMX and the SRM so that now we have to center again the OSEMs on both.
The PRM was visibly tilted and it was out of the range of the OSEMs. To try to fix the tilt we lift it up a little
with the screws on the bottom and pushed it with the third screw on top. That had the effect of making the mirror
tilt to the opposite direction. We looked at the wires (see attached picture) and it seemed centered on the side
of the mirror.
Tomorrow we are going to reset the OSEMs on ITMX and SRM and then we’re going to try to fix the tilt on PRM. |
799
|
Tue Aug 5 12:52:28 2008 |
Yoichi | Update | SUS | ITMX, SRM OSEM spectra |
Free swinging spectra of ITMX and SRM.
ITMX seems to be ok after yesterday's work, though the OSEM DC values are still a bit off from the normal value of 0.9.
(ITMX OSEM values: UL=1.12, UR=1.38, LR=0.66, LL=0.41, SIDE=0.66)
SRM is still clearly wrong. |
798
|
Tue Aug 5 10:56:05 2008 |
Alberto | Configuration | General | ITMX chamber opened and mirror released |
D-Mass, Steve, Rana, Koji, Yoichi, Alberto,
We opened the ITMX chamber to check the optics after last week earthquake. In particular, from the spectra, ITMX seemed to be stuck and had to be released again. When we inspected the mirror, we found that it wasn’t necessary to touch it. It had become free again during the vent thanks to the change of conductivity in the air inside during the vent.
We checked the magnets and they seemed to be fine.
A couple of stop screws had lost the rubber on their tips, although we don’t know if that was due to the earthquake.
We also took advantage of the opening to center the LR and the left OSEMs in the mirror to their zero.
Inspecting the table we found a couple of things not totally clear on the configuration of the optics in the table. In particular we found a beam dump located too close to the ifo beam. Eventually we found out that the dump was meant to block a ghost beam coming from the ITM. A better location should probably be figured out for that. We also found that the POXM1 mirror designed to have the maximum reflectivity for the P polarization of the beam at 45 degrees is mounted so that the incident beam is at 22 degrees. This cause the beam to be 90% transmitted and only 10 percent reflected to POX. The transmitted beam appears at ther BSC chamber.
The ifo beam passes so close to the POXM1 mirror so that it can be clipped by its large metal frame ring. The beam at that point is about 6mm large and the ring is about 1cm thick so that we could gain some distance with a different mount. |
797
|
Tue Aug 5 10:23:00 2008 |
steve | Update | SUS | earthquake and venting effects |
atm 1, EQ
atm 2, vent 7 days later: venting kicks optic into place to be free,
PRM: LR magnet gets pushed in and it is stocked, side in free |
796
|
Tue Aug 5 02:39:55 2008 |
Koji | Configuration | General | Abs. Len. Meas. ~ Optical Layout on the AP / PSL table 2008-Aug-05 |
Here are the PDF and the PNG of the AP and PSL table layouts.
After this photo, the squeezing setup at the AP table was removed. |
795
|
Tue Aug 5 00:05:57 2008 |
Koji | Update | General | Abs. Len. Meas. ~ IFR2023A calibration |
Work log on August 4th
o IFR2023A (Marconi) was calibrated by the SR620 frequency counter which is locked to the GPS signal.
o The frequency of the IFR2023A was scanned from 1MHz to 20MHz with 1MHz interval. The readout of the frequency counter was recorded.
o The linear fit was taken.
f_freq_count = K0 + K1 * f_IFR [Hz]
K0 = 0.00 +/- 0.02
K1 = 0.999999470 +/- 0.000000001
o So, the IFR seems to have -0.5ppm systematic error. |
794
|
Mon Aug 4 22:31:10 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Simple Test for TEM01/10 split |
Work log on August 3rd - Part3
Question:
o The TEM01 and TEM10 of the Yarm were found to split with 19kHz separation. Is this true?
o In which direction the eigenmodes are?
Thought:
o The separation of 19kHz is a kind of too big because the cavity bandwidth is several kHz.
o This means that "TEM01 and TEM10 can not resonate at the same time (by the PSL beam)".
Test:
o Imagine we are just using the PSL beam and playing with an arm cavity.
o Tilt the end mirror in pitch. Resonate the TEM01 mode (8-shaped).
o Then tilt the end mirror in yaw.
o a) If the resonances are degenerated within the bandwidth of the laser, it rotates freely.
o b) If the resonances splits, the tilt in yaw does not change the shape. Then suddenly jumps to TEM10 (by an accident).
Result:
o The shape does not change. Just jumps to the other mode. (The case above b.)
o The eigenmode looked like quite horizontal and vertical.
Conclusion: the mode really splits. |
793
|
Mon Aug 4 21:48:24 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Scan for TEM00/01/10 |
Work log on August 3rd - Part2
o I tried to measure the frequency of the FSRs using TEM00 resonances. Also search of TEM01/TEM10 resonances were tried.
-----------
Measurement for TEM00
o The frequency of the injection beam was scanned from 2MHz to 20MHz using the LabVIEW panel with GPIB. The 1st figure attached below is the result of the scan. Equispaced peaks were found as expected. The interval of the peaks are about 3.89MHz. Each peaks were measured with freq intervals of down to 50Hz. I will analyze the center frequency of the peaks precisely later in order to have a final result.
Measurements for TEM01/TEM10
o The beam injection technique is thought to be useful for measureing the frequency of the higher-order resonances. In order to measure the higher-order resonances the modifications of the experimental setup were applied as below.
1) For TEM10 (the beam like "OO" shape), a razor blade which blocked the horizontal half of the transmitted beam was placed. We needed to disturb half of the beam because the beat between the PSL TEM00 and the injection TEM01 cancels if the PD receives all of the light.
2) The injection beam is slightly misaligned in the horizontal direction in order to enhance the coupling of the injection beam to the cavity TEM01 mode.
3) For TEM01 (the beam like "8" shape), a razor blade cutting the vertical half and the misalignment of the inj beam in the vertical direction are applied.
o The frequency of the injection beam was scaned from 1st FSR of TEM00 in the upward direction. The alignment of the arm cavity was left untouched during the measurement. As shown in the 2nd figure attached below, the resonances were found about 1.19MHz away from the TEM00, but they are separated by about 19kHz(!). This could be split of the degenerated modes which corresponds to the difference of the mirror curvature in two directions! This difference is something like 56 m and 57 m. Can you believe this?
(To be continued to the next entry) |
792
|
Mon Aug 4 16:20:20 2008 |
Dmass | Configuration | Photos | ITMX magnet position relative to OSEMS |
We have vented, and taken the following pics of the magnets to document their position before we ruin everything. |
791
|
Mon Aug 4 13:43:02 2008 |
Yoichi | Summary | PSL | FSS loop calibration |
As a part of the effort to repair the FSS loop bandwidth, I tried to calibrate the FSS loop.
First, I scanned the MOPA frequency by injecting a triangular wave into the ramp-in of the FSS box, which goes to the PZT of the NPRO.
The first attachment shows the transmitted light curve (pink one) along with the PDH signal (light blue).
The sweep was very slow (0.1Hz for 2Vp-p). From this measurement, the FWHM was 6.8e-3V. Then fpol = FWHM/2=3.4e-3V, where fpol is the cavity pole frequency.
So the PZT's DC response is 294*fpol/V. If we use the canonical fpol=38kHz, it is 11.172MHz/V.
Then I tried to measure the cavity pole. First I tried the cavity ring down measurement, by blocking the beam abruptly. Unfortunately, my hand was not fast enough.
The ring down shape was not an exponential decay.
I then locked the reference cavity only using the PZT with very narrow bandwidth (UGF=2kHz). I injected signal into the external modulation input of the 80MHz VCO
for the AOM. The second attachment shows the transfer function from this input to the IN2 (mixer output monitor port) of the FSS servo box.
To plot this, I corrected the measurement for the open loop TF (i.e. multiplying the measured TF with (1+G)), and other filters in the path (8MHz LPF after the ext. mod.
input of the 80MHz VCO, and an RCL network after the mixter). The gain looks like a cavity pole, but the phase decreases very rapidly.
If you look at the third attachment showing a wider band transfer function, there are notches at 1.8MHz and above. I couldn't find this kind of filter in the schematic.
Maybe this is the RFPD's bandpass filter. I will check this later. From these plots, it is difficult to tell the cavity pole frequency. From the -3dB point, fpol is around 83kHz,
but from the phase=-45deg point, fpol is around 40kHz.
Finally, I calibrated the cavity's optical gain by locking the Ref. Cavity with only PZT, and injecting a signal into the loop.
The signal was injected from Test-In2 of the FSS servo box and the transfer function from the PZT output signal (TP10) to IN1 (mixer output) was measured.
The transfer function was corrected for a 10Hz LPF after TP10.
The attachment4 shows a nice flat response up to 30kHz. Above 30kHz, the measurement is too noisy. The optical gain at DC is about 22dB from the PZT drive to the error signal (IN1).
Using fpol=38kHz, it means 887kHz/V calibration factor for the signal at IN1. There is a mixer output monitor DAQ channel in the FSS but it seems to be not working at the
moment. I will look into this later. There is a gain of 10dB between IN1 and the mixer monitor channel.
By looking at the phase response of the attachement4, there is a cavity pole like behavior around 30kHz. If we assume the PZT response is flat up to this frequency, it is
roughly consistent with fpol=38kHz.
I was not able to take a sensible spectrum of IN1 using the network analyzer. When the FSS servo was engaged, the signal was too small.
I will try to use an AF spectrum analyzer later to get a calibrated spectrum. |
790
|
Mon Aug 4 12:12:20 2008 |
steve | Configuration | VAC | the ifo is at atm |
The 40m vac envelope was vented this morning.
P1 is at 760 Torr |
789
|
Mon Aug 4 05:23:57 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Measurement for Y-arm completed |
Finally, I have completed the abs length and g-factor measurements for Y-arm.
>>>GO FOR THE VENT<<<
I will report the results later.
Some notes on the status:
o Y-arm was aligned at the end of the experiment by the script. The values were saved.
o At the AP table, the injection beam and the flipper were left aligned so that the inj. beam can be used as a reference of the SRM and the ITMs. But the shutter of the NPRO was closed.
o The experiment setup was mostly left at the side of the AP table. I tried not to disturb the walk as much as possible.
o The long cable from the Y-end was wound and placed at the Y-end. The knife-edge was left on the Y-end bench. It is not disturbing any beam. |
788
|
Mon Aug 4 00:56:07 2008 |
Koji | HowTo | General | Abs. Len. Meas. ~ Auto freq scanner with GPIB |
Work log on August 3rd - Part1
o Yesterday I was too much tired of changing the RF frequency, reading peaks on the RF spectrum, and writing the values. Rana saw me and thought I was such poor that he gave me an USB-GPIB adapter.
o I dig into the internet for the manuals of the adapter, IFR2023A(Marconi), and HP8591E(RF spectrum analyzer) in order to learn how to use them.
o I had LabVIEW installed on my laptop. Finally I understand how to use that adapter (by Agilent) with LabVIEW. I made a small program to scan the frequency of IFR2023A, and read the peak values from HP8591E. It is unfortunate that there is no LabVIEW in the 40m lab. I think I can make an independent executable which does not need the LabVIEW itself. Give me some time to understand how to do it. |
787
|
Mon Aug 4 00:37:58 2008 |
Koji | Update | General | Abs. Len. Meas. ~ RF PD at the Y end / Manual frequency scan |
Work log on August 2nd
o Just remind you:
The idea of the absolute length measurement was to detect an RF beat between the injection beam and the PSL beam by resonating both of the beams to the cavity at the same time, but on different londitudinal modes. From the frequency separation between the two beams, we get the FSR of the cavity. In order to have an injection beam with stable frequency separation, a heterodne interferometer was built at the PSL table, and the PLL servo is used to control and stabilize the frequency of the inj. beam.
----------
o An RF PD (Tholab PDA255) and a steering mirror were placed at the Yarm END. Fortunately, I found that an unused BS was already in the optical path. There was a beam block which dump the reflection of the BS and some stray lights of the OPLEV. I moved the beam block to make the BS reflection available, as well as to block the OPLEV stray light still (Photo1). In order to have the RF signal from the PD, a long BNC cable was laid along the Yarm. I did't know any better idea than this. Don't blame me.
o To have an intuitive interpretation of the beat frequency, the injection beam was set to be at higher frequency than the PSL beam. How did I confirm this? When the crystal temp (LT) of the NPRO was tuned to be higher, the beat frequency got lower.
o Frequency of the PLL was manually swept at around 15.51MHz where the 4th FSR was expected to be found. I could see strong RF peak at that frequency! When I tuned the PLL frequency, the peak height changes dramatically! Too cool!
o The amplitude of the RF peak was measured by an RF spectrum analyzer. I did all of this scan by my hands and eyes. The center frequency of the 4th FSR was 15.5149MHz. From the eye I would say the error is +/-150Hz. It is OK so far although I am not sure statistically this is correct or not. This corresponds to the length of 38.64575 +/- 0.00037 [m].
o All of the past measurements are fairly consistent.
Y-arm length
e-log length [m] Measurement Conditions
----------------------------------------------------------------------------------------
556(2008-Jun-24) 38.67 +/- 0.03 Cavity swinging measurement
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
this(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
---------------------------------------------------------------------------------------- |
786
|
Sun Aug 3 20:53:54 2008 |
rana | Configuration | PEM | Guralp |
We got our repaired Guralp back in the mail from England (s/n T4157). I plugged it in
to Ben's 3-Guralp breakout box (http://www.ligo.caltech.edu/docs/D/D060506-00.pdf) and
verified that it is not oscillating (like it was before) and that it responds to us
jumping around.
The breakout box has way too much gain, however. The ADC wants +/-2 V and the box puts out
~5 Vpk in the night time.
Looking at the schematic, it has a DC gain of 200 and a double whitener (50,50:10,10) so that
there's a gain of 5000 from 50-2000 Hz. The Guralp has a transduction gain of 800 V/(m/s) and
so we can just calculate what the frequency dependent noise figure of the box has to be. I've
pulled it out, put it on the bench, and started reworking it. I am looking for a soldering/
testing volunteer.
The other kink in the problem is that since we want to use this for the adaptive noise cancellation,
we have to make the noise floor of the readout better than the ambient noise by the same factor
with which we want to cancel the noise. |
785
|
Sat Aug 2 18:37:41 2008 |
rana | Update | SUS | OSEM Spectra |
The attached PDF file is from the .xml files that I found from 7/30. Looks like someone
took some free swinging data and even made nice plots but didn't elog it. Raspberry for you.
The data files are saved in Templates/FreeSwinging/{ETMX,ETMY,etc.}/2008_07_30.xml
The top left plot on the multi-page file all have the same scale so you can see what's happened.
The peaks should all be as measured by Busby in Sep '06
but instead they are as you see here. |
784
|
Sat Aug 2 16:05:38 2008 |
rana | Configuration | Computer Scripts / Programs | mDV update |
I did an svn update on our mDV directory. Justin has improved it so that the NDS client binaries
are included for solaris, mac, linux32, and linux64. Now you can just use this version without
having to worry about any path definitions. |
783
|
Sat Aug 2 13:07:23 2008 |
Koji | Configuration | General | The AP table cleaned |
During the construction of the independent PLL I cleaned up some of the unused optics from the AP table. Essentially this should be harmless as they had already been isolated from any beam. They were related to Go's squeezing project and Osamu's MC Transmitted beam measurement.
Nevertherless, if you find any problem on the signals at the AP table (when the ifo returns), I am the person to be blamed.
I am going to update the table layout later next week. |
782
|
Sat Aug 2 12:53:43 2008 |
Koji | Update | General | Abs. Len. Meas. ~ New PLL at the PSL table |
Report of the work last night:
The new heterodyne interferometer on the PSL table was built.
The length of the Yarm cavity was measured with better precision.
-------------
Yarm is locked. The injection beam was aligned. The beat was there at around LT=48.9 [C_deg] of the NPRO.
The new PLL setup on the PSL table has been built. The two beams from the MC incident beam and the injection beam are
mode-matched with lenses. I measured the Rayleigh ranges of the beams by a sensor card and my eyes, and then placed
appropriate lenses so that they can have 5~6 [m] Rayleigh range. They looks a bit too thick but just ok for an inch
optics. The new PLL setup shows ~70% intensity modulation which is enormous. The servo is still SR560-based so far.
Now the PLL has no singular frequency within its range. I could sweep the 4th FSR of the cavity with 500Hz interval. I
was still observing at the transmitted DC.
At each freqency from 15.51MHz to 15.52MHz, a timeseries data of the Yarm transmitted was recorded at sampling of 32Hz for 10
seconds. The figure shows the averaged values of the transmitted DC with errors. An increase of the transmitted power by
3-4% was found. If we consider the resonance is at f_PLL = 15.515 +/- 0.0005 [MHz], this indicates the
arm cavity length of 38.6455 +/- 0.0012 [m].
Y-arm length
e-log length [m]
-----------------------------
556 38.70 +/- 0.08 Cavity swinging measurement
556 38.67 +/- 0.03 tape & photo
776 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
this 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
-----------------------------
NEXT STEPS:
o RF detection at the transmitted
o Better PLL: PLL stability (in-loop / out-of-loop)
o Measurement for the 1st~3rd FSR
o Reproducibility of the measurement
o Higher order mode search
o Check the acuuracy and presicion of the Marconi |
781
|
Fri Aug 1 16:33:52 2008 |
rana | Configuration | PSL | PSL Quad change and new script |
Here's the sensor ringdown trend from the kick. |
780
|
Fri Aug 1 11:51:15 2008 |
justing | Omnistructure | Computers | added /cvs/cds/site directory |
I added a /cvs/cds/site directory. This is the same as is dicsussed here. Right now it just has the text file 'cit' in it, but eventually the other scripts should be added. I'll probably use it in the next version of mDV. |
779
|
Fri Aug 1 10:45:46 2008 |
josephb | Configuration | Computers | Megatron now running tcsh |
At Rana's request, I've remotely switched Megatron over to using tcsh. I had to ssh -X in order ot use the "/sbin/system-config-users" program which is a graphical UI for modifying users. I had to go to preferences and uncheck hide system users, which then allowed me to see the controls user (at the bottom of the list), and edit it.
I also created a .tcshrc file in the /home/controls directory and copied the information from the .bashrc file, and also moved the matlab path definition into the PATH environment variable.
Does anyone know if sourcing /cvs/cds/caltech/cshrc.40m would be usable on a 64 bit machine, or does a new one need to be made for Megatron and/or Rosalba? |
778
|
Fri Aug 1 01:13:32 2008 |
rana | Configuration | PSL | PSL Quad change and new script |
Koji and I changed a few optics so that now ~60% of the beam that went to the PSL POS QPD
now goes to the west side of the table for the aux. laser locking PLL. The beam is sort of
on the QPD again but needs a centering.
After this work I wrote a script SUS/freeswing-all.csh which puts a 30000 count offset into
the UL coil of each suspension and then disables it. This is just good enough to kick it up
so that the eigenfrequency can be measured. I ran it and it worked -- it finished running at
Fri Aug 1 00:44:30 PDT 2008 |
777
|
Thu Jul 31 16:11:22 2008 |
josephb | Configuration | Computers | Matlab on Megatron |
Matlab now works on megatron.
I did a few things:
1) Added to the PATH environment variable. Did this in .bash_profile in the /home/controls directory by adding the line
PATH=$PATH:/cvs/cds/caltech/apps/linux64/matlab/bin/
export PATH
This probably should be somewhere else up further up the line, but I was too lazy to figure it out.
2)Fixed a gateway mistake I had added earlier so the megatron could use the NAT router and see the outside world so yum worked.
3) Removed the i386 based libXp and openmotif packages.
4) Installed the x86_64 based libXp and openmotif packages.
Edit: Forgot that I also added the following line to the /etc/fstab file in order to mount the shared code. This was stolen directly from Rosalba's /etc/fstab file. This was so that it could see the matlab code.
linux1:/home/cds/ /cvs/cds nfs rw,bg,soft 0 0 |
776
|
Thu Jul 31 11:19:30 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Resonance search trial |
Last night, I tried to find the resonance of Yarm by sweeping the frequency of the injection beam.
A strong beat was present at LT_NPRO=48.7856[C_deg], the power coupling of the injection beam was estimated to be 35%.
(Vmax_beat = 1.060[V], Vmin_beat = 0.460[V], Vno_inject = 0.664[V])
The Yarm was locked and the alignment script was executed. The PLL between the PSL beam and the injection beam was
somehow locked.
I tried to scan the freq offset (f_PLL) at around 3.88MHz first, then at around 15.52MHz. They are supporsed to be the
first and fourth FSR of the Yarm cavity. The Yarm transmitted power (DC) was observed to find the resonance of the
injection beam. It would have been better to use the RF power, but so far I didnot have the RF PD prepared at the end
transmission. I just used the DC power.
I think I saw the increase of the transmitted power by 10%, at f_PLL = 15.517 +/- 0.003 [MHz]. This corresponds to the
arm cavity length of 38.640 +/- 0.007 [m]. The previous measurement was not so bad!
Y-arm length
e-log length [m]
-----------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 tape & photo
This 38.640 +/- 0.007
However, I had difficulties to have more precise measurement mainly because of two reasons:
o The PLL servo is too naive, and the freqency stability of the inj beam is not enough.
The injected beam should have the linewidth (=freq stability) narrower than the cavity linewidth.
o The PLL servo may experience change of the transfer function at around the resonance. The PLL works the other
frequencies. However, close to the resonance, it starts to be unstable.
So the next stuffs we should do is
o Build the PLL just using the incident beams to the ifo, not by the reflected beams.
o Build sophisticated servo to have better frequency stability.
o RF PD at the transmission.
Left the lab with Yarm locked, flipper down, shutter for the NPRO closed. |
775
|
Thu Jul 31 10:27:17 2008 |
rana | Update | PSL | PMC Scan Graphs |
Quote: | Graphs of the PMC scan data that I got earlier today.
|
On the UNIX computers, one can use 'convert' to change these to PNG. A DC offset should be added to the transmitted
light so that the scan can be plotted with a log y-scale. And, of course, Acrobat can be used to make it into a
single PDF file.
The PMC scan always has this distortion and so the input power has to be decreased to a few mW to reduce the
thermal expansion effect; the expansion coefficient for SiO2 is ~5 x 10^-7 / K and we're worried about nm level
expansions. |
774
|
Thu Jul 31 10:24:32 2008 |
Koji | Update | General | IFO status |
Last night I used the Y-arm for the abs length measurement. The Yarm was aligned by the script.
I left the ifo with the Yarm locked as it is the only meaningful configuration so far. |
773
|
Wed Jul 30 18:45:01 2008 |
rana | Configuration | SUS | New SUS Drift Technology |
I updated the SUS DRIFT screen again, this time with a new feature.
I used Rolf's idea for the AdvLIGO status system and just made the nominals be an
unused sub-field (.SVAL) of the main INMON record. Then I wrote a .csh script to
use tdsavg to average the current INMON vals and insert that as the .SVAL. The next
script should read the .SVAL and set the HIHI and LOLO based on this.
Of course, the values I have just entered are no good because our suspensions are in
a bad state but we can run this script (SUS/setDriftNoms) next time things are good.
And...even better would be if someone were to do the same but used mDV to grab the
minute trend in the past good times instead of the tdsavg (which can't go in the past). |
772
|
Wed Jul 30 16:35:56 2008 |
Eric | Update | PSL | PMC Scan Graphs |
Graphs of the PMC scan data that I got earlier today.
PMCLongScanWide.tiff shows the transmission intensity and PZT voltage plotted against time for a longer scan of the PMC (~120 seconds for one sweep).
PMCLongScanPeak.tiff is the same scan zoomed in on the primary peak. This scan was done with the laser power at around 1/3 its original value. However, scans done at around 1/6 the original value have peaks that are just as messy.
PMCShortScanWide.tiff shows the intensity and voltage for a more rapid scan (~30 second for one sweep). The black lines show how the peak positions are at very different PZT voltages (a difference of ~10 volts in both cases).
PMCShortScanPeak.tiff is zoomed in on the primary peak. The peak is much cleaner than for the long scan (less time for the laser's heat to expand the mirror?), though it is likely still too messy to reliably fit to a lorentzian. |
771
|
Wed Jul 30 15:28:08 2008 |
rob | Update | LSC | Y arm locked |
By using a combination of the SUS-DRIFT mon screen and the optical levers (which turned out pretty well) I steered the BS, ITMY, and ETMY back to their previous positions, and was able to lock the Y arm. The "Restore Y Arm" script on the IFO_CONFIGURE screen works. I couldn't test the alignment script, as a dump truck/construction vehicle showed up and started unlocking the MC. |
770
|
Wed Jul 30 15:12:08 2008 |
rana | Summary | IOO | History of the MC abs length |
> I was notified by Rob and Rana that there were many measurements of the MC abs length (i.e. modulation
> frequencies for the IFO.) between 2002 and now.
I will just add that I think that the Marconi/IFR has always been off by ~150-200 Hz
in that the frequency measured by the GPS locked frequency counter is different from
what's reported by the Marconi's front panel. We should, in the future, clearly indicate
which display is being used. |
769
|
Wed Jul 30 13:52:41 2008 |
Eric | Summary | Cameras | Weekly Summary |
I tracked the tendency for ezcaPut to fail and sometimes seg-fault in the camera code to a conflict between the camera API and ezca, either on the
network level or the thread level. Since neither are sophisticated enough to provide controls over how they handle these two things, I instead
separated the call to ezcaPut out into a small, separate script (a stripped down ezcawrite), which the camera code calls at the system level. This is a
bit hacky of a solution, but its the only thing that seems to work.
I've developed a transformation based on Euler angles that should be able to take the 4 OSEMs in a picture of the end mirror and use their relative
positions to determine the angle of the camera to the optic. This would allow the position data determined by the fitting software to be converted
from pixels to meaningful lengths, and should aid any servo-ing done on the beams position. I've yet to actually test if the equations work, though.
The servo code needs to have slew rate limiters and maximums/minimums to protect the mirrors written in to it before it can be tested again, but I
have no idea what reasonable values for these limits are.
Joe and I recently scanned the PMC by driving C1:PSL-PMC_RAMP with the trianglewave script over a range of -3.5 to -1.25 (around 50 to 150 volts
to the PZT) and read out C1:PSL-ISS_INMONPD to measure the transmission intensity. This included slightly under 2 FSRs. For slow scans (covering
the range in 150 to 300 s), the peaks were very messy (even with the laser power at 1/6 its normal value), and it was difficult to place where the
actual peak center occurred. For faster sans (covering the range in 30 seconds or so), the peaks were very clean and nearly symmetric, but were
not placed logically (the same peak showed up at two very different values for the PZT voltage in two separate runs). I don't have time to put
together graphs of the scans at the moment; I'll have that up sometime this afternoon. |
768
|
Wed Jul 30 13:14:03 2008 |
Koji | Summary | IOO | History of the MC abs length |
I was notified by Rob and Rana that there were many measurements of the MC abs length (i.e. modulation
frequencies for the IFO.) between 2002 and now.
So, I dig the new and old e-logs and collected the measured values of the MC length, as shown below.
I checked the presence of the vent for two big steps in the MC length. Each actually has a vent.
The elog said that the tilt of the table was changed at the OMC installation in 2006 Oct.
It is told that the MC mirrors were moved a lot during the vent in 2007 Nov.
Note:
o The current modulation freq setting is the highest ever.
o Rob commented that the Marconi may drift in a long time.
o Apparently we need another measurement as we had the big earthquake.
My curiosity is now satified so far.
Local Time 3xFSR[MHz] 5xFSR[MHz] MC round trip[m] Measured by
----------------------------------------------------------------------------
2002/09/12 33.195400 165.977000 27.09343 Osamu
2002/10/16 33.194871 165.974355 27.09387 Osamu
2003/10/10 33.194929 165.974645 27.09382 Osamu
2004/12/14 33.194609 165.973045 27.09408 Osamu
2005/02/11 33.195123 165.975615 27.09366 Osamu
2005/02/14 33.195152 165.975760 27.09364 Osamu
2006/08/08 33.194700 165.973500 27.09401 Sam
2006/09/07 33.194490 165.972450 27.09418 Sam/Rana
2006/09/08 33.194550 165.972750 27.09413 Sam/Rana
----2006/10 VENT OMC installation
2006/10/26 33.192985 165.964925 27.09541 Kirk/Sam
2006/10/27 33.192955 165.964775 27.09543 Kirk/Sam
2007/01/17 33.192833 165.964165 27.09553 Tobin/Kirk
2007/08/29 33.192120 165.960600 27.09611 Keita/Andrey/Rana
----2007/11 VENT Cleaning of the MC mirrors
2007/11/06 33.195439 165.977195 27.09340 Rob/Tobin
2008/07/29 33.196629 165.983145 27.09243 Rob/Yoichi |
767
|
Wed Jul 30 13:09:40 2008 |
josephb, Eric | Configuration | PSL | PMC scan experiment |
We turned the PSL power down by a factor of 4, blocked one half of the Mach Zehnder and scanned the PMC by applying a ramp signal to PMC PZT. Eric will adding plots later today of those results.
We returned the power to close to original level and removed the block on the Mach Zehnder, and then relocked the PMC. |
766
|
Wed Jul 30 13:08:44 2008 |
Max Jones | Update | Computer Scripts / Programs | Weekly Summary |
This week I've been working on the noise budget script. The goal is to add Siesmic, Darm, Mich, Prc and magnetometer noise. I believe I've added Seismic noise in a reasonable and 40m specific manner (please see the attached graph). The seismic noise in the noise budget at 100 Hz was 10 times higher than that predicted by Rana in elog #718. This could be due to the fact that graph is taken from data today when the device is unlocked and construction workers are busy next door. I am currently trying to fix the getDarm.m file to add the DARM source to the noise budget. I have run into several problems, the most pressing of which was that the C1:LSC-DARM_ERR channel is zero except with the interferometer is being locked. According to Rob, we only save data for approximately a day (we save trends for much longer but this is insufficient for the noise budget script) and sometimes we are not locked the night before. Rob showed me how I may introduce an artificial noise in the DARM_ERR signal but I'm having trouble making the script output a graphic. I'm still unsure how to make the getDarm function 40m specific.
Today I will start working on my second progress report and abstract. |
765
|
Wed Jul 30 12:36:19 2008 |
Sharon | Update | | Weekly update |
This week included many computer's issues. I tested Alex's new C code (the one that saves the FIR coefficients and restores them when you start running the code again). Seems there is an improvement in the adaptation time, but not a significant one (more details on the coming report). I had to recompile simulink and the FB whenever I wanted to find a solution for taking the record of those coefficients. This is so I could simulate the adaptive filter with a regular IIR filter and compare the two.
After Rob tried to help and it seems to be an impossible to a huge hassle mission, we thought of a different method to do this. I re-compiled the old simulink file and restored the .ini file and all should be back in place. Instead of finding the FIR coefficients, I am going to use one noise source in the adaptive filter, stop the adaptation (by setting mu and tau to 0), and put excitation instead of the noise signal. The transfer function I will get between the exc. and MC1_IN1 is the filter I am looking for.
Also seems that whenever I get the MC unstable, and the adaptive code stops itself, it doesn't come back. Setting the reset flag to a different number (anything other than 0) and pressing the reset button will get it working again, but the CPU will always flip and the ASS computer needed a restart. Still haven't found a problem in the C code, but that's the plan. Moreover, I want to change Alex's code, so that instead of starting from zero like in Matt's code, or starting from the old coefficients like in Alex's, it is going to calculate a Wiener Filter as the first set of coefficients. This will hopefully reduce the adaptation time.
I have also been working on my progress report, and stood in line for the MC... Still standing... |
764
|
Wed Jul 30 12:03:44 2008 |
Masha | Summary | Auxiliary locking | weekly summary |
I've been learning about mode matching/beam propagation, so I can work on getting more
light into the fiber and increase the phase noise signal. I am also looking into phase
lock loops and noise in the fiber stabilization system to understand the noise sources
and figure out what our goals are in fiber stabilization.
In the lab, I've reproduced the Mach Zehnder interferometer that I had at the 40m, now
with a 50m fiber in one arm. I have done some preliminary fiber noise measurements
and revised estimations of noise sources (see attached plots). Once the digital
acquisition system is back up, I will be able to better manipulate the signals to cancel
laser amplitude noise and amplitude noise from variation in the amount of coupling into
the fiber. Some improvements in progress are more stable mounts for the fiber couplings,
faraday isolator, and better mode matching with the fiber.
Also working on my progress report. |
763
|
Wed Jul 30 01:08:50 2008 |
rana | Summary | SUS | SUS Drift Screen |
This is a snap of the SUS Drift screen with all of the optics biases set back to their nominal
values except for the MC which Rob aligned and I didn't feel like mis-aligning. The reference
on the screen is from 3/25 when Andrey felt that Rob had a good IFO alignment.
Anything more than a few thousand is significant and more than 10k means something is wrong:
I wailed on the PRM for awhile and was able to loosen it up a little. The LL & LR sensors now
show some life one the dataviewer. The UL & UR are still railed ~1.6 V so that means that the
optic is pitched back. With aggressive pitch wailing I can see the PRM's ULR/UR sensors go
rail to rail so that means that the magnets are still on - although they may be half busted.
If they're OK we should be able to just re-sling this guy.
Did the same on SRM. The OSEM values have shifted on these, but not disastorously. The SIDE,
however, is completely unresponsive. The little signal I see when driving is is probably just
capacitive pickup in the cables. Have to vent to fix this one.
ITMX Has good life in all but the LR & UR channels. They respond, but the signal is very weak.
Seems like these magnets have not fallen off but that they are not between the LED/PD anymore.
ITMY seems ok. Check the spectra to be sure.
BS seems ok as well. Swings freely and no kinks in the swinging sensor waveforms. Check the spectra. |
762
|
Wed Jul 30 00:42:04 2008 |
rana | Update | SUS | Trends and file formats |
I propose that we do not use .eps format but .pdf instead. For images like the plots Sharon
has below we should use only .png and for pictures like what Steve posted, use JPG or PNG.
PDF is a standard and light weight. PNG is very good for plots/lines and is lossless. JPG does
a good job with regular camera pictures because we don't really care about the compression
loss on those.
Here's a trend of the UL sensors for all the optics - conversion is 32768 cts / mm. You can see
that the quake was just before 19:00 UTC (noon our time). The events an hour after are when
Rob, Jenne, and I start exciting the optics to shake them loose - wanging the pit/yaw sliders
around is not violent enough and so I injected a 130000 count sine wave at 0.5 Hz so as to
create a high force square wave. This seems to have worked for ETMY but no such luck yet with
the others. |
761
|
Tue Jul 29 23:04:34 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
Quote: |
The measurement of the PZT open loop TF is very suspicious. According to this, the PC path has a very large gain even at very low frequencies (there is no cross over above 1kHz). This cannot be true. Maybe the cavity's optical gain was low when it was locked with only the PZT. I will re-measure it.
|
I measured it again and found that the loop was oscillating at 13.5kHz. I think this oscillation prevented the ref. cavity from building up the power and consequently lowered the optical gain making it marginally stable. So the PZT path open loop TF posted in the previous entry is wrong.
I was able to stop the oscillation by lowering the gain down to CG=-7.6dB and FG=-8.78dB.
The first attachment shows the measured open loop transfer function.
Since the gain setting is different from when the over all open loop TF was measured, I scaled the gain (attachment 2).
However, this plot seems to have too much gain. Scaling it down by 20dB makes it overlap with the over all open loop TF.
Maybe the gain reading on the EPICS screen is wrong. I will measure the actual gain tomorrow. |
760
|
Tue Jul 29 21:04:55 2008 |
Sharon | Update | | OSEM's Power Spectrum |
From 16:30 this afternoon |
759
|
Tue Jul 29 19:53:19 2008 |
Koji | Update | SUS | PRM photos from the south window |
Steve and Koji
We took some photos of PRM from the south window.
You can see one of the side magnets, a wire stand-off, and the wire itself from the round hole.
So, the wire looks OK.
For the coils, we could see only one coil. The magnet is apparently too high. |
758
|
Tue Jul 29 19:41:38 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
Last night I measured a bunch of transfer functions on the FSS loop.
All the loop gains were measured with the common gain = 30db and the fast gain = 18dB.
(1) The first attachment is the overall open loop transfer function of the FSS loop. I put a signal from the Test IN2 and observed signals from IN1 and IN2.
The UGF is about 180kHz.
By increasing the RF amplitude going to the EOM (i.e. increasing the sideband power), I can further increase the gain of the servo.
However, it made the PC drive immediately crazy. Probably it was some oscillation.
(2) Then I locked the ref. cav. with only the PZT actuator. I did so by simply unplugging the cable going to the PC.
Surprisingly, the cavity locked with the *same* gain setting as before. The second attachment shows the open loop transfer function measured in this configuration. It seems wrong, I mean, it should be unstable. But the cavity locked. A mystery.
(3) The third plot is the measured TF from the Test IN1 of the FSS board to the fast out (output to the PZT).
(4) By dividing the TF measured in (2) with the TF of (3), I got the response of the PZT times the cavity response. This is shown in the attachment 4.
(5) We can guess the open loop TF of the PC path by subtracting the TF in (2) from (1). It is shown in the attachment 5.
(6) The filter shape of the PC path is measured by injecting signal from the Test IN1 of the FSS board and observing it at the PC output. Since it is a high voltage output, I reduced the common gain to -8.5dB during the measurement. The attachment 6 is the measured filter shape. The gain is corrected to show what it should look like when the common gain = 30dB.
(7) By dividing (5) with (6), I plotted the response of the PC times the cavity response in the attachment 7. Since the 1/f cavity pole and the response of the PC, which is proportional to f, should cancel out, we expect a flat response above the cavity pole frequency (38kHz). You could say it is a sort of flat, if you have obscured eyes.
The measurement of the PZT open loop TF is very suspicious. According to this, the PC path has a very large gain even at very low frequencies (there is no cross over above 1kHz). This cannot be true. Maybe the cavity's optical gain was low when it was locked with only the PZT. I will re-measure it.
The plot (4) is also strange becaues it does not show the low pass feature expected from the cavity pole. |
757
|
Tue Jul 29 18:15:36 2008 |
rob | Update | IOO | MC locked |
I used the SUS DRIFT MON screen to return the MC suspensions to near their pre-quake values. This required fairly large steps in the angle biases. Once I returned to the printed values on the DRIFT screen (from 3/08), I could see HOM flashes in the MC. It was then pretty easy to get back to a good alignment and get the MC locked. |
756
|
Tue Jul 29 14:38:02 2008 |
rob | Update | SUS | ETMY and PRM have EQ related problems |
Quote: | The attached trend shows that ETMY and PRM both had large steps in their sensors
around the time of the EQ and didn't return afterwards. The calibration of the
OSEM sensors is ~0.5 mm/V. The PRM sensors respond when we give it huge biases
but there is very little change in the ETMY. Almost certainly true that the
optics have shifted in their wire slings and that we will have to vent to
examine and repair at least ETMY.
Jenne is looking at the spectra of the other suspensions to see if there is
other more subtle issues. |
Some additional notes/update:
ETMY, PRM, & MC2 had OSEM signals at a rail (indicating stuck optics). Driving the optics with full scale DAC output freed ETMY and MC2, so while these may have shifted in their slings it may be possible to avoid a repair vent. PRM is still stuck. One OSEM appears to respond with full range to large drives, but the other three face OSEMS remain disturbingly near the rail (HIGH, which is what would happen if a magnet fell off). |
755
|
Tue Jul 29 13:54:08 2008 |
rana | Update | SUS | ETMY and PRM have EQ related problems |
The attached trend shows that ETMY and PRM both had large steps in their sensors
around the time of the EQ and didn't return afterwards. The calibration of the
OSEM sensors is ~0.5 mm/V. The PRM sensors respond when we give it huge biases
but there is very little change in the ETMY. Almost certainly true that the
optics have shifted in their wire slings and that we will have to vent to
examine and repair at least ETMY.
Jenne is looking at the spectra of the other suspensions to see if there is
other more subtle issues. |
754
|
Tue Jul 29 11:50:01 2008 |
Jenne | Update | Environment | 5.6 Earthquake |
Earthquake Details
Magnitude 5.6
Date-Time
* Tuesday, July 29, 2008 at 18:42:15 UTC
* Tuesday, July 29, 2008 at 11:42:15 AM at epicenter
Location 33.959°N, 117.752°W
Depth 12.3 km (7.6 miles)
Region GREATER LOS ANGELES AREA, CALIFORNIA
Distances
* 3 km (2 miles) SW (235°) from Chino Hills, CA
* 8 km (5 miles) SE (127°) from Diamond Bar, CA
* 9 km (5 miles) NNE (23°) from Yorba Linda, CA
* 11 km (7 miles) S (178°) from Pomona, CA
* 47 km (29 miles) ESE (103°) from Los Angeles Civic Center, CA
Location Uncertainty horizontal +/- 0.3 km (0.2 miles); depth +/- 1.3 km (0.8 miles)
Parameters Nph=144, Dmin=8 km, Rmss=0.42 sec, Gp= 18°,
M-type=local magnitude (ML), Version=1
Source
* California Integrated Seismic Net:
* USGS Caltech CGS UCB UCSD UNR
Event ID ci14383980
All the watchdogs tripped. I'll put them back after lunch, after the optics have had time to settle down. |
753
|
Tue Jul 29 09:12:43 2008 |
Koji | Configuration | IOO | MC length measurement |
I found that the prev modulation freq had been determined with a same kind of measurement by Osamu, which also looked accurate.
http://www.ldas-sw.ligo.caltech.edu/ilog/pub/ilog.cgi?group=40m&task=view&date_to_view=09/12/2002&anchor_to_scroll_to=2002:09:12:17:10:30-ajw
(There is also a document by Dennis to note about this measurement
http://www.ligo.caltech.edu/docs/T/T020147-00.pdf )
So, it means that the round trip length of the MC shortened by 1mm in the 6 years.
New OLD
--------------------------
27.0924 27.0934 [m]
Quote: | rob, yoichi
We measured the length of the mode cleaner tonight, using a variant of the Sigg-Frolov method.
....
The new f2 frequency is:
New OLD
--------------------------
165983145 165977195
|
|