ID |
Date |
Author |
Type |
Category |
Subject |
10846
|
Mon Dec 29 21:30:25 2014 |
rana | Update | General | recovery |
- Control room is at +66 F. Brrrr.
- Alignment of input beam into the IMC was wacky; locked on HOM.
- Re-aligned beam into the PMC first.
- Restarted mxstream for c1sus.
- Power cycled Martian router; all laptops were lost. Now better.
- Aligned launch beam from PSL to get onto the MCWFS better, MC is locking OK now. Moved MC SUS a little to get back to OSEM values from 6 days ago.
- Fixed LOCK_MC screen quad displays to be cooler.
- changed many of the ezcawrite calls in the mcup / mcdown to be 'caput -l' for more robustness. Still need ezcawrite for the binbary calls.
- I didn't touch the mirrors on the MC REFL path, so we can still use that as a reference once the temperature returns to normal; the PSL room temp is down to 20C from 22 C a couple days ago.
- TRX values coming in to the LSC were frozen and the TRY_OUT16 was going to huge values even though camera flashes were reasonable. Tried restarting c1lsc model. No luck.
- Also tried shutdown -r now on c1lsc. No luck. Probably needs a RFM boot.
- Increased the FSS SLOW servo threshold to 9999 counts to avoid it running on some misaligned TEM01 mode locks. Increased the PID's I gain from 0.05 to 0.356 by tuning on some step responses as usual.
- By midnight the control room temperature is back around 71 F.
|
9760
|
Fri Mar 28 22:10:00 2014 |
rana, koji | Update | SUS | recovery from |
* EQ Southeast of LA around 45 minutes ago. Callum and I felt it.
* Koji and I came in to recover. MC suspensions had been mis-aligned. ETMs both tripped their watchdogs.
* As before, the ETMX was stuck in its cage and the UR & LR OSEMs were reading zero V.
* We moved the MC sus back to their OSEM values from 2 hours ago. Koji aligned everything else by just using his chee.
* To shake the ETMX loose, I tried a different tactic than the "Great Balls of Fire". I started giving it 20k steps through the ASCYAW filterbank (with ramping OFF). I used the green light in the X arm video to look at the swinging. Using this as a readback I pumped the OFFSET button on ASCYAW to resonantly swing up the yaw motion. I had to turn the watchdog thresh up to 2000 temporarily. After a couple minutes the ETMX was free.
* We then used the bias sliders to steer it back onto the OL center (which Q nicely lined up for us recently) and then X arm locked in green right away.
Fri Mar 28 22:38:04 2014: We've just ridden through the 5th aftershock. None of the aftershocks have tripped the watchdogs but they break the IMC lock. |
9763
|
Mon Mar 31 08:11:00 2014 |
Steve | Update | SUS | recovery from earthquakes |
Quote: |
* EQ Southeast of LA around 45 minutes ago. Callum and I felt it.
* Koji and I came in to recover. MC suspensions had been mis-aligned. ETMs both tripped their watchdogs.
* As before, the ETMX was stuck in its cage and the UR & LR OSEMs were reading zero V.
* We moved the MC sus back to their OSEM values from 2 hours ago. Koji aligned everything else by just using his chee.
* To shake the ETMX loose, I tried a different tactic than the "Great Balls of Fire". I started giving it 20k steps through the ASCYAW filterbank (with ramping OFF). I used the green light in the X arm video to look at the swinging. Using this as a readback I pumped the OFFSET button on ASCYAW to resonantly swing up the yaw motion. I had to turn the watchdog thresh up to 2000 temporarily. After a couple minutes the ETMX was free.
* We then used the bias sliders to steer it back onto the OL center (which Q nicely lined up for us recently) and then X arm locked in green right away.
Fri Mar 28 22:38:04 2014: We've just ridden through the 5th aftershock. None of the aftershocks have tripped the watchdogs but they break the IMC lock.
|
Local earthquake activity is up. Our suspensions are holding well. ETMX and ETMY sus damping restored. |
5963
|
Sun Nov 20 14:48:55 2011 |
kiwamu | Update | General | recovery from the power shutdown |
Recovery from the power shutdown
- Turned on the raid disk of linux1.
- Woke linux1 up. No fsck this time.
- Woke up all the lab machines.
- Turned on all the electronics racks' AC powers
- Woke up fb and then front end machine (the raid for fb had been already up as I turned on the AC powers)
- Turned on all the electronics racks' DC powers (Sorensens, Kepcos, and etc.)
- Turned on the Marcnois which is driving the RF generation box.
- Woke up all the lasers (PSL and End lasers)
- Some burtrestoring (c1ioo, c1sus, c1susaux, c1msc, c1psl, c1iool0, c1auxey, c1auxex, c1oaf, c1pem)
- Ran autolockMC scripts on op340m => After relocking of PMC a lock of MC was acquired immediately.
- Turned on the PZT HV drivers.
Some issues
- One of the Sorensens in 1X8 rack is showing the current limit sign. This is exactly the same situation as we saw before (#5592).
Currently it's off. It needs an investigation to find who is drawing such a large amount of current.
- C1SCX is not properly running. Rebooting the machine didn't help. This needs to be fixed.
The symptom is : (1) all the values are frozen in the screens. (2) the c1scx status screens shows NO SYNC sign. (3) however the timing board looks blinking happily.
- One of the VME rack on 1X3 is not showing the +/-15V green LED lights.
This is the one on very upper side of the rack, which contains the old c1lsc machine and c1iscaux2. If we are still using c1iscaux2, it needs to be fixed. |
5965
|
Sun Nov 20 15:33:37 2011 |
rana | Update | General | recovery from the power shutdown |
restarted Apache on Nodus for the SVN as per wiki instructions |
848
|
Mon Aug 18 17:37:14 2008 |
rob | Update | Locking | recovery progress |
I removed the beam block after the PSL periscope and opened the PSL shutter.
There was no MC Refl beam on the camera, so I decided to trust the PSL launch
and aligned the MC to the PSL beam. Here are the old and new values for
the MC angle biases:
__Epics_Channel_Name______ __OLD_____ ___New___
C1:SUS-MC1_PIT_COMM 4.490900 3.246900
C1:SUS-MC1_YAW_COMM 0.105500 -0.912500
C1:SUS-MC2_PIT_COMM 3.809700 3.658600
C1:SUS-MC2_YAW_COMM -1.837100 -1.217100
C1:SUS-MC3_PIT_COMM -0.614200 -0.812200
C1:SUS-MC3_YAW_COMM -3.696800 -3.303800
After this, the beam looks a *little low* going into the Faraday Isolator.
Nonetheless, after turning on the IFO input steering PZTs, I was able to
quickly steer the PRM get a beam on the REFL camera and into the REFL OSA.
The PRM optical lever beam is also striking the quad.
I then used the ETMX optical lever as a reference for realigning. After
steering around the input PZTs and ITMX, I saw some flashes in Xarm trans, then got
it locked and ran the alignment script ~5 times. The arm power went
up to 0.9, so I tweaked the MC1 to put the MC refl beam back on MCWFS.
The XARM power then went up to .96. Good enough for now.
Then I started to try and re-align the YARM. Since the oplevs for both ITMY
and the BS are untrustworthy, I first tried to get the beam bouncing off ITMX
and the BS back into the AS OSA, to try and recover some BS alignment. This
didn't work, as the AS OSA may not be a good reference anyways. After
wandering around in the dark for a little while, I decided to try an automated
scan of the alignment space. I used the trianglewave script to scan
the angle biases of BS, ITMY, & ETMY, then looked at the trend of the transmitted
power to find the gps time when there were flashes. I then used
time_machine_conlog to restore the biases to that time. This was close
enough to easily recover the alignment. After several rounds of aligning &
centering oplevs, things look good.
Also locked a PRM. Will work on the DRM tomorrow.
I'm leaving the optics in their "aligned" states over night, so they can
start their "training."
Note: The MC is not staying locked. Needs investigation.
For tomorrow:
lock up the DRM
fix the mode cleaner
re-align mode cleaner to optimize beam through Faraday
re-align all optics again (will be much easier than today)
re-align beam onto all PDs after good alignment of suspended optics is established. |
7720
|
Sat Nov 17 03:30:13 2012 |
Den, Ayaka | Update | Alignment | red in arms |
We aligned accurately 00 green in yarm, changed voltage on PZT2 to see red flashing at TRY at the normalized level 0.2-0.3. The plan was to lock yarm using POY11 and green from other side, maximize red TRY by adjusting PZT2. But POY11 does not go out of the vacuum, so we adjusted TRY by flashing. 2 DOFs of PZT2 is not enough to match 4 DOFs of red beam so we adjusted both PZT2 and cavity mirrors. TRY flashing is 0.5-0.6 and green is still locking to 00 though its transmission is not maximized. We'll fix it later by adjusting input green beam.
Next we wanted to get red beam on TRX PD. Beam steering was done by BS only. We misaligned BS in pitch and excited BS angle motion by 1000 counts. We could see red beam moving on the wall of ETMX chamber. We moved it to ETMX mirror frame, estimated position of the mirror center and moved BS to this position. The beam should be approximately in the middle. For now we can not see red beam on the camera at ETMX table, more work is needed. |
7721
|
Sat Nov 17 18:02:14 2012 |
Den | Update | Alignment | red in arms |
Quote: |
POY11 does not go out of the vacuum
|
It does but slighty low and does not get on mirrors. We need to change optic mounts to adjust the height. Red is flashing in yarm at 00 and 10 modes. TRY is ~0.4-0.5.
I've adjusted BS angle, camera and TRX PD at ETMX table so I can see red flashing at 03 mode while green is locked to 00 and its transmission is maximized. I thought that by adjusting BS angle, I will be able to align red to 00 not disturbing green, but this was not the case. Maximum TRX I could get was 0.1. I've adjusted POX to get into PD and I can see PDH signal though I can't lock as cavity is still misaligned for red. |
7722
|
Sat Nov 17 22:50:17 2012 |
Koji | Update | Alignment | red in arms |
You have constraints for the IR beams (i.e. one PZT and one BS for 8 dofs), so now you need to align the arms for the input IR beams.
The PZT and BS should be aligned so that you have the beam spots as center as possible with the above restrictions.
Then realign end greens for the given arm alignment. You can replace the mounts if necessary to align the end green.
Even if you lose the coarse alignment of the green, realignment is not difficult as you know now
Quote: |
Quote: |
POY11 does not go out of the vacuum
|
It does but slighty low and does not get on mirrors. We need to change optic mounts to adjust the height. Red is flashing in yarm at 00 and 10 modes. TRY is ~0.4-0.5.
I've adjusted BS angle, camera and TRX PD at ETMX table so I can see red flashing at 03 mode while green is locked to 00 and its transmission is maximized. I thought that by adjusting BS angle, I will be able to align red to 00 not disturbing green, but this was not the case. Maximum TRX I could get was 0.1. I've adjusted POX to get into PD and I can see PDH signal though I can't lock as cavity is still misaligned for red.
|
|
7730
|
Tue Nov 20 02:57:24 2012 |
Ayaka, Den, Koji | Update | Locking | red in arms |
We aligned and locked x and y arms.
MCL loop makes arms lock unstable, adds a lot of noise at frequencies 60-100 Hz. We'll fix it.
At some point we were not able to lock because of ADC overflows of PO signals. They happened if whitening filters were enabled. So we reduced the gain of POX whitening filters down to 36 dB and POY - to 39 dB. Now cavities can be locked with whitening filters.
Also we changed the pedestal of the lens in the beam path to the POX because the beam was too high.



|
13129
|
Fri Jul 21 08:05:07 2017 |
Steve | Summary | SUS | red, blue, green laser diodes ordered |
Also ordered 1 ea.
Blue 20mW
Green 10mW
IR 780nm 3mW
HeNe 1103P 2mW Recertified |
3876
|
Sat Nov 6 07:26:54 2010 |
yuta | Summary | IOO | reduced common mode displacement of the beam through MC1 to MC3 |
(Koji, Suresh, Yuta)
Summary:
We need MC to be locked and aligned well to align other in-vac optics.
By using a new python script A2L.py(see elog #3863), we are measuring A2L coupling and centering the beam.
Tonight's goal was to reduce common mode displacement of the beam through MC1 to MC3, and we succeeded.
Strategy of beam centering:
We first ignore the beam position at MC2 and focus on MC1,MC3. If MC1,MC3 alignments are given, MC2 alignment is determined.
For MC1 and MC3, we first reduce the common mode displacement using the last steering mirror at PSL table.
The last steering mirror makes translation of the incident beam because it is far (~m) from the MC.
So,
1. Rotate the steering mirror nob a little
2. Lock MC so that MC beam axis will be the same as the incident beam axis
3. A2L measurement
4. To 1-3 over until the beam crosses MC1 center to MC3 center axis
The amount of vertical/horizontal displacements of the beam spot at MC1 and MC3 should be the same.
From our convention, for vertical, MC1 and MC3 should have opposite sign. For horizontal, same sign. (see picture below)
Result:

From the A2L measurement, now the beam spot is lower right at MC1 and upper right at MC3.
The directions of the beam spot motion agree with the steering mirror tilts.
Also, the amount of the motion seems reasonable.
1 tooth rotation of the steering mirror nob makes ~1e-3 inch push which equals to ~0.5mrad rotation.
The steering mirror to MC is like ~2m and 0.5mrad mirror tilt makes ~2mm displacement at the MC optics.
2mm displacement is ~15% at the mirror (see Koji's elog #2863;note that coil-coil distance is 1/sqrt(2) of the mirror diameter).
The measured vertical spot motion is ~15%/1tooth. Horizontal is sqrt(2) times bigger because of the angle of the MC1, MC3 and they are about that much, too.
Plan:
- Use IM1 to make beam tilt and finally center the beam
- Improve the script so that it features weighting in fitting
- Write a script that balances actuation efficiency of the 4 coils.
We are currently assuming that 4 coils are well balanced.
In order to do the balancing, we need to balance OSEMs too. |
13213
|
Wed Aug 16 14:57:01 2017 |
Steve | Update | PSL | ref Cavity heating blanket power supply |
The last entry I found relating to ref cavity was 2011 Aug 19 |
3272
|
Fri Jul 23 08:15:59 2010 |
steve | Update | PSL | ref cavity ion pump |
The ref cavity ion pump was running at 7.7kV instead of 5kV
This Digitel SPC-1 20 l/s ion pump should be running at 5kV |
6753
|
Tue Jun 5 09:44:14 2012 |
steve | Update | PSL | ref cavity ion pump must be pumped |
Quote: |
The ref cavity ion pump was running at 7.7kV instead of 5kV
This Digitel SPC-1 20 l/s ion pump should be running at 5kV
|
I noticed that the ion pump was turned off.
It was turned ON. It showed 0.00 microA at 5kV The current display is not sensitive enough. There must be some small outgassing or leak. It adds up if we stop pumping.
We want to keep the reference cavity in pristine condition. It required the ion pump running all times. |
1943
|
Tue Aug 25 18:42:42 2009 |
steve | Update | PSL | reference cavity temp box temporarly out of order |
Quote: |
The PSL Temperature Box (D980400-B-C, what kind of numbering scheme is that?) modified at LHO/LLO ~8 years ago to have better resolution on the in-loop temperature sensors.
I haven't been able to find a DCN / ECN on this, but there's an elog entry from Hugh Radkins here. I'm also attaching the PDF of the latest drawing (circa 2000) from the DCC.
The schematic doesn't show it, but I am guessing that the T_SENSE inputs are connected to the AD590 chips, and that 4 of these are attached somehow to the RefCav can. IF this is true, I don't understand why there are input resistors on the LT1125 of U1; the AD590 is supposed to be a current source ?
Peter King is supposed to be coming over to work on this today so whoever spots him should force/cajole/entice him to elog what he's done. Film him if necessary.
I also think R1-8 should be swapped into metal film resistors for stability. The datasheet says that it puts out 1 uA/K, so the opamps put out 10 mV/K.
J8 and JP1 should be shorted to disable both the tidal and VME control input. Both are unused and a potential source of drift.
|
Peter King is updating our temp box as Hugh did at Hanford Oct.22 of 2001 I still have not seen an updated drawing of this.
The LT 1021-7 reference chip will arrive tomorrow morning. This modification should be completed by noon.
** The link to the DCN from Hugh is here in the DCC. |
1945
|
Tue Aug 25 21:36:28 2009 |
Alberto | Update | PSL | reference cavity temp box temporarly out of order |
Is that the reason of the PSL craziness tonight? See attachment. |
1946
|
Tue Aug 25 21:55:11 2009 |
rana | Update | PSL | reference cavity temp box temporarly out of order |
There's no elog entry about what work has gone on today, but it looks like Peter took apart the reference cavity temperature control around 2PM.
I touched the reference cavity by putting my finger up underneath its sweater and it was nearly too hot to keep my finger in there. I looked at the heater power supply front panel and it seems that it was railed at 30 V and 3 A. The nominal value according to the sticker on the front is 11.5 V and 1 A.
So I turned down the current on the front panel and then switched it off. Otherwise, it would take it a couple of days to cool down once we get the temperature box back in. So for tonight there will definitely be no locking. The original settings are in the attached photo. We should turn this back on with its 1A setting in the morning before Peter starts so that the RC is at a stable temp by the evening. Its important NOT to turn it back on and let it just rail. Use the current limit to set it to 1 A. After the temperature box is back in the current limit can be turned back up to 2A or so. We never need the range for 3A, don't know why anyone set it so high. |
1949
|
Wed Aug 26 15:42:17 2009 |
Alberto | Update | PSL | reference cavity temp box temporarly out of order |
Quote: |
There's no elog entry about what work has gone on today, but it looks like Peter took apart the reference cavity temperature control around 2PM.
I touched the reference cavity by putting my finger up underneath its sweater and it was nearly too hot to keep my finger in there. I looked at the heater power supply front panel and it seems that it was railed at 30 V and 3 A. The nominal value according to the sticker on the front is 11.5 V and 1 A.
So I turned down the current on the front panel and then switched it off. Otherwise, it would take it a couple of days to cool down once we get the temperature box back in. So for tonight there will definitely be no locking. The original settings are in the attached photo. We should turn this back on with its 1A setting in the morning before Peter starts so that the RC is at a stable temp by the evening. Its important NOT to turn it back on and let it just rail. Use the current limit to set it to 1 A. After the temperature box is back in the current limit can be turned back up to 2A or so. We never need the range for 3A, don't know why anyone set it so high.
|
While Peter King is still working on the reference cavity temperature box, I turned the power supply for the reference cavity's heater back on. Rana turned it off last night since the ref cav temperature box had been removed.
I just switched it on and turned the current knob in the front panel until current and voltage got back to their values as in Rana's picture.
I plan to leave it like that for half an hour so that the the cavity starts warming up. After that, I'll turn the current back to the nominal value as indicated in the front panel. |
1951
|
Wed Aug 26 16:11:41 2009 |
Alberto | Update | PSL | reference cavity temp box temporarly out of order |
It turned out that half an hour was too long. In less than that the reference cavity temperature passed the critical point when the temperature controller (located just below the ref cav power supply in the same rack) disables the input power to the reference cavity power supply.
The controller's display in the front shows two numbers. The first goes with the temperature of the reference cavity; the second is a threshold set for the first number. The power supply gets enabled only when the first number comes under the threshold value.
Now the cavity is cooling down and it will take about another hour for its temperature to be low enough and for the heater power supply to be powered. |
1952
|
Wed Aug 26 16:31:34 2009 |
steve | Update | PSL | reference cavity temp box temporarly out of order |
Quote: |
It turned out that half an hour was too long. In less than that the reference cavity temperature passed the critical point when the temperature controller (located just below the ref cav power supply in the same rack) disables the input power to the reference cavity power supply.
The controller's display in the front shows two numbers. The first goes with the temperature of the reference cavity; the second is a threshold set for the first number. The power supply gets enabled only when the first number comes under the threshold value.
Now the cavity is cooling down and it will take about another hour for its temperature to be low enough and for the heater power supply to be powered.
|
The cavity temp cooled below SP2 set point 0.1 The Minco SP1 (present temp in Volts) now reading -0.037 so DC power supply was turned on and set to 12V 1A
|
5712
|
Thu Oct 20 12:43:19 2011 |
steve | Update | SAFETY | refilled first aid kits & their locations |
First aid kits are located close vicinity of entry doors and under circuit breaker panels.
|
2936
|
Sun May 16 12:51:08 2010 |
kiwamu | Update | Green Locking | reflected beam at PD |
Mode matching to the cavity has been done.
Now the reflection from the cavity is successfully going into the PD.
However I could not see any obvious error signal.
I should compute and re-check the expected signal level.
(mode matching of the crystal)
On the last Wednesday, Kevin and I measured the mode profile before the PPKTP crystal, and we found the Gaussian beam at the crystal is focused too tightly (w = 38 um).
In order to achieve the best conversion efficiency the waist size should be 50.0 um. So we moved a lens, which was located before the crystal, to 7 cm more away from the crystal. Eventually we obtained a better focus (w = 50.1 um).
Thanks, Kevin. You did a good job.
(mode matching of the cavity)
I put a lens with f=-50 mm after the crystal to diverge the green beam more quickly. Then the beam is going through the Faraday of 532 nm, two final modematching lenses and ETMY at last.
By shifting the positions of these lenses, I obtained the reflection from ITMY with almost the same spot size as that of the incident. This means modemathing is good enough.
I put two more steering mirrors before its injection to the ETM, this allows us to align the beam axis against the cavity.
I aligned the axis by using the steering mirrors and now the green beam are successfully hitting the center of both the ETM and the ITM.
Then the alignment of the ETM and the ITM was adjusted from medm, so that both reflection goes in the same path as that of the incident.
And then I put a PD (Thorlabs PDA36A) to see the reflection rejected by the Faraday.
Connecting a mixer and a local oscillator (Stanford func. generator) with f=200kHz, but I couldn't see any obvious PDH signal....
Since the PD is DC coupled, the signal is almost dominated by DC voltage. Even if I inserted a high pass filter to cut off the DC, the AC signal looks very tiny.. |
2937
|
Sun May 16 19:25:45 2010 |
Koji | Update | Green Locking | reflected beam at PD |
Don't make a short cut. The beam size at a single place does not tell you anything.
Measure the mode of of the beam at multiple points. Calculate the mode matching ratio.
Align the mirrors precisely. Try to see the DC fringe. Predict the size of the DC fringe.
Test the demodulation system with a function generator. Find the 200kHz signal using the spectrum analyzer to find the signal and the optimal alignment.
Put the DC signal and the AC signal to the oscilloscope as X&Y.
Good luck.
|
417
|
Mon Apr 7 18:58:49 2008 |
steve | Update | General | reflectivity of SS304 |
The reflectivity of stainless steel 304 super polished # 8 was measured the same way as elog entry 409
The reflectivity: 74 +- 1 % from incident angle 10 to 80 degrees |
409
|
Wed Apr 2 15:03:51 2008 |
steve | Update | General | reflectivity of black glass |
The reflectivity of black glass, shade 12 was supplied by Donald O'Shea
of Emerald Glass Inc., Westlake, OH 44145
The reflectivity of this glass was measured as shown
Old 1064 nm Crysta Laser with poor beam quality was the source. |
6280
|
Tue Feb 14 17:09:05 2012 |
steve | Update | General | reflectivity of green welding glass |
Schott, Athermal green welding glass, shade #14 reflectivity was measured in 1.2W, ~1 mm diameter beam of MC reflected.
The P polarization measurement was done with the help of half wave plate and PBC
|
6095
|
Fri Dec 9 15:14:41 2011 |
Den | Update | CDS | release 2.4 |
Alex has created a 2.4 branch of the RCD. Jamie, we can try to compile and install it. As a test a did it for c1oaf, it compiles, installs and runs once variables SITE, IFO, RCD_LIBRARY_PATH are properly defined. As we do not want to run one model at 2.4 code and others at 2.1, I recompiled c1oaf back to 2.1. Jamie, please, let me know when you are ready to upgrade to 2.4 release. |
8254
|
Thu Mar 7 18:48:43 2013 |
yuta | Update | Computer Scripts / Programs | releasing my secret scripts |
I released/updated my secret scripts to real scripts directory.
I checked they run correctly (but maybe not working correctly).
burtlookup.py
in ./scripts/general/burtlookup.py
It returns a value of a specified channel in the past using burt snapshots.
Help is available.
GRtoggler.py
in ./scripts/ALS/GRtoggler.py
Toggles green shutter until it locks TEM00.
Help is available. Threshold setting is critical.
MCbeeper.py
in ./scripts/MC/MCbeeper.py
Beeps when MC is unlocked.
yutalib.py
in ./scripts/pylibs/yutalib.py
Python library for data loading, saving and plotting.
I think it's well commented.
pyezcalib.py
in ./scripts/pylibs/pyezcalib.py
Python library for ezca stuff.
It has functions for recording and resetting default channel values in case of interrupt.
./scripts/PRCmodescan
Python scripts for PRC modescan. Not well commented. Not organized.
See elog #8012
./scripts/Alignment
Python and shell scripts for alignment work. Not well commented.
See elog #8164
./scripts/SUS/OplevCalibration
Python scripts for oplev calibration. Not well commented.
See elog #8221
./scripts/dither/gfactormeasurement
Python scripts for g-factor measurement. Not well commented.
See elog #8230
./scripts/SUS/ActuatorCalib
Python scripts for calibrating actuators. Not well commented.
See elog #8242 |
11618
|
Fri Sep 18 09:06:26 2015 |
rana | Frogs | Computer Scripts / Programs | remote data access: volume 1, Inferno |
Trying to download some data using matlab today, I found that my ole mDV stuff doesn't work because its MEX files were built for AMD64...
Tried to rebuild the NDS1 MEX according to 7 year old instructions didn't work; our GCC is 'too' new.
From the Remote Data Access wiki (https://wiki.ligo.org/RemoteAccess/MatlabTools) I got the new 'get_data.m' and 'GWdata.m'. These didn't run, so I updated the nds2-client and matlab-nds2-client on Donatella.
Still doesn't run to get 40m data. It recognizes that we're C1, but throws some java exception error. Maybe it doesn't work on the NDS1 protocol of our framebuilder?
So then I noticed that our NDS2 server on megatron is no longer running...thought it was supposed to run via init.d. Found that the nds2 binary doesn't run because it can't find libframecpp.so.5; maybe this was blown away in some recent upgrade? We do have versions 3, 4, 6, 7, & 8 of this library installed.
So now, after an hour or two, I'm upgrading the nds2 server on megatron (plus a hundred dependencies) as well as getting a newer version of matlab to see if there's some kind of java version issue there.
Of course python still works to get data, but doesn't have any of the wiener filter calculating code that matlab has... |
11623
|
Fri Sep 18 19:19:49 2015 |
rana | Frogs | Computer Scripts / Programs | remote data access: volume 1, Inferno |
NDS2 restarted after hours long upgrade process; testing has begun. Let's try to get some long stretches of MC locked with MCL FF ON this weekend so's I can test out the angular FF idea. |
11813
|
Wed Nov 25 22:37:12 2015 |
yutaro | Update | LSC | removal of Gautam's cable in 1Y2 and restoration of POYDC |
[yutaro, Koji]
We disconnected the cable that was connected to CH5 of the whitening filter in 1Y2, then connected POYDC cable to there (CH5). This channel is where POYDC used to connect.
Then we turned on the whitening filter for POYDC (C1:LSC-POYDC FM1) and changed the gain of analog whitening filter for POYDC from 0 dB to 39 dB (C1:LSC-POYDC_WhiteGain). |
2898
|
Fri May 7 21:55:59 2010 |
kiwamu | Update | PSL | remove Mach-Zehnder |
[Koji, Kiwamu]
The Mach-Zehnder on the PSL table was removed.
A path for 166 MHz modulation in the Mach-Zehnder (MZ) was completely removed, the setup for another path remains the same as before.
Also the photo detector and the CCD for the PMC transmittion were moved to behind the PZT mirror of PMC.
Before removing them, we put an aperture in front of the PD for MC REFL so that we can recover the alignment toward MC by using the aperture.
After the removal we tried to re-align the EOM which imposes the sideband of 29MHz for MC.
We eventually got good alignment of 97% transmissivity at the EOM ( the power of the incident beam is 1.193W and trans was 1.160W )
And then we aligned the beam going to MC by guiding the reflected beam to the aperture we put. This was done by using the steering mirrors on the periscope on the corner of the PSL table.
Now MC got locked and is successfully resonating with TEM00.
|
8168
|
Tue Feb 26 10:17:44 2013 |
Jamie | Update | SUS | removed global/local switch from sus_single_control |
[jamie, brett]
Yesterday we added some new control logic to the sus_single_control part to allow for global damping. Today we decided that a binary switch between local/global damping was probably a bit extreme since we might want to smoothly ramp between them, instead of just hard switching. So we removed this switch and are now just summing the control inputs from global and local damping right before the output matrix.
Changes were committed to the SVN, and all suspension models were recompiled/installed/restarted.
|
2169
|
Mon Nov 2 13:34:36 2009 |
kiwamu | Configuration | PSL | removed multiply resonant EOM |
I removed the multiply resonant EOM that has been set by a SURF student from PSL table.
I will use it for checking the resonant circuit. |
8953
|
Thu Aug 1 16:03:52 2013 |
Steve | Update | General | reopen BS & IOO |
Quote: |
[Koji, Manasa]
We missed to check that we had the green transmitted to the PSL after flipping the SRC and PRC folding mirrors.
There is no green transmission reaching the PSL even after locking the arms to green.
We should fix this tomorrow. The BS heavy door should come off.
Steve! Do not start pump down tomorrow !
|
We closed the chambers last night with heavy doors and reopened it today. |
8307
|
Mon Mar 18 14:58:15 2013 |
Steve | Update | Green Locking | repair or replace dead NPRO |
JDSU can repair the Lightwave M126-1064-700 NPRO, sn 415 They do not need the Controller sn 516
Posted in the 40m Wiki_ PSL_ NPRO cost repair and/or option to buy Innolight laser as replacement |
12659
|
Fri Dec 2 16:21:12 2016 |
gautam | Update | General | repaired projector, new mixer arrived and installed |
The most recent power outage took out our projector and mixer. The projector was sent for repair while we ordered a new mixer. Both arrived today. Steve is working on re-installing the projector right now, and I installed the mixer which was verified to be working with our DAFI system (although the 60Hz issue still remains to be sorted out). The current channel configuration is:
Ch1: 3.5mm stereo output from pianosa
Ch2: DAFI (L)
Ch3: DAFI (R)
I've set some random gains for now, but we will have audio again when locking 


|
4137
|
Tue Jan 11 17:08:43 2011 |
Suresh | Configuration | PSL | replaced the pzt-steering mirror on PSL |
[Rana, Jenne, Suresh]
Yesterday, We replaced the existing beam steering mirror and the PZT it was mounted on with a Gooch and Housego mirror (20ppm transmission at < 30deg incidence @1064nm) and a Polaris-K1 Newport steel mount. (JD)
We realigned the G&H mirror to get the MC flashing.
We then had to reduce the gain in the servo circuit to accommodate the increased optical power going into MC.
MC locked to PSL once again.
Note:
the old mirror stuck on the PZT has been removed. The mirror had no markings and has been stored in the 'Unknown Optics' Box along the East Arm.
The PZT has been stored in the PZT cabinet along with its 2in mirror mount. |
313
|
Tue Feb 12 16:39:52 2008 |
rob | Update | Locking | report |
Did some locking work on DRFPMI on sunday and (with John) on monday nights. So far progress has not been terribly encouraging.
Problems include the DD_handoffs not working and the CARM->MCL handoff not working so well. To get around the DD signals trouble, I decided for now to just ignore 67% of the DD signals. We should be able to run with PRC & MICH on single demod signals, and SRC on a DD signal. This seems to work well in a DRMI state, and it also works well in a DRMI+2ARMs state.
The CARM->MCL handoff actually works, but it doesn't take kindly to the AO path and it doesn't work very stably. I guess this was always the most fragile part of the whole locking procedure, and it's fragility is really coming to light now. Investigation continues. |
531
|
Thu Jun 12 01:51:23 2008 |
rob | Update | Locking | report |
rob, john
We've been working (nights) on getting the IFO locked this week. There's been fairly steady incremental progress each night, and tonight we managed to control CARM(MCL) using PO-DC, with the CARM(AO) path also on PO-DC. In the past, reaching this state has usually meant we're home free, as we could just crank the gain on the common mode servo and merrily reduce the CARM offset. Tonight, however, this state has been very twitchy, and efforts to ramp up the gain have been unsuccessful.
I've attached a diagram which I hope makes clear where we are in the stages of lock acquisition. |
532
|
Thu Jun 12 15:09:33 2008 |
alan | Update | Locking | report |
Rob: Awesome figure. As you can imagine, I have lots of questions, and hope that you will consider this figure to be the beginning, leading to ever-more detailed versions. But for now, I just want to ask whether you understand *what* is twitchy, and what the twitchiness does to prevent you from taking this further? |
533
|
Thu Jun 12 15:55:15 2008 |
rob | Update | Locking | report |
Quote: | Rob: Awesome figure. As you can imagine, I have lots of questions, and hope that you will consider this figure to be the beginning, leading to ever-more detailed versions. But for now, I just want to ask whether you understand *what* is twitchy, and what the twitchiness does to prevent you from taking this further? |
I definitely don't understand what's twitchy, but I have suspicions. Tonight we'll try to start by revisiting the other loops (the non-CARM loops) and see how they're dealing with the changing power levels. It may be that the DARM loop is going unstable due to gain variations (due to either increasing power or to rotation of demod phase) or it could be the PODD (or SPOB) saturating with increased power in the recycling cavity. I just hope the glitchiness doesn't have a digital origin. |
1889
|
Wed Aug 12 02:00:32 2009 |
rob | Update | Locking | report |
Spent a lot of time aligning tonight. The BS is not staying put--sometimes after a lock loss it gets badly mis-aligned.
DD handoff is working, after putting beam on REFL diodes and running senseDRM script. |
1930
|
Wed Aug 19 23:57:35 2009 |
rob | Update | Locking | report |
locking work proceeding apace tonight.
diagonalized DRM with setDDphases & senseDRM.
initial locks are fairly quick, aqstep script succeeds reliably.
first part of cm_step (handoff CARM-> MCL) usually works.
tuning up later parts of cm_step (presumably due to optical gain changes resulting from MOPA decline).
got to arm powers ~60. |
4846
|
Tue Jun 21 00:38:21 2011 |
Sonali | Update | Green Locking | repositioned "QPDY_PD" |
1.The aim is the laser frequency stabilisation of PSL and AUX.
2.As a first step we want to couple some of the AUX laser beam into a single mode optical fibre and route the fibre to the PSL table.
3.The position of the optical fibre on the ETMY table is shown by the coupler in the attached picture. The yellow lines show the new scheme we want to implement.
4.WHAT WE DID TODAY.
- The Y-arm was locked so that we could use the transmitted IR beam as the reference.
- We shifted the position of the "QPDY_PD" .
- We also shifted the "ETMYT" camera to make space for the "QPDY_PD".
- The mirror directing the beam into the "QPDY_PD" was rotated by 90 degrees to adhere to the new position of the "QPDY_PD".
- The attached photo shows the table as it is right now after the repositioning.
5.We continue with the positioning of the fibre-coupling tomorrow. |
1643
|
Tue Jun 2 23:53:12 2009 |
pete | DAQ | Computers | reset c1susvme1 |
rob, alberto, rana, pete
we reset this computer, which was out of sync (16384 in the FE_SYNC field instead of 0) |
10476
|
Tue Sep 9 09:19:21 2014 |
Steve | Update | safety | response to fried Sorensen |
Quote: |
Quote: |
Q and Steve will follow elog 10028 entry to prepare the vacuum system for safe reboot
|
Here's the sequence of the morning so far:
- I aligned the IFO (IR arms with ASS, X green with PZTs, PRM with PRMI locked on REFL33)
- I closed the PSL shutter, and went inside to align PRM and both ITM oplevs (all others were within 10urad of zero in both directions)
- While aligning those oplevs, I noticed the smell of burnt electronics. We tracked it down to the +15V sorensen in the rack nearest the PSL table
- I claim the precipitating event was PSL shutter activity. If I recall correctly, the seismic rainbow traces went bonkers around the same time as the shutter was closed. There is a Guralp interface in the rack powered by the failed sorensen, so this would explain the erratic seismometer signals correlated with the power supply failure. We will look into potential shorts caused by the shutter. (Steve looked up the PMC trans and Guralp DQ channels, and confirmed the temporal coincidence of the events.)
- We shut off all of the sorensens so that electronics were not being driven asymmetrically.
- Steve and I secured the vacuum system for computer reboots, as referred to in Steve's elog. Some combination of Jenne, Rana and Manasa shut down the control room computers, and turned off the watchdogs.
- Manasa and I moved Chiara inside, next to Mafalda, along with its backup HDs. It has been labeled.
- Booted up control room machines, they came up happy.
- FB and front-ends didn't need reboot, for some lucky reason. Watchdogs came back happily, oplev spots didn't move noticeably.
The IFO is still down, as the PMC won't lock without the rack power, and we haven't pinned down the shorting mechanism. We don't want the replacement sorensen to immediately blow when plugged in.
|
Smoking Sorensen could have triggered the smoke alarm!
Yesterday I called CIT Fire Protection Services very first to deactivate the sensors temporarily. The smoke alarm was turned back on right after the particle count dropped.
Their phone number is posted at the entry doors 104M and 104W as shown below.
|
3415
|
Thu Aug 12 23:17:54 2010 |
Zach | Update | elog | restarted |
script |
3416
|
Thu Aug 12 23:41:48 2010 |
Jenne | Update | elog | restarted |
More of the same.
Who is putting weird figures into the elog?!?! I haven't checked lately, but this is what usually crashes the elog. It's been happening a lot lately, and it might be the .pdf's.
Let's play a new game. We'll call this game "Everyone only use .png files for the next week" Ready? GO! |