40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 329 of 346  Not logged in ELOG logo
ID Date Author Type Category Subjectdown
  7355   Thu Sep 6 19:36:19 2012 JenneUpdateRF SystemAS 55 is fine

Quote:

I was going to lock MICH, but I don't see anything on dataviewer for either AS55Q or ASDC.  I went out onto the table, and there is beam on the diode, but no mV out on a voltmeter connected to the DC monitor point.  I shine a flashlight, and still I see 0.0mV.  So, something is up with AS55, but since the michelson is aligned right now, I'm not going to mess with the PD.  I won't lock MICH, I'll just move on.  Koji is taking a look at the diode, but if he doesn't get it figured out tonight, we can take a closer look after we pump down.

 Never mind.  I was using an LED flashlight, which doesn't emit light that the PD is sensitive to.  A regular flashlight gives plenty of signal on the DC out. 

Using an SR560 with 30Hz low pass and gain of 100, it was pretty easy to align the light on the PD. 

Koji calculates in his head that there is about 6 microwatts of light incident on the PD, which is not a lot of light. Our SNR may be kind of lame for locking right now.

  7771   Sat Dec 1 00:13:16 2012 DenUpdateAdaptive FilteringARMS and MC

Quote:

 

 I actuate on ETMY for YARM and ETMX for XARM. For now I did adaptive filtering for both arms at the same time. I used the same parameters for xarm as for yarm.

I've notched 16 Hz resonance because it has high Q and I need to think more how to subtract it using FIR filter or apply IIR.

I'll try MC stabilazation method.

 Adaptive filtering was applied to MC and X,Y arms at the same time. I used a very aggressive (8 order) butterworth filter at 6 Hz as an AI filter for MC not to inject noise to ARMS as was done before

Mu for MC was 0.2, downsample = 16, delay = 1. I was able to subtract 1 Hz. Stack subraction is not that good as for arms but this is because I used only one seismometer for MC that is under the BS. I might install accelerometers under MC2.

EDIT, JCD, 18Feb2013:  Den remembers using mu for the arms in the range of 0.01 to 0.1, although using 0.1 will give extra noise.  He said he usually starts with something small, then ramps it up to 0.04, and after it has converged brings it back down to 0.01.

  7769   Fri Nov 30 22:11:50 2012 DenUpdateAdaptive FilteringARMS

Quote:

This is interesting. I suppose you are acting on the ETMY.
Can you construct the compensation filter with actuation on the MC length?
Also can you see how the X arm is stabilized?

This may stabilize or even unstabilize the MC length, but we don't care as the MC locking is easy.

If we can help to reduce the arm motion with the MCL feedforward trained with an arm sometime before,
this means the lock acquisition will become easier. And this may still be compatible with the ALS.

Why did you notched out the 16Hz peak? It is the dominant component for the RMS and we want to eliminate it.

 I actuate on ETMY for YARM and ETMX for XARM. For now I did adaptive filtering for both arms at the same time. I used the same parameters for xarm as for yarm.

I've notched 16 Hz resonance because it has high Q and I need to think more how to subtract it using FIR filter or apply IIR.

I'll try MC stabilazation method.

  8097   Mon Feb 18 00:03:46 2013 ZachUpdateComputer Scripts / ProgramsARBCAV v3.0

I have uploaded ARBCAV v3.0 to the SVN. The major change in this release, as I mentioned, is the input/output handling. The input and output are now contained in a single 'model' structure. To define the cavity, you fill in the substructure 'model.in' (e.g., model.in.T = [0.01 10e-6 0.01]; etc.) and call the function as:

model = arbcav(model);

Note: the old syntax is maintained as legacy for back-compatibility, and the function automatically creates a ".in" substructure in the output, so that the user can still use the single-line calling, which can be convenient. Then, any individual parameter can be changed by changing the appropriate field, and the function can be rerun using the new, simpler syntax from then on.

The function then somewhat intelligently decides what to compute based on what information you give it. Using a simple option string as a second argument, you can choose what you want plotted (or not) when you call. Alternatively, you can program the desired functionality into a sub-substructure 'model.in.funct'.

The outputs are created as substructures of the output object. Here is an example:

 

>> th = 0.5*acos(266/271) *180 /pi;

OMC.in.theta = [-th -th th th];

OMC.in.L = [0.266 0.284 0.275 0.271];

OMC.in.RoC = [1e10 2 1e10 2];

OMC.in.lambda = 1064e-9;

OMC.in.T = 1e-6 * [8368 25 8297 33];

OMC.in.f_mod = 24.5e6;

>> OMC

OMC = 

    in: [1x1 struct]

>> OMC = arbcav(OMC,'noplot')

Warning: No loss given--assuming lossless mirrors 

> In arbcav at 274 

OMC = 

         in: [1x1 struct]

        FSR: 2.7353e+08

        Lrt: 1.0960

    finesse: 374.1568

    buildup: 119.6956

         df: [1000x1 double]

      coefs: [1000x4 double]

        HOM: [1x1 struct]

>> OMC.HOM

ans = 

      f: [1x1 struct]

    pwr: [1x1 struct]

>> OMC.HOM.pwr

ans = 

    carr: [15x15 double]

     SBp: [15x15 double]

     SBm: [15x15 double]

 

Some other notes:

  • The annoying Mdo.m has been internalized; it is no longer needed.
  • For the next release, I am working on including:
    • Finite mirror thickness/intracavity refractive elements - If, for god knows what reason, you decide to put a mirror substrate within a cavity 
    • Mode overlap - Calculating the overlap of an input beam to the cavity
    • Mode matching - Calculating a mode matching telescope into the cavity for some defined input beam
    • Anything else?

I have added lots of information to the help header, so check there for more details. As always, your feedback is greatly appreciated.

  6650   Fri May 18 15:25:15 2012 steveUpdateSUSAR coated lens swapped in at ETMX oplev

Quote:

 ETMX oplev had 6 mm diameter beam on the qpd.  I relayed the beam path with 2 lenses  to get back  3 mm beam on the qpd

BRC 037  -100 Bi _concave lens and PCX 25  200 VIS do the job. Unfortunately the concave lens has the AR 1064.

 

 

 The uncoated bi-concave lens was replaced by AR coated one: KBC 037 -100 AR.14 resulting 35% count increase on qpd

  466   Tue May 6 17:28:39 2008 robConfigurationLSCAP33 -> POX33

I am in the process of switching the POX166 and AP33 photodetectors, so that they become POX33 and AP166. The IFO_CONFIGURE buttons won't work until I finish.
  467   Wed May 7 15:25:41 2008 robConfigurationLSCAP33 -> POX33

Quote:

I am in the process of switching the POX166 and AP33 photodetectors, so that they become POX33 and AP166. The IFO_CONFIGURE buttons won't work until I finish.


Done. We're now in the 40m CDD configuration.
  13602   Fri Feb 2 22:47:00 2018 KojiSummaryGeneralAP1053: Packaging & Performance

I've packaged an AP1053 in a Thorlabs box. The gain and the input noise level were measured. It has the gain of ~10 and the input noise of ~0.6nV/rtHz@50MHz~200MHz.

Details

AP1053 was soldered on Thorlabs' PCB EEAPB1 (forgot to take a picture). The corresponding chassis is Thorlabs' EEA17. There is a 0.1uF high-K ceramic cap between DC and GND pins. The power is supplied via a DC feedthru capacitor (Newark / Power Line Filter / 90F2268 / 5500pF) found in the WB EE shop. The power cable has a connector to make the long side of the wires detachable. Because I did not want to leave the RF signal path just mechanically touched, the SMA connectors were soldered to the PCB. As the housing has no access hole, I had to make it at one of the sides.

The gain of the unit was measured using the setup shown in the upper figure of Attachment 2. When the unit was energized, it drew the current of about 0.1A. The measued gain was compensated by the pick off ratio of the coupler (20dB). The gain was measured with the input power of -20, -10, 0, 10, and 15dBm. The measurement  result is shown in Attachment 3. The small signal gain was actually 10dB and showed slight degradation above 100MHz. At the input of 10dB some compression of the gain is already visible. It looks consistent with the specification of +26.0dBm output for 1dB compression above 50MHz and +24.0dBm output below 50MHz.

The noise level was characterized with the setup shown in the bottom figure of Attachment 3. The noise figure of the amplifier is supposed to be 1.5dB above 200MHz and 3.5dB below 200MHz. This is quite low and the output noise of AP1053 can not be measured directly by the analyzer. So, another LN amplifier (ZFL-500HLN) was stacked. The total gain of the system was measured in the same way as above. The measured noise level was ~0.7nV/rtHz between 50MHz and 200MHz. Considering the measurement noise level of the system, it is consistent with the input referred noise of 0.6nV/rtHz. I could not confirm the advertized noise figure of 1.5dB above 200MHz. The noise goes up below 50MHz. But still 2nV/rtHz at 3MHz. I'd say this is a very good performance.

  12091   Wed Apr 27 09:05:10 2016 SteveUpdateGeneralAP viewport

                   Sad situation

    The anti-symmetric port

spider webs fly in the wind

  13713   Wed Mar 28 16:44:27 2018 SteveUpdateGeneralAP table today

MCRefl is absent, it is under investigation. I removed a bunch of hardware and note all spare optics along the edges.

 

  4865   Thu Jun 23 10:17:49 2011 steveUpdatePSLAP table is open to PSL again

Access to the north side of the PSL table is blocked by the    8" beam guard. This opens the beam pathways between them.

  3894   Thu Nov 11 11:08:26 2010 steveBureaucracyPEMAP table found open

Please remember to cover the optical tables !

  5389   Mon Sep 12 18:45:04 2011 AnamariaConfigurationLSCAP table current layout

Before we install the REFL 3f PDs I made a drawing of the current table layout, since there has been no update lately. Once I've incorporated the two extra PDs (now seen sitting bottom left), I will update the drawing and post in the wiki as well.

  7740   Sat Nov 24 22:14:08 2012 KojiUpdateGeneralAP table cleaning up

On Wednesday (21st) night, I checked the AP table as I wanted to try PRMI locking. 
It was difficult to work with the table as there were so many unnecessary components on it.
Also the beams went through complicated paths as they have funny angles. 

So I decided to clean up of IMC REFl WFS, IFO REFL, and IFO AS paths.
I found that the AS beam was highly astigmatic as the beam went through a (too-much-) tilted lens.
I made several blocked optical paths for REFL and AS for future extension of the detection system.

The current status of the table was uploaded below.

The optical spectrum analyzers and the aux NPRO were left untouched but they should be moved
somewhere (either on the table or outside) which does not disturb the other optical paths.
 


After the cleaning, I started locking PRMI. I could lock PRMI stably. But I could not figure out how
the intra-cavity mode looked like as I did not have the POP camera. The power recycling
gain was not quantitatively evaluated as I did not have POP and I wasn't sure how the beam was aligned at POX/POY.


We need to know:

- Quantitative evaluation of the beam shape in the PRC

- Quantitative evaluation of the power recycling gain

Some obvious things to be fixed

- The POX whitening filters seem not switching. This issue should be checked at the circuit module itself and at the BIO.

- The POX beam is not well focused on the PD. This was particularly clear when PRMI was locked with carrier.

- The POP beam is going nowhere. We need POP55 and POP CCD for diagnoses.

I haven't checked ITMY table.

  4264   Wed Feb 9 10:25:46 2011 steveUpdateSAFETYAP table

I blocked the  AP table's south west 10" ID port since it is obsolete with the new layout.

Reminder: items on the enclosure self can fall down in an earthquake. I moved oscilloscope and heavy calorimeter head from the edge of the cliff.

  13767   Thu Apr 19 09:57:03 2018 gautamUpdateWikiAP and ETMX tables uploaded to wiki

The most up to date pictures of the AP table and ETMX table that Steve took have been uploaded to the relevant page on the wiki. It seems like the wiki doesn't display previews of jpg images - by using png, I was able to get the thumbnail of the attachment to show up. It would be nice to add beam paths to these two images. The older versions of these photos were moved to the archive section on the same page.

  4919   Thu Jun 30 07:42:48 2011 SureshUpdateIOOAP Table Power levels

I measured the power in various beams on the AP table to check and see if any beam is having too much power. 

I am uploading two pics one is in the "high power state" and the other is the "low power state".   High power in the MC REFL PD occurs when the MC is unlocked.  In addition the WFS also will see this  hike in power. We wish to make sure that in either state the power levels do not exceed the max power that the PDs can tolerate.

 

 

Low Power state: MC locked, PRM not aligned.                                                   High Power state: MC unlocked,  PRM aligned.

 

AS-lowP_state.pdf             AS-highP_state.pdf

  1446   Mon Mar 30 17:02:46 2009 YoichiConfigurationGeneralAP OSA aligned
I aligned the AP OSA, which had been mis-aligned for a while.
  11576   Fri Sep 4 10:25:19 2015 SteveConfigurationIOOAOM stage is ready

New stage can hold the correct polarization.

DRAWING CORRECTION:  Post block height was lowered to be 1.88" from 2.0"

  11581   Mon Sep 7 18:25:16 2015 ranaConfigurationIOOAOM stage is ready

The new stage missed the right height by ~2 mm. sad

Even if I completely bottom out the (New Focus 9071) 4-axis stage, its not short enough. So I removed the AOM from the beam and re-aligned into the PMC.

Steve, please get the aluminum piece remachined to go down by 2.5 mm so we can have some height adjustment room.

Quote:

New stage can cheeky hold the correct polarization.

Also, the turning mirror mount just after the EOM and before the AOM is a U-100 and we want it to be a Suprema for stability - let's not forget to swap that after Steve gets the mount fixed.

  10115   Mon Jun 30 22:40:21 2014 ManasaUpdatePSLAOM ringdown

Quote:

Quote:

I would like to measure the switching time of the AOM. So I have disconnected the modulation input to the AOM that comes from the ISS. I have also turned OFF the SR560's and the AWG that belong to ISS. 

Pics and cable connections of the state in which the ISS setup was left at, will be updated soon.

I installed a fast PDA10CF along the path of a leaking beam from one of the steering mirrors that direct the main beam to the PMC. This beam was dumped to a razor blade. I removed the razor blade and installed a Y1 to steer this beam through a lens on the PD.

Pics of the layout post-installation will be updated.

Also, I tested the AOM by giving it 0-1V modulation input from the AWG. This has been disconnected after the test. So everything should be as it was pre-testing.

Edit/manasa/ Data has not been fit correctly in here. A proper fit will follow this elog.

Proper fits and numbers are here :elog

Earlier last week I had tried to measure the AOM ringdown and concluded I could not make one.

I was proved wrong and I was able to make a measurement. I am still not sure why I was not able to make the measurement earlier with the very same settings and configuration.

What I did:

I gave the AOM a 0-1V modulation input using the signal generator (50 ohm feedthrough bnc was used to impedance match the AOM driver's modulation input). For the measurement here I used a 1Hz square wave. I used a 300MHz oscilloscope to look at the falling edge of the ringdown PD output installed.

I recorded a few ringdown samples. To get a quick number, I fit one such sample to find the AOM switching time as 1.48us (Plot attached). 

  15053   Wed Nov 27 16:10:29 2019 gautamUpdateLSCAOM reconnected

i reconnected the AOM driver to the AOM in the main beam path (it was hijacked for the AOM in the AUX laser path for Anjali's MZ experiment). I also temporarily hooked up the AOM to a CDS channel to facilitate some swept-sine measurements. This was later disconnected. The swept sine will need some hardware to convert the bipolar drive signal from the CDS system to the unipolar input that the AOM driver wants (DTT swept sine wont let me set an offset for the excitation, although awggui can do this).

Quote:

if the RP don't fit

u must acquit

sweep the laser amplitude

to divine the couplin w certitude

  12198   Mon Jun 20 08:26:56 2016 SteveUpdatePSLAOM pictures

Good job Johannes and Subham.

 

  7403   Tue Sep 18 20:32:42 2012 ManasaConfigurationPSLAOM installation

 {Jan, Manasa}

We tried towards calibrating the RF driver of the AOM. We decided to use the normal power supply for both the driver control voltage and the ALC voltage.  But we could not figure out the type of the ALC port to find a compatible mating connector...it did not match with SMA, SMB or SMP. Finally I wrote to the company and got to know it is a filtered feed through. Now that we know how to control the ALC voltage, we will try looking at the signal for varying ALC voltage and see how that goes. 

But when we tried to see the 2W RF signal through the RF scope, with ALC open, we found that the RF signal was distorted and did not measure 80MHz.  It was lame that we did not get a snapshot 

P.S. The AOM has been left disconnected from the RF driver. 

  7409   Wed Sep 19 11:39:37 2012 ManasaConfigurationPSLAOM installation

Quote:

 {Jan, Manasa}

We tried towards calibrating the RF driver of the AOM. We decided to use the normal power supply for both the driver control voltage and the ALC voltage.  But we could not figure out the type of the ALC port to find a compatible mating connector...it did not match with SMA, SMB or SMP. Finally I wrote to the company and got to know it is a filtered feed through. Now that we know how to control the ALC voltage, we will try looking at the signal for varying ALC voltage and see how that goes. 

But when we tried to see the 2W RF signal through the RF scope, with ALC open, we found that the RF signal was distorted and did not measure 80MHz.  It was lame that we did not get a snapshot 

P.S. The AOM has been left disconnected from the RF driver. 

 {Jan, Manasa}

We started again to calibrate the RF driver. We connected the ALC to the power supply and observed the output RF power on the scope. The RF power did change with ALC voltage, but the RF signal still seems not to be operating at 80MHz 

There is some kind of additional disturbance to the waveform at 80MHz (the frequency of just the waveform with tall peaks or small peaks alone). We made sure we get a snapshot this time!! I am not sure if it will be safe to feed this RF signal to the AOM as such

ALC_25.png

  7411   Wed Sep 19 15:41:27 2012 ManasaConfigurationPSLAOM installation

 

 AOM driver has been removed from the PSL table for testing. However the AOM is still inside; so there should be no problems with the alignment. 

  7414   Wed Sep 19 23:17:25 2012 ranaConfigurationPSLAOM installation

Mannasa and Unni and I looked at the RF driver for the AOM. It was fine.

With the ALC input left unconnected, with the power supply set to +28V, it was drawing 0.56 A.

By adjusting the modulation input we were able to get 1.1 Vrms into the scope (terminated at 50 Ohms) after going through 2 10dB attenuators. 11 Vrms into 50 Ohms is 33.8 dBm ~ 2W.

The RF power trimpot on the front of the driver is now adjusted so that -0.31 to 0.69 V takes the driver output from off to 2W output at 80 MHz.

 

The previous distorted signal that Jan and Manasa saw was at a level of ~100 mVrms, which is ~0.5 mW of power. At this tiny drive level, the internal amplifier is not linear and is mostly putting out a signal at ~160 MHz.

 

We checked by putting a square wave into the modulation input that the RF power from the driver would indeed shut off with a time scale of ~20 ns. Manasa will add a picture to this entry. We are ready now to calibrate the transmitted power of the AOM v. the modulation input voltage and then to measure the step time of the AOM.

Remember: do NOT believe the spec sheet of whatever PD you are using. All commercial PDs are slower than they advertise. In order to measure a <1 us step time you must use a PD with a >50 MHz 'bandwidth'.

  7416   Thu Sep 20 01:29:04 2012 ManasaConfigurationPSLAOM installation

Quote:

Mannasa and Unni and I looked at the RF driver for the AOM. It was fine.

With the ALC input left unconnected, with the power supply set to +28V, it was drawing 0.56 A.

By adjusting the modulation input we were able to get 1.1 Vrms into the scope (terminated at 50 Ohms) after going through 2 10dB attenuators. 11 Vrms into 50 Ohms is 33.8 dBm ~ 2W.

The RF power trimpot on the front of the driver is now adjusted so that -0.31 to 0.69 V takes the driver output from off to 2W output at 80 MHz.

 

The previous distorted signal that Jan and Manasa saw was at a level of ~100 mVrms, which is ~0.5 mW of power. At this tiny drive level, the internal amplifier is not linear and is mostly putting out a signal at ~160 MHz.

 

We checked by putting a square wave into the modulation input that the RF power from the driver would indeed shut off with a time scale of ~20 ns. Manasa will add a picture to this entry. We are ready now to calibrate the transmitted power of the AOM v. the modulation input voltage and then to measure the step time of the AOM.

Remember: do NOT believe the spec sheet of whatever PD you are using. All commercial PDs are slower than they advertise. In order to measure a <1 us step time you must use a PD with a >50 MHz 'bandwidth'.

  7425   Fri Sep 21 12:12:56 2012 ManasaConfigurationPSLAOM installation

    {Jan, Manasa}

We installed the AOM driver back on the PSL table this morning. To calibrate the AOM RF output we connected a 1V dc to the modulation input of the driver and we are convinced with the setup.

Before we direct the rf signal to the AOM, in order to check its diffraction efficiency, we would like to setup an rf PD at the AOM output. We think we have place for a filter and PD after the AOM (replacing a beam dump) and would like to confirm the position before we actually install them. The layout is the picture below showing sweet spots for the new pd to sit. If you think it may disturb the system in any way, let us know!

PSL.png

  7464   Tue Oct 2 16:15:22 2012 ManasaConfigurationPSLAOM installation

Quote:

    {Jan, Manasa}

We installed the AOM driver back on the PSL table this morning. To calibrate the AOM RF output we connected a 1V dc to the modulation input of the driver and we are convinced with the setup.

Before we direct the rf signal to the AOM, in order to check its diffraction efficiency, we would like to setup an rf PD at the AOM output. We think we have place for a filter and PD after the AOM (replacing a beam dump) and would like to confirm the position before we actually install them. The layout is the picture below showing sweet spots for the new pd to sit. If you think it may disturb the system in any way, let us know!

 

The rf PD and filter have been installed at the earlier proposed spot on the PSL table.  

psl_aom.png

  7471   Wed Oct 3 16:52:16 2012 ManasaConfigurationPSLAOM installation

{Jan, Manasa}

We set start to check the performance of the AOM on the PSL table. The AOM driver spits out ~1.5W rf at 80MHz for 1V DC at its modulation input. In order to align the AOM, we reduced the input power to the AOM to ~10% using the QWP between the PBS and the laser. We touched the steering mirror before the AOM...but did not succeed in getting any appreciable first order deflection. We then released the AOM mount and moved it a few microns in and out until we obtained a significant change in power along the zero-order beam from 400mV to 100mV when the rf power was changed from 0 to ~1.5W (by changing modulation input from 0 to 1V).  The AOM was clamped at this alignment and the QWP was rotated to give maximum input power. 

During the course of aligning the AOM, the PMC unlocked and was restored after the alignment. 

All went well without having to make any emergency calls to anyone

We will now have to think about switching the AOM on and off for ringdown measurements. This could be done by either using a high-power rf switch or by switching the modulation DC input between 0 and 1V; whichever will be more comfortable to take many many ringdown measurements.

 

  7474   Wed Oct 3 23:36:54 2012 KojiConfigurationPSLAOM installation

After the AOM work the beam wasn't well aligned to the PMC. The PMC REFL CCD shows large misalignment in yaw.

  7479   Thu Oct 4 17:54:59 2012 ManasaConfigurationPSLAOM installation

Quote:

After the AOM work the beam wasn't well aligned to the PMC. The PMC REFL CCD shows large misalignment in yaw.

 {Jan, Manasa, Den}

We wanted to align the PMC and followed Koji's procedure detailed to us by mail. We touched the 2 steering mirrors in front of the PMC for alignment.

- Stand in front of the PMC.
- Find an oscillosocpe on the shelf in the PSL enclosure.
- This has two signals connected. One is the PMC refl dc.
  The other is the PMC trans dc.
- Minimize the refl. Maximize the trans.
- You have the CRT monitor on the MC chamber.
- Project the image of the PMC refl CCD.
  This should show some what symmetric image like an LG mode.
- Use the dataviewer to see how C1:PSL-PMC_PMCTRANSPD is recovered.

We were able to obtain 0.7 at PMC trans; but the PMC was never really stable dropped from 0.7 to 0 abruptly from time to time.

Jenne and Jamie also find that the PMC is behaving very weird 

Summary: Problem unresolved 

 

  7480   Thu Oct 4 18:48:04 2012 janoschConfigurationPSLAOM installation

Quote:

Jenne and Jamie also find that the PMC is behaving very weird 

 Can someone detail what "weird" means? Is it singing old songs from Guns & Roses?

  7481   Thu Oct 4 20:57:43 2012 ManasaConfigurationPSLAOM installation

Quote:

Quote:

Jenne and Jamie also find that the PMC is behaving very weird 

 Can someone detail what "weird" means? Is it singing old songs from Guns & Roses?

 It isn't singing Jan..it's dancing between 0.7 to 0 and we are not able to figure out whose the DJ ; there seems to be something else that is controlling the PMC as there is no coordination between what we do (tweaking the mirrors) and what we observe (the PD signals).

  7482   Thu Oct 4 22:16:28 2012 KojiConfigurationPSLAOM installation

Do more investigation to understand what is causing the power reduction.

Is the alignment inadequate? Check the in-lock ccd image.

Is the incident power reduced? (by what?) Use dataviewer.

Is the AOM doing something? Is it active? Then how much power is it eating?

BY THE WAY, how the deflected beam is dumped?
If you don't have anything for blocking the 1st order beam, you have to expect Steve coming to you.

  7494   Fri Oct 5 18:08:17 2012 ManasaConfigurationPSLAOM installation

Quote:

Do more investigation to understand what is causing the power reduction.

Is the alignment inadequate? Check the in-lock ccd image.

Is the incident power reduced? (by what?) Use dataviewer.

Is the AOM doing something? Is it active? Then how much power is it eating?

BY THE WAY, how the deflected beam is dumped?
If you don't have anything for blocking the 1st order beam, you have to expect Steve coming to you.

The PMC has been aligned and is all happy happy 

I have installed an  iris to dump the higher order beams deflected by the AOM. After installing the iris, I found that the PMC trans dropped to 0.58V and the PMC misaligned in pitch. So I've touched the 2 steering mirrors before the PMC. Now it is satisfactorily locked with PMC trans at 0.84.

I have also checked the alignment with AOM switched on. PMC trans drops to 0.15 with AOM on and comes back to 0.84 when AOM is switched off without losing lock .

  12196   Fri Jun 17 22:36:11 2016 JohannesUpdatePSLAOM installation

Subham and I have placed the AOM back into the setup right in front of the PMC.

Steps undertaken:

  1. The HEPA filters were turned off for some reason. They were turned back on, running at 100% while the enclosure was open.
  2. Before the installation, after initial realignment, the PMC TRANSPD read out 748 mV.
  3. The laser injection current was dialed down to 0.8 A (just above the threshold, judging by PMC cameras.
  4. AOM was attached to the new mount while staying connected to its driver. Put in place, a clamp prevents the cable from moving anywhere near the main beam.
  5. Aligned AOM to beam, centering the beam (by eye) on front and back apertures.
  6. We then applied an offset to the AOM driver input, eventually increasing it to 0.5 V. A secondary beam became clearly visible below the primary beam.
  7. In order to place the razor blade dump (stemming from a box, labeled "cleaned for atm use") before the PMC, where the beam separation was about 3 mm, to make sure we can hit the edged area, we had to place the dump at an angle, facing up.
  8. Keeping the 0.5V offset on the driver input, with the lights off, we increased the laser diode current in steps of ~200 mA to its original value of 2.1A, while checking for any IR light scattered from the beam dump. Not a trace.
  9. At original current setting, we realigned the beam into the PMC, and obtained 743 mV on the TRANSPD in the locked state.
  10. Closed off PSL table, dialed HEPAs down to 50%

              

 

  11343   Tue Jun 2 21:22:07 2015 rana, kojiConfigurationIOOAOM inserted in beam and aligned

We spent an hour today to put the AOM back in the beam before the PMC and verified that the diffraction is working.

  1. The fuse holder was missing from the rack. We inserted a 5A fuse. We expect that the quiesscent draw is < 0.5 A. The power is from the +24V Sorensen supply.
  2. The alignment was tricky, but we optimized it as well as we could in translation and the RZ direction. Its a fixed mount still.
  3. We noticed that according to the datasheet, the polarization is wrong! It wants S-Pol light and we're giving it P-Pol. How come no one noticed this? We expect that the efficiency is reduced because of this. We (Steve) need to brainstorm what kind of mount we can use there to mount it at 90 deg to the plane of the table.
  4. The lens after the AOM has f = +400 mm. The distance from the AOM to the lens is ~800-900 mm so its not so terrible. However, if someone were to put the AOM halfway between the turning mirrors there, the beam diffraction would be canceled.
  5. The AOM input impedance seems to be 50 Ohm as advertised. The previous Koji entry claim of 25 Ohm is mysterious. We checked the Ohmage by sending a signal into the AM input of the AOM using the DS345 which as a 50 Ohm output. 1 Vpp from the DS345 made 1 Vpp on the input of the AM input as measured by Oscope connected by T with high impedance setting.
  6. With 0.5 V offset and a 1 Vpp signal, we get ~20-25% modulation of the power.sad
  7. We have left it running with a 4444.4 Hz modulation and a small amplitude. This is to see if we can use this to measure the cavity poles of the MC and the arms.
  8. We noticed some hash on the Teed input monitor. It was backstreaming of the RF drive. Whoever uses this thing in an ISS feedback ought to make sure to put an RF choke between the servo and this AOM driver.

We also removed a 50/50 pickoff mirror which was used to take one of the NPRO -> EOM polarizer reject beams and send it across the table into a floppy dump. Its now hitting a closer floppy dump. Let's stop using these crappy anodized aluminum flappers anywhere, Steve.

We also noticed that the PMC REFL path uses a W1 from CVI to send the PMC reflection to the REFL RFPD. The dim beam from the AR coated surface is being used rather than the bright beam from the uncoated surface. Ooops. Steve, can you please order another W1 for 1064 from CVI, but get it with a 2-3 deg wedge angle? This one has a wedge which is too small.

  15087   Mon Dec 9 19:19:04 2019 YehonathanUpdatePSLAOM first order beam alignment

{Yehonathan, Rana}

In order to setup a ringdown measurement with perfect extinction we need to align the first order beam from the AOM to the PMC instead of the zeroth order.

We connected a signal generator to the AOM driver and applied some offset voltage. We spot the first order mode and align it to the PMC. The achieved transmitted power is roughly as it was before this procedure.

Along the way few changes has been made in the PSL table:

1. Some dangling BNCs were removed.

2. Laser on the south east side of the PSL table was turned off.

3. DC power supplies were removed (Attachment 1 & 2). The rubber legs on the first one are sticky and leave black residue.

4. The beam block that orginally blocked the AOM high order modes was raised to block the zeroth order mode (Attachment 3).

5. The unterminated BNC T junction (Attachment 4 - before picture). from the PMC mixer to the PMC servo was removed.

However, we are currently unable to lock the PMC on high gain. When the gain is too high the PZT voltage goes straight to max and the lock is lost.

  15089   Tue Dec 10 01:24:17 2019 YehonathanUpdatePSLAOM first order beam alignment

 

However, we are currently unable to lock the PMC on high gain. When the gain is too high the PZT voltage goes straight to max and the lock is lost.

Just realized that the diffracted beam is frequency shifted by 80MHz. It would shift the PZT position in the PMC lock acquisition, wouldn't it?

  15090   Tue Dec 10 13:26:46 2019 YehonathanUpdatePSLAOM first order beam alignment

nvm the PZT can scan over many GHz.

Quote:

 

However, we are currently unable to lock the PMC on high gain. When the gain is too high the PZT voltage goes straight to max and the lock is lost.

Just realized that the diffracted beam is frequency shifted by 80MHz. It would shift the PZT position in the PMC lock acquisition, wouldn't it?

 

  15131   Fri Jan 17 21:56:22 2020 YehonathanUpdatePSLAOM first order beam alignment

Today I noticed that the beam reflected from the PMC into the RFPD has a ghost (attachment) due to reflection from the back of the high transmission beam splitter that stirs the beam into the RFPD.

The two beams are focused into the RFPD.

In the past, the ghost beam was probably blocked by the BS mirror mount.

I put an iris to block the ghost beam.

  9328   Fri Nov 1 18:59:41 2013 EvanConfigurationISSAOM cabling

[Rana, Nic, Evan]

We did some work today on getting the AOM back up and running so that we can implement an SR560-based ISS.

We've removed the 18 AWG wire that was previously used to power the driver and have replaced it with a 12 AWG twisted pair (black and white, enclosed in a single gray cladding). This pair runs into the PSL rack's 24 V terminal block with a 2 A fuse. We've also replaced the cable connecting the AOM to the driver; it's now RG405.

Also disconnected the power to the old Kalmus FSS crystal driver box and turned it off. It was powered illegally. Also disconnected the power connection between the Sorensen and the old ISS AA chassis since it was wired directly without any fuse (which is a code violation). It will stay off until someone uses a proper fuse and wiring to hook it back up.

  10168   Wed Jul 9 21:05:31 2014 manasaUpdateGeneralAOM and PSL Ringdown

After the fits, here are the numbers!

Component Measured Expected
AOM 85.1 ns 200 ns (spec sheet) 
PMC 164.6 ns  Finesse/(2*pi*FSR)  = 163.4 ns

* We have a huge difference to the AOM switching time that was measured. The spec sheet mentions acoustic velocity in the material to be 4.2 mm/us and the well matched diameter in the AOM to be 1100 um. This would give a switching time ~ 200 ns. We could probably be having a much smaller beam size in the AOM for the measured switching time.

* The PMC  parameters that I had been referring to from the wiki were actually wrong and which was the reason for the mismatch that I was finding. I modified the wiki according to the found references to the actual measurement here: PMC parameters The measured values now and then match pretty well.

* Since the AOM does not change the power of the output beam by very much, what we see is actually a step response. Also, we have a lot of noise in the data obtained at the PD. 

RXA: some more comments...

  1. The fact that the AOM can only modulate the power by a tiny bit means that it is very mis-aligned or that the driver is broken.
  2. You need to take into account the AOM step time in the calculation of the PMC step time. Its not a step response if the input step is not a step, but a exponential.
  3. I wouldn't trust that old John Miller entry for the PMC Finesse. As you can see from his elog, even he didn't trust it.
  4. As we were discussing before, making a little step is not the same as a full ringdown. cf. G000413 and T900007

 

  10171   Thu Jul 10 00:38:20 2014 manasaUpdateGeneralAOM and PSL Ringdown

Quote:

RXA: some more comments...

  1. The fact that the AOM can only modulate the power by a tiny bit means that it is very mis-aligned or that the driver is broken.
  2. You need to take into account the AOM step time in the calculation of the PMC step time. Its not a step response if the input step is not a step, but a exponential.
  3. I wouldn't trust that old John Miller entry for the PMC Finesse. As you can see from his elog, even he didn't trust it.
  4. As we were discussing before, making a little step is not the same as a full ringdown. cf. G000413 and T900007

 

I think we should revisit the AOM alignment because the last time it was aligned, PMC trans dropped from 0.84 to 0.15 (a little more than 80%) for 0-1V modulation input to the AOM driver [elog]. The drop in power right now is ~10-15% only.

I could not find any elogs of AOM alignment touchups after Oct 2012.
But can the ISS team throw some light on the status of AOM when they were installing the ISS servo before we decide on touching the AOM alignment? [elog

  10219   Wed Jul 16 19:38:37 2014 manasaSummaryPSLAOM alignment issues and removed from beam path

AOM removed from the beampath and PMC relocked. 

AOM alignment:

1. Measured the initial power after PMC as 1.30W and reduced it down to 130mW.
2. Checked the power in the AOM zero order transmission before touching it. For 0-1V modulation input, the power dropped from 125uW to 98.3uW.
3. Steered the mirror right before the AOM to increase AOM zero order transmission and then carefully moved the AOM around to obtain maximum power attenuation. I repeated this a few times and the maximum attenuation that I could obtain was 125uW to 89.2uW (~30% attenuation).
Although this is not the right way to align the AOM, we do not have much options with the current setup as there is not enough separation between the zero order and first order beams and the AOM is on a fixed rigid mount.
4. I tried to dump the first order beam from the AOM and it wasn't satisfactory as well. There is barely any separation between the zero order and first order beams.

PMC relocking:

1. SInce the alignment to the PMC was disturbed by moving the AOM and the steering mirror in front of it, the PMC alignment was lost.
2. I could not relock the PMC at low power or high power. Rana had to come to rescue and fixed the alignment so that we could see flashes of PMC on the trans camera (This was done by aligning refl beam to the PMC REFL PD while giving a triangular ramp to the PMC PZT voltage).
Also I should not have tried to lock the PMC at high power as I could have been steering the beam at high power to the edges of the PMC mirrors that way and burning stuff easily.
3. Before fine tuning the alignment, I decided to remove the AOM from the beam path as there needs some work done on it to make it useful.
4. I removed the AOM from the beam path and relocked the PMC. 
5. PMC is relocked with 0.79 counts in TRANS and I measured the power after PMC 1.30W

Attachment: picture showing AOM removed from the beampath.

  1401   Fri Mar 13 20:23:37 2009 YoichiUpdateLSCAO path transfer function with X-arm locked
I measured the AO path transfer function while the X-arm is locked with the POX PDH signal.
The POX-I signal was already connected to the input 1 of the CM board. So I injected a signal from the EXC-B channel of the board and measured the transfer function from TP2B to TP1A. To open the loop, I disabled the switch befor the EXC-B.
The attached plot shows the measured transfer function.
There is a bump around 2kHz, which can also be seen in the AO path TF posted in elog:1399, but not the large structure at around 3.8kHz.
The 3.8kHz structure is probably created by the feedback.
  15210   Thu Feb 13 02:07:26 2020 gautamUpdateLSCAO path transfer function measurement

Summary:

I measured the transfer function of the AO path, and think that there are some features indicative of a problem somewhere in the IMC locking loop.

Details:

Regardless of the locking scheme used, high bandwidth control of the laser frequency relies on the fact that the laser frequency is slaved to the IMC cavity length with nearly zero error below ~50 kHz (assuming the IMC loop has a UGF > 100 kHz). In my single arm experiments, I didn't know what to make of the ripples that became apparent in the measured OLTF as the AO gain was ramped up.

Tonight, I measured the TF of the "AO path", which modifies the error point of the IMC, thereby changing the laser frequency. 

  • An SR785 was used to make the measurement.
  • The signal was injected at the "EXC B" input on the CM board.
  • The CM_SLOW path was disabled, AO gain = 0dB, IMC IN2 gain = 0dB.
  • Between "EXC B" and the IMC error point (which I measured at TP1A on the IMC board), we expect that there are 2 poles at ~ 6 Hz, and one pole at ~ 11 Hz.

Attachment #1 shows the result of the measurement. 

  • This measurement should be the "Closed Loop Gain" [= 1/(1+L) where L is the open loop gain] of the IMC locking loop. For comparison, I've overlaid the inferred CLG from a measurement of the IMC OLG I made in Jun 2019. The magnitude lines up quite well, but the phase does not 🤔 
  • Above 10 kHz, the measurement is as I expect it to be.
  • However, between 1 kHz and 10 kHz, I see some periodic features every 1 kHz, which I don't understand. In the IMC OLTF, these would be sharp dips in the OLTF gain.
  • I was careful not to overdrive the servo, so I believe these features are not a measurement artefact.
  • Combing through past elogs, I couldn't really find any measurements of the IMC OLTF in the 1 kHz - 10 kHz band.
  • I decided to measure the spectrum of the IMC error point (with no excitation input), to see if that offered any additional insight. Attachment #2 shows the result - again, periodic features at ~ 1 kHz intervals.

I didn't use POX / POY as a sensor to confirm that this is real frequency noise, I will do so tomorrow. But it may be that realizing a stable crossover is difficult with so many features in the AO path.

Previous thread with a somewhat detailed characterization of the IMC loop electronics.

  10516   Thu Sep 18 02:42:28 2014 JenneUpdateLSCAO path partly engaged

Tonight was a night of trying to engage the AO path.  The idea was to sit at arm powers of a few on sqrtInvTrans for CARM and ALS for DARM, and try to increase the gain for REFLDC->AO path.

No exciting nit-picky details in locking procedure.  Mostly it was just a night of trying many times. 

The biggest thing that Q and I found tonight was that the 2-pin lemo cable connecting the CM board's SERVO OUT to the MC board's IN2 is shitty.  The symptom that led to this investigation was that I could increase the AO path gain arbitrarily, and have no change in the measured analog CM loop transfer function. We checked that the CM board servo out spit out signals that were roughly what we expected based on our ~2kHz excitation.  However, if we look at digitized signals from the MC board, the noise level was very high, with loads of 60Hz lines, and a teensy-tiny signal peak.  We put a small drive directly into the MC board and could see that, so we determined that the cable is bad.  We have unplugged the white 2-pin lemo, and ran a long BNC cable between the 2 boards.  Tomorrow we need to make a new 2-pin lemo cable so that we can have the lower noise differential drive signal.

After putting in the temporary cable, we do see an excitation sent to the CM board showing up after the MC board.  For this monitoring, the MC_L cable to the ADC has been borrowed, so instead of being the OUT1, the regular length signal, MC_L is currently the OUT2 monitor right after the board inputs. 

At some point in the evening, around 1:15am, ETMX started exhibiting the annoying behavior of wandering off sometimes.  I went in and pushed on the SUS cables to the satellite box, and I think it has helped, although I still saw the drift at least once after the cable-squishing.

Other than that, it has just been many trials.

The best was one where I was holding the arm powers around 4, and got the CM board's AO gain to -8 dB and the MC board's IN2 AO gain to -4 dB. I lost lock trying to increase the CM board gain to -7 dB. 

I took several transfer functions, and used Q's nifty "SRmeasure" script to gather data, and Q made a plot to see the progress.

TF progress plots:

0020.pdf

Time series of that lockloss:

Zoom_TRXTRY4_EngagingAO_1095059162.png

I don't know yet if the polarity of the CM board should be plus or minus.  This series was taken with "minus".  But,  since the phase looked opposite of Q's single arm CM board checkout from several months ago, we did a few trials with the polarity switched to "plus".  I thought we weren't getting as high of AO path gains, so I switched back to "minus", but the last few trials didn't get even as far as the plus trials did.  So, I still don't know which sign we want.

ELOG V3.1.3-