40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 326 of 327  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  7794   Wed Dec 5 17:38:41 2012 RijuHowTo Photodiode transimpedance

I have started making the circuit to measure the transimpedance for the photodiode PDA10CF using Jenne's laser. I will continue it tomorrow.

  7817   Wed Dec 12 17:26:47 2012 RijuUpdate Testing AG4395A+GPIB

I repeated my experiment to get noise level. To get that I disconnected the bandpass filter SBP-10.7  from channel A of network analyzer AG4395A and terminated both the open ends (open end of filter and open end of channel A) with 50ohm terminator.

Reference level had been corrected, signal and noise data had been collected separately w.r.t that level.

Command for GPIB:   ./netgpibdata.py -i 192.168.113.105 -d AG4395A -a 10 -f filename

The result is as follows

 

Attachment 1: TFbandpassfilter.pdf
TFbandpassfilter.pdf
  7834   Fri Dec 14 14:40:31 2012 RijuUpdate Photodiode transimpedance

Photodiode PDA10CF was under test. The RF out signal of AG4395A had been divided by splitter with one output of the splitter going to R channel of the network analyzer and the other to the laser. The splitted laser beams - splitted with beam splitter - fall on two photodiodes - one reference and the other on PDA10CF. The outputs of these two photodiodes go to channel B and A respectively of the network analyzer. The measured transimpedance data had been collected using the GPIB connection.

The result is as follows:

Attachment 1: PDA10CF.pdf
PDA10CF.pdf
  7854   Tue Dec 18 16:44:00 2012 rijuUpdate Photodiode transimpedance

Today I measured the dark current of the PDA10CF. The output of the PD was connected to the A channel of the network analyzer, when there was no light falling on it. The response is collected using GPIB.

I will upload the result shortly.

  7870   Fri Dec 21 19:49:39 2012 RijuUpdate Photodiode transimpedance

I have repeated the transimpedance measurement of PDA10CF. Also made the dark current noise measurement by connecting the PDA10CF output to the A channel of network analyzer.  The results are as follows. I I started to take the reading for shot noise intercept current using a light bulb in front of the PD, changing the current through the bulb, but at higher current the bulb filament got broken, so the experiment is incomplete.

Attachment 1: PDA10CFrepeat.pdf
PDA10CFrepeat.pdf
Attachment 2: darknoiseVpda10cf.pdf
darknoiseVpda10cf.pdf
Attachment 3: darknoiseApda10cf.pdf
darknoiseApda10cf.pdf
Attachment 4: PDA10CF_z.pdf
PDA10CF_z.pdf
  7874   Thu Jan 3 20:34:43 2013 RijuUpdate Photodiode transimpedance

Today I have measured the transimpedance and dark-noise of the MC-REFL PD.

For transimpedance measurement I first collected the data of the reference Newfocus PD connecting it at channel B of Network-analyzer using the set-up of Jenne's laser. The data for the MC-REFL PD had been collected by connecting it to the A channel of Network Analyzer. To do that I shifted the Jenne's Laser to the table of MC-REFL PD, I moved the laser output on the table and fixed a lens and a mirror on the table. Taking the ratio of the two sets of datas I got the required trans-impedance.

Dark-noise readings were taken keeping the laser off.

I will upload the corresponding plots tomorrow.

  7876   Fri Jan 4 15:11:28 2013 JenneUpdate TT

[Jenne, Koji]

D - UL

B - UR

A - LR

C - LL

The sensor card on the bottom of the chamber was not salvaged yet.

  7880   Tue Jan 8 14:01:21 2013 RijuUpdate Photodiode transimpedance

 Here I upload the plots corresponding to my last day's measurements.

 

Attachment 1: TFreflpd.pdf
TFreflpd.pdf
Attachment 2: REFL_z.pdf
REFL_z.pdf
Attachment 3: darknoiseVreflpd.pdf
darknoiseVreflpd.pdf
Attachment 4: darknoiseAreflpd.pdf
darknoiseAreflpd.pdf
  7887   Wed Jan 9 19:32:24 2013 RijuUpdate Photodiode transimpedance

Summary:

Today I have tested the MC transmission-end RF photodiode PDA255 for transimpedance and dark noise using Jenne's Laser and AG4395A network/spectrum analyzer. The dark noise voltage distribution for the transmission and reflection PDs of MC and the analyzer has been compared.

Motivation:

I am to do the input mode cleaner cavity mode scan. The electronic and shot noise of the components used , particularly photodiode noise, will affect the peak position  of the modes, indicating the uncertainty in the measured frequencies of the modes. That will in turn give the uncertainty in the measured change of radius of curvature of the mirrors in presence of the laser beam, from which we will be able to calculate the uncertainty in the mirror-absorption  value.

Method:

For PD transimpedance measurement I used Jenne's laser along with AG4395 network analyzer. The RF out signal of AG4395A had been divided by splitter with one output of the splitter going to R channel of the network analyzer and the other to the laser. The splitted laser beams - splitted with beam splitter - fall on two photodiodes - one reference(Newfocus1617? PD, the DC and RF transimpedance values were taken from its datasheet ) and the other on PDA255. The outputs of these two photodiodes go to channel B and A respectively of the network analyzer. The measured transimpedance data had been collected using the GPIB connection. It had been ensured that the PD under test is not going to saturation, for that the source power level was kept to -40dBm. transimpedance measurements were compensated by the ratio of DC photocurrent.

For dark noise measurement the output of the PD was connected to the A channel of the AG4395A, when there was no light falling on it. The response is collected using GPIB. The attenuation of channel A was made 0dB. ( AG4395A was kept in Spectrum analyzer mode in Noise Format).

Results:

The plots corresponding to the measurements are attached.

Discussion:

The comparison for the dark noise voltage levels of the MC transmission PD (PDA255) with MC REFL PD has been made with analyzer dark noise voltage. It is shown in the attachment (I will upload the dark noise current comparison too....since the output darknoise depends on the gain of the circuit, it is important to divide this voltage spectra by transimpedances.)

Attachment 1: PDA255.pdf
PDA255.pdf
Attachment 2: PDA255_z.pdf
PDA255_z.pdf
Attachment 3: darknoiseVpda255.pdf
darknoiseVpda255.pdf
Attachment 4: darknoiseApda255.pdf
darknoiseApda255.pdf
Attachment 5: darknoise_comparison.pdf
darknoise_comparison.pdf
  7898   Mon Jan 14 15:15:04 2013 JenneUpdate TT

 

[Manasa, Jenne]

First plug in only one of the quadrupus cables, find out what coil it corresponds to according to screen, then plug in 2nd cable, don't test already-determined cable, but all other 3, find what cable it corresponds to according to the screen.  Repeat for other 2 cables.

TT2, confirmation:

C = LL, not UR, not UL, not LR

D = UL, not UR, not LR

A = LR, not UR

B = UR

 

---------------------------------------------------------------------------------------

After confirming that the correct quadrupus cables were plugged in to the correct coils, I suspected that our problems could be coming from a (or some) magnet(s) touching the inside of the OSEM.  We tested this a little bit, with the goal of finding the range of values where no magnets are touching.

All matrix values are either +1000 or -1000, so, with an example pitch slider value :

                       PIT    YAW

Pit slider           |  1000   1000  | --->  -22000 UL

     -22.2           | -1000   1000  | --->  +22000 LL

Yaw slider           |  1000  -1000  | --->  -22000 UR

    0                | -1000  -1000  | --->  +22000 LR

 

 

Trying some values for pitch, keeping yaw constant:

0 yaw, Pitch bias = 5 -> UR is touching on left side of its osem.

0 yaw, Pitch 0, UR is touching left side.

0 yaw, -1.2 pitch, UR just came off from touching left side.  More neg from here should be non-touching.  all others are fine.

0 yaw, -32.2 pitch, LR not quite touching right side of osem, but is close (much less than 1mm clearance).  UR fine. all others fine.

0 yaw, -22.2 pitch, all 4 are fine.

 

Trying some yaw values, keeping pitch constant:

1.  -22.2 pitch, -32 yaw, LR touching. UR touching.

2.  -22.2 pitch, -12 yaw, LR barely not touching, UR still touching.

3.  -22.2 pitch, 0 yaw, UR still touching.

4.  -22.2 pitch, 16 UR barely not touching.

5.  -22.2 pitch, 32, none touching.

6.  -22.2 pitch, 12, UR close, not touching.

7.  -22.2 pitch, 0, UR touching.

8.  -22.2 pitch, 32 (or 30?) UR came off.

9.  -22.2 pitch, -25, UR close

10.  -22.2 pitch, -32 UR touching.

11.  -22.2 pitch, -4 UR not touching.

12.  -22.2 pitch, 0 yaw, UR not touching.

 

Here is a graphical semi-representation for the yaw data:

 TT2_stuck_unstuck_14Jan2013.png

 

  7899   Mon Jan 14 19:56:48 2013 ManasaUpdate TT

 

 [Manasa, Jenne]

The motion of the magnets (~1.5mm estimated by looking at the magnets moving) correspond to ~2deg. tilt of the mirror. This would mean almost 1.5m shift at the ETM end (~45m from the TT).

  7907   Wed Jan 16 18:58:08 2013 RijuUpdate Photodiode transimpedance

Today I have taken the reading for shot noise intercept current for the PDA255 - MC transmission RF PD. To do that I have put an incandescent bulb (JKL lamps, 222 bulbs, voltage and current rating 2.25V and 0.25A) in front of the PD and varied the current through it from 0A to 0.29A at 2.2V. I measured the corresponding DC voltage and took the noise data (4395A spectrum analyzer/ format noise, channel attenuation 0dB) through GPIB .

I will process the data and upload the result soon.

  7926   Tue Jan 22 17:29:29 2013 RijuUpdate Photodiode transimpedance

Riju

Summary:  I am stuck with the measurement of shot-noise-intercept-current of PDA255. Seeking help.

Motivation: It is to measure the shot noise intercept current for PDA255 - the MC transmission RF photodiode to get an idea for the noise current for the detector.

Method: It is as described in the elog  7907 

Result: The plot is attached here.

Discussion: The result I got is really unexpected, the noise voltage should increase with the DC current level that corresponds to the increment of light level too. But actually it is decreasing. Three times I have repeated this experiment and got the same result. I want some suggestion on this regard.

Attachment 1: pda255shotnoiseintercept.pdf
pda255shotnoiseintercept.pdf
  7927   Tue Jan 22 19:51:52 2013 KojiUpdate Photodiode transimpedance

- The data should be plotted in a log-log scale.
- The data points were only taken in the high current region.

- The plot may suggest that the amplifier saturate at the RF.

PDA255 has the nomial transimpedance gain of 10^4 Ohm.
The DC current of 10^-3 gives the output of 10V.
This plot may tell that the saturation starts even at the 1/10 of the full DC range.

The plot doesn't have many points below 0.1mA.
Consult with my plots for the similar measurements.
The measured points are logarithmically spaced. Use the same technique.

- It is also very unknown that how the noise level is calculated. No info is supplied in the plot or the elogs.

  7929   Wed Jan 23 11:43:19 2013 RijuUpdate Photodiode transimpedance

Quote:

- The data should be plotted in a log-log scale.
- The data points were only taken in the high current region.

- The plot may suggest that the amplifier saturate at the RF.

PDA255 has the nomial transimpedance gain of 10^4 Ohm.
The DC current of 10^-3 gives the output of 10V.
This plot may tell that the saturation starts even at the 1/10 of the full DC range.

The plot doesn't have many points below 0.1mA.
Consult with my plots for the similar measurements.
The measured points are logarithmically spaced. Use the same technique.

- It is also very unknown that how the noise level is calculated. No info is supplied in the plot or the elogs.

 Here I am attaching the plot in loglog scale. I have taken the data-points from no light condition to the maximum light condition, the minimum variation possible in the current supply was 0.01A. The noise was visibly decreasing at higher light level.

For the noise level calculation I took the average of total noise in the range 7-60MHz. For each range the formula used was

noisevalue= sqrt(data(:,2)*100)/sqrt(2)/sqrt(channel BW);     -- this conversion is needed since the data was collected in the 2 column format: frequency, spectrum(W).

Attachment 1: pda255shotnoiseintercept1.pdf
pda255shotnoiseintercept1.pdf
  7933   Wed Jan 23 20:27:05 2013 RijuUpdate Photodiode transimpedance

Today I have repeated the expt for shot noise intercept current. Koji found that the Spectrum analyzer is going to saturation, so we have used one DC blocker (MCL - 15542 model) in PD signal.

I will analyze the data and report.

Ed by Koji: DC BLOCK is  BLK-89-S

  7946   Mon Jan 28 17:59:02 2013 RijuUpdate Photodiode transimpedance

Summary: Measurement and plot of shot-noise-intercept-current for PDA255.

Motivation:It is to measure the shot noise intercept current for PDA255 - the MC transmission RF photodiode to get an idea for the noise current for the detector

Result: The final plot is attached here. The plot suggests that the value of shot-noise-intercept current is 3.06mA

Discussion:

The plot is for the measured data of Noise voltage (V/sqrt(Hz)) vs DCcurrent(A). The fitted plot to this measured data follows the noise equation

Vnoise = gdet* sqrt[ 2e (iDC+idet)] ,  where gdet= transimpedance of the PD in RF region as described in manual of PDA255 (i.e. 5e3 when it is not in High-impedance region).

On the other hand for DCcurrent calculation we must use the high-impedance value for the transimpedance i.e. 1e4 Ohm. idet is the shot noise intercept current.

For the rough calculation of the noise level we may use the following formulae:

Vnoise = gdet*sqrt[2e (iDC+idet)] = gdet*sqrt(2e in), when in=iDC+idet;

For say, in1=1mA; Vnoise1=gdet*sqrt(2e *in1)

and sqrt(2e *in1)~18pA/sqrt(Hz)

In current case dark noise is ~1.5e-7 V/sqrt(Hz)

Therefore dark current(in2) ~dark noise voltage/RF transimpedance = 30pA/sqrt(Hz)

i.e. sqrt(2e *in2)=30pA/sqrt(Hz)

i.e. sqrt(in2/in1)=30/18

therefore, in2~3mA (since in1=1mA)

For, iDC=0, in=idet.

Therefore the shot-noise-intercept current will be ~3mA

Then Vdc = in2*1e4 = 30V

According to the experiment  and also from the PDA255 manual the DC voltage level never goes beyond ~10V. Therefore following the photodiode characteristics(we work in reverse bias) we may infer that it can never become shot noise limited.

Also, from PDA255 manual, at 1650nm the dark noise is 30pW/sqrt(Hz) and the responsivity is 0.9A/W. Therefore the noise current level will be = noise power* responsivity ~27pA/sqrt(Hz). The value matches well with our expectation.

 

Attachment 1: shotnoiseinterceptpda255.pdf
shotnoiseinterceptpda255.pdf
  7956   Tue Jan 29 18:40:20 2013 RijuUpdate Photodiode transimpedance

Today I have taken data for shot noise intercept current for PDA10CF. I will process the data and report.

Note: GPIB address changed, new command for AG4395A network/spectrum analyzer: ./netgpibdata.py -i 192.168.113.108 -d AG4395A -a 10 -f filename

  7972   Thu Jan 31 12:44:42 2013 RijuUpdate Photodiode transimpedance

Today I collected the data for shot noise intercept current for MC REFL PD. I didn't get many data points at higher DC voltage of the photodiode, cause the incandescent bulbs get burnt at that level; two bulbs I have burnt today. I will process the data and report.

  7977   Thu Jan 31 15:56:38 2013 RijuUpdate Photodiode transimpedance

Summary: Measurement and plot of shot-noise-intercept-current for PDA10CF. 

Motivation:It is to measure the shot noise intercept current for PDA10CF.

Result: The final plot is attached here. The plot suggests that the value of shot-noise-intercept current is 0.21mA

Discussion:

The plot is for the measured data of Noise voltage (V/sqrt(Hz)) vs DCcurrent(A). The fitted plot to this measured data follows the noise equation

Vnoise = gdet* sqrt[ 2e (iDC+idet)] ,  where gdet= transimpedance of the PD in RF region as described in manual of PDA255 (i.e. 5e3 when it is not in High-impedance region).

To get an approximate idea of the shot noise intercept current, we may follow the same procedure described in 7946 

In the present case dark-noise is 4.3e-08 V/sqrt(Hz)

Therefore dark current(in2) ~dark noise voltage/RF transimpedance = 8.6pA/sqrt(Hz)

 

 

Therefore the approximate shot noise intercept current ~ (8.6/18)^2=0.22mA

This value matches well with the fitted data.

From PDA10CF manual, NEP=1.2e-11W/sqrt(Hz) and responsivity~0.9A/W. Therefore the noise current level will be ~10pA.

 

 

Attachment 1: shotnoiseinterceptpda10cf.pdf
shotnoiseinterceptpda10cf.pdf
  7984   Fri Feb 1 14:47:17 2013 RijuUpdate Photodiode transimpedance

 Summary: Measurement and plot of shot-noise-intercept-current for MC REFL PD. 

Motivation:It is to measure the shot noise intercept current for MC REFL PD.

 

Result: The final plot is attached here. The plot suggests that the value of shot-noise-intercept current is 0.041mA

Discussion:

 

The plot is for the measured data of Noise voltage (V/sqrt(Hz)) vs DCcurrent(A). The fitted plot to this measured data follows the noise equation

Vnoise = gdet* sqrt[ 2e (iDC+idet)] ,  where gdet= transimpedance of the PD in RF region as described in manual of PDA255 (i.e. 5e3 when it is not in High-impedance region).

To get an approximate idea of the shot noise intercept current, we may follow the same procedure described in 7946 

In the present case minimum noise value is 2.03e-08 V/sqrt(Hz)

Therefore dark current(in2) ~dark noise voltage/RF transimpedance = 4.06pA/sqrt(Hz)

Therefore the approximate shot noise intercept current value is (4/18)^2 ~ 0.049mA, which is close to the fitted value.

 

 ... hard to believe these numbers. Wrong DC transimpedance? (KA)

Attachment 1: shotnoiseinterceptmcreflpd.pdf
shotnoiseinterceptmcreflpd.pdf
  8027   Thu Feb 7 19:24:57 2013 RijuUpdate Photodiode transimpedance

 Summary: Measurement and plot of shot-noise-intercept-current for MC REFL PD. 

Motivation:It is to measure the shot noise intercept current for MC REFL PD.

 

Result: The final plot is attached here. The plot suggests that the value of shot-noise-intercept current is 1.9mA

Discussion:

 

The plot is for the measured data of Noise voltage (V/sqrt(Hz)) vs DCcurrent(A). The fitted plot to this measured data follows the noise equation

Vnoise = gdet* sqrt[ 2e (iDC+idet)] ,  where gdet= transimpedance of the PD in RF region ~600

To get an approximate idea of the shot noise intercept current, we may follow the same procedure described in 7946 

In the present case minimum noise value is 1.46e-08 V/sqrt(Hz)

Therefore dark current(in2) ~dark noise voltage/RF transimpedance ~25pA/sqrt(Hz)

Therefore the approximate shot noise intercept current value is (25/18)^2 ~ 1.92mA, which matches well to the fitted value.

 

 

Attachment 1: reflshotnoise.pdf
reflshotnoise.pdf
  8067   Tue Feb 12 17:26:31 2013 ChloeUpdate QPD circuitry to test mount vibrations

 I spent awhile today reading about op-amps and understanding what would be necessary to design a circuit which would directly give pitch and yaw of the QPD I am using. After getting an idea of what signals would be summed or subtracted, I opened up the QPD to take better pictures than last time (sorry, the pictures were blurry last time and I didn't realize). It turns out some of the connections have been broken inside the QPD, which would explain why we saw an unchanging signal in Ch2 on the oscilloscope yesterday when trying to test the laser setup. 

I found a couple other QPDs, which I will be using to help understand the circuit (and what is going on). I will be trying to use the same QPD box since it has banana cable and BNC cable adapters, which is helpful to have in the lab. Once I have concluded what the circuitry is like and designed electronics to add and subtract signals, I will build and mount all the circuits within the box (more sturdily than last time) so as to have a quality way of measuring the mount vibrations when I get there. 

  8090   Fri Feb 15 17:11:13 2013 ChloeUpdate QPD circuit pictures

 I took better pictures of the circuits of the QPD and spent a couple of hours with a multimeter trying to figure out how all the connections worked. I will continue to do so and analyze the circuits over the weekend to try to understand what is going on. I also have an old SURF report that Eric sent me that is similar to the design I was planning to use to sum the pitch and yaw signals. I will try and look at this over the weekend. 

Attachment 1: IMG_0337.JPG
IMG_0337.JPG
Attachment 2: IMG_0338.JPG
IMG_0338.JPG
  8111   Tue Feb 19 17:14:56 2013 ChloeUpdate QPD Circuit

I finished working out the circuit and figured out where the broken connections were. This is diagrammed in my notebook (will draw up more nicely and include in future elog post). Within the QPD circuitry, it seems like there are already opamps which regulate the circuit. I need to discuss the final diagram further with Eric.

I rewired the circuit inside the QPD box, which took awhile because it was difficult to solder the wires to such small locations without having multiple wires touch. This is completed, and on Friday I will begin to make the circuit to add/subtract signals to give pitch and yaw.

  8137   Fri Feb 22 13:03:49 2013 ManasaUpdate MC REFL PD murder

 

[Yuta, Manasa]

We turned IFO power back to 1.25W by removing the attenuator and forgot that the Y1 mirror before the REFL PD must be replaced with BS 10% before getting to full power. The PD is dead  and now we are in the process of fixing it. Forgive us for all our sins!

On the other note, we have changed the mech shutter mode from N.O back to N.C. So the shutter now works as usual from the medm screen.

dead.jpg

  8139   Fri Feb 22 17:33:38 2013 ChloeUpdate QPD circuit diagram

Today I tested the circuitry within the QPD to make sure I had put it back together correctly. The output was able to detect when a laser pointer was shone on different quadrants of the QPD when hooked up to the oscilloscope, so fixing the QPD worked! 

Following this, I spent awhile understanding what was going on with the circuit reading from the QPD. I concluded that the opamp on the QPD circuit acted as a low pass filter, with corner frequency of about 17 kHz, which serves our purposes (we are only interested in frequencies below 1 kHz). I diagrammed the circuit that I plan to build to give pitch and yaw (attached). It will be necessary to make small modifications to the circuitry already built (removing some resistors), which I have started on. 

Next time, I will construct the circuit that adds/subtracts signals on a breadboard and test it with the QPD circuit that is already built. 

Attachment 1: IMG_0377.JPG
IMG_0377.JPG
  8173   Tue Feb 26 17:36:28 2013 ChloeUpdate QPD Circuit

I corrected the circuit diagram I constructed last time - it would read 0 output most of the time because I made a mistake with the op amps. This will be attached once I discuss it with Eric.

I searched the 40m lab and ended up finding a breadboard in the Bridge lab. I then spent awhile trying to remove the QPD from the circuit board it was on, which was difficult since it had 6 pins. After that, I soldered wires to the QPD legs and began constructing the circuit on the breadboard. I also spent time showing Annalisa the setup and explaining my project.

On Friday I will try and reconstruct all of the circuitry from before for the QPD.

  8185   Wed Feb 27 14:59:01 2013 EvanUpdate Altered MC demodulation phase

 I took out a short (~12 cm) SMA cable from the "LO input" path into the MC demod board in an attempt to maximize the power in Q and minimize the power in I. The path might benefit from being shortened a little more, but it's hard to tell since I is noisy. (In the attached plots, channel 1 is Q and channel 2 is I.)

Should you find it necessary to restore the original path length, the cable I took out is in the "SMA ONLY" tupperware and has a printed label with "5" on it.

Attachment 1: Q_and_I_before.eps
Q_and_I_before.eps
Attachment 2: Q_and_I_after.eps
Q_and_I_after.eps
  8186   Wed Feb 27 17:43:54 2013 RijuUpdate Photodiode transimpedance

Here is the transimpedance for the other PD used for MC REFL

Attachment 1: TFnewreflpd.pdf
TFnewreflpd.pdf
Attachment 2: NewREFL_z.pdf
NewREFL_z.pdf
  8187   Wed Feb 27 18:01:46 2013 KojiUpdate Photodiode transimpedance

How much is the exact resonant frequency?

And what's the unit of the plot? The resonant "transimpedance" in the unit of Ohm can not be ~100.

  8188   Wed Feb 27 18:17:05 2013 RijuUpdate Photodiode transimpedance

Quote:

How much is the exact resonant frequency?

And what's the unit of the plot? The resonant "transimpedance" in the unit of Ohm can not be ~100.

 The exact resonant frequency is 29.38MHz. I ve uploaded the other plot. It was the output of Vectfit.

  8189   Wed Feb 27 18:38:51 2013 RijuUpdate Photodiode transimpedance

Quote:

Quote:

How much is the exact resonant frequency?

And what's the unit of the plot? The resonant "transimpedance" in the unit of Ohm can not be ~100.

 The exact resonant frequency is 29.38MHz. I ve uploaded the other plot. It was the output of Vectfit.

 Is the DC transimpedance now 10010 Ohm? I ve used 50 Ohm. Which one is correct?

  8233   Tue Mar 5 17:23:06 2013 ChloeUpdate QPD Adding/Subtracting Circuit

Today I finished building the adding/subtracting circuit for the QPD and tested that the QPD could see a laser moving across its visual field for both pitch and yaw. It didn't seem to behave weirdly (saturate) at the edges, but I need to test this more carefully to be sure.

However, this circuit uses many op amps, which will cause problems for building the actual circuit to fit into the QPD box. I am trying to figure out how to do this with fewer op amps (both with a quad op amp for amplifying the signals from the QPD and by summing/subtracting the signals with a single op amp instead of 3).

I finally got around to asking Steve to order more breadboards! Trying to determine what would be a good QPD to order for the final circuit, since we do not have any unmounted QPDs that aren't ancient. I'll read up on things I don't know enough about (namely op amps).

  8295   Thu Mar 14 16:56:16 2013 ChloeUpdate QPD Circuit Design

I have sketched out the circuit design for the QPD. However, it seems like even when using a different opamp configuration, which I talked to Eric about on Friday, space will be a problem. It may be possible to squeeze everything onto a single circuit board to fit in the QPD box but what I think is more likely is that I will need to have 2 separate circuit boards both mounted within the box, one which integrates the signal from the QPD and the other which adds/subtracts (this involves many resistors which will take up a lot of space). I will continue to think about the best design for this.

I will try to have the circuit built in the next week or so, which may be difficult since I just started finals which will take most of my time. I spent most of this week writing up an ECDL proposal for a SURF with Tara. I'll make up for whatever work I miss since I'll be here for my spring break and doing little besides working in lab.

  8338   Mon Mar 25 16:51:43 2013 ChloeUpdate Final QPD Circuit Design

This is the final version of the QPD circuit I'm going to build. After playing around with the spatial arrangement, this should fit into the box that I was planning to use, although it will be a rather tight fit. The pitch, yaw, and summing circuit will be handled with a quad op amp. Planning to meet with Eric tomorrow to figure out the logistics of building things.

In the meantime, I'm reading about designing the ECDL for my summer project with Tara. He sent me several papers to read so we can talk on Wednesday.

Attachment 1: IMG-20130325-00244.jpg
IMG-20130325-00244.jpg
  8346   Mon Mar 25 23:27:26 2013 ChloeUpdate QPD Circuit

In order to test the mount vibrations, I will likely try and make a different circuit work (with the summing/subtracting on an external breadboard) and designing an optimal circuit will be a side project. This is the circuit with the power supply Rana came up with, and the design I had in mind for the rest of the circuit. In my free time, I will try to figure out what parts to get that reduce noise and slowly work on building this, since it would be useful to have in the lab. 

 https://www.circuitlab.com/circuit/7sx995/qpd-circuit/#postsave_access_control_settings

  8358   Tue Mar 26 17:32:30 2013 ChloeUpdate QPD/ECDL Progress

I built the summing/subtracting circuit on the breadboard, and hooked this up with one of the other QPDs I found (image of setup attached). I wasn't able to get this to read the correct signals when testing with a laser pointer after a couple of hours of troubleshooting... I will hopefully get this working in the next day or 2...

I'm going to read up on ECDL stuff for Tara tonight and hopefully figure out what sort of laser diode we should purchase, since I'm meeting with Tara tomorrow. experimenting

Attachment 1: IMG-20130326-00245.jpg
IMG-20130326-00245.jpg
  8381   Mon Apr 1 16:13:50 2013 ChloeUpdate QPD

Because we would like to get started on testing mount vibrations as soon as possible, I've been trying to get one of the other QPDs we found to work with the summing/subtracting circuit on a breadboard. I've been using a power supply that I think Jamie built 15 years ago... which seems to be broken as of today, since I no longer read any signal from it with an oscilloscope.

I tried using a different power supply, but I still can't read any change in signal with the QPD for any of the quadrants when using a laser pointer to shine light on it. I'll be working with Eric on this later this week. In the meantime, I'll try and come up with a shopping list for the nicer QPD circuit that'll be a longer term side project.

  8403   Wed Apr 3 16:03:59 2013 ChloeUpdate QPD Voltage Regulators

The voltage regulator on the QPD breadboard seems to be having problems... yesterday Eric helped me debug my circuit and discovered that the +12V regulator was overheating, so we replaced it. Today, I found that the -12V regulator was also doing the same thing, so I replaced it. However, it's still overheating. We checked all of the setup for the power regulators yesterday, so I'm not sure what's wrong.

I've also noticed that not all the connections on the breadboard that I've been using seem to work - I may search for a new breadboard in this case. Need to check I'm not doing something stupid with that.

  8406   Wed Apr 3 18:27:03 2013 KojiUpdate QPD Voltage Regulators

Breadboards may not be suitable for a reliable work. Why don't you switch to any protoboard and real soldering?

  8478   Tue Apr 23 16:31:13 2013 EricConfiguration PD frequency response

[Eric, Riju]

Summary: Routing Fibers on AP table for Photo Diode Frequency Response Measurement System

Objective: We are to set-up one simultaneous transfer-function measurement system for all the RF-PDs present in 40m lab. A diode laser output is to be divided by 1x16 fiber splitter and to be sent to all the PDs through single-mode fiber. The transfer function of the PDs will be measured using network analyzer. The output of the PDs will be fed to network analyzer via one RF-switch.

Work Done So Far: We routed the fibers on AP table. Fibers from RF PDS - namely  MC REFL PD, AS55, REFL11, REFL33, REFL55, REFL165, have been connected to the 1x16 fiber splitter. All the cables are lying on the table now, so they are not blocking any beam.

We will soon upload the schematic diagram of the set up.

 

Missing Component: Digital Fiber Power Meter, Thorlab PM20C

 

 

  8484   Wed Apr 24 14:24:40 2013 RijuUpdate PD frequency response

 Here I am attaching the first schematic diagram of the PD frequency response set-up, I will keep updating it with relevant informations with the progress of the work.

Description: Our objective is to set-up one simultaneous transfer-function measurement system for all the RF-PDs present in 40m lab. A diode laser will be used to illuminate the PDs. The diode laser output will be divided by 1x16 fiber splitter and will be sent to all the PDs through single-mode fiber. The transfer function of the PDs will be measured using network analyzer(Agilent 4395A). The output of the PDs will be fed to network analyzer via one RF-switch. The diode laser will be controlled by the controller ILX LDC 3744C. The scanning frequency signal will be fed to this controller from network analyzer through its external modulation port. The output of the controller will be splitted  into two parts: one will go to laser diode and the other will be used as reference signal for network analyzer.

 

 

Attachment 1: PD_freq_resp.pdf
PD_freq_resp.pdf
  8492   Thu Apr 25 17:56:28 2013 RijuConfiguration PD frequency response

 [Eric, Riju]

Today we have routed the fibers from 1x16 fiber splitter to POX table for POX11 PD and POP55 PD. Also we labeled the fibers on AP table, they have been fixed on the table. The photo of the table after work is attached here. We will do it for POX table tomorrow. 

Attachment 1: IMG_0495.JPG
IMG_0495.JPG
  8493   Thu Apr 25 18:58:06 2013 KojiConfiguration PD frequency response

No.... what I told was to put the roll next to the splitter, not on the table.
The table area is more precious than the rack space.

Koji> The slack of the fibers should be nicely rolled and put together at the splitter side.

  8497   Fri Apr 26 17:08:42 2013 RijuConfiguration PD frequency response

Quote:

No.... what I told was to put the roll next to the splitter, not on the table.
The table area is more precious than the rack space.

Koji> The slack of the fibers should be nicely rolled and put together at the splitter side.

 Ok, will do it on the coming week.

  8511   Tue Apr 30 12:25:23 2013 ChloeUpdate QPD

Annalisa and I met yesterday and fixed the voltage regulator on the breadboard so the QPD circuit is working. We will meet with Eric on Thursday to determine the course of action with measurements.

  8532   Tue May 7 03:08:12 2013 JenneUpdate PRM yaw responsible for RIN

Koji spent some time earlier this evening exploring where the excess RIN that we see in the PRC is coming from. 

He did this by locking the PRMI (MICH on AS55Q, PRCL on REFL33I, Pnorm for MICH = sqrt(POP110) with 0.1, Pnorm for PRCL = sqrt(POP110) with 10, MICH gain = -30, PRCL gain = 8), and then exciting each relevant optic, one at a time, in yaw.  The excitation was always using the ASCYAW excitation point on each of the optics (BS, PRM, ITMX, ITMY), with a frequency of 4.56 Hz, and an amplitude of 30 counts.

He also took reference traces with no optics excited.

Here, I plot (for each excited optic separately) the reference traces and traces during excitation for POP110_I_ERR, POPDC, and the OPLEV_YERROR for the optic that is being excited.

What we are looking for (only in yaw, since we see on the cameras that the dominant motion is in yaw) is an increase in POPDC and POP110 at the same frequency as an optic's excitation. 

We see that neither ITM is contributing a noticeable amount to either POPDC or POP110.  BS is contributing a little bit, but PRM is clearly contributingNo this entry should be read. (KA)

A week or two ago, I calculated in elog 8489 that the angular motion that we see does not explain the RIN that we're seeing, unless our cavity is much more unstable than Jamie calculated in elog 8316

I think that I need to install one of the T240's on the new granite slab, and see what kind of coherence we have between seismic and PRM yaw motion, and if FF can get rid of it.

BS_excited.pdf

ITMX_excited.pdf

ITMY_excited.pdf

PRM_excited.pdf

 

  8604   Tue May 21 14:50:52 2013 Max HortonUpdate Importing New Code

There was an issue with running the new summary pages, because laldetchar was not included (the website I used for instructions doesn't mention that it is needed for the summary pages).  I figured out how to include it with help from Duncan.  There appear to be other needed dependencies, though.  I have emailed Duncan to ask how these are imported into the code base.  I am making a list of all the packages / dependencies that I needed that weren't included on the website, so this will be easier if/when it has to be done again.

  8678   Wed Jun 5 14:39:41 2013 Max HortonUpdate Importing New Code

Most dependencies are met.  The next issue is that matplotlib.basemap is not installed, because it is not available for our version of python.  We need to update python on megatron to fix this.

ELOG V3.1.3-