40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 326 of 337  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  8979   Wed Aug 7 15:51:53 2013 Alex ColeConfigurationElectronicsRF Switch Change

For the photodetector frequency response project, our new RF Switch Chassis (NI pxie-1071) arrived today. I took the switches out of the old chassis (Note for future generations: you have to yank pretty darn hard) and put them in the new chassis, which I mounted in rack 1Y1 as pictured. 

The point of this new chassis is that its controller is compatible with our control room computer setup. We will be able to switch the chassis using TCP/IP or telnet, aiding in our automation of the measurement of photodetector frequency response.

Attachment 1: photo_(2).JPG
photo_(2).JPG
  9004   Tue Aug 13 11:40:19 2013 Alex ColeSummaryElectronicsRFPD Demod Filter Frequency Response Measurement

 For the RF PD Frequency Response Measurement project, we get each PD signal from the "PD RF Mon" output of each demodulator board corresponding to our PD under test. Therefore we can't neglect the frequency response of various filters inside the demodulator board. I used our Agilent 4395 Network Analyzer to gather frequency response data for each demodulator board being considered for the RFPD frequency response project (AS55, REFL11, REFL33, REFL55, REFL165, POX11, POP22, POP110).

The NA swept over a frequency range of 1-500 MHz. Data was collected using NWAG4395A (from the netgpibdata directory). It should be noted that the command line options -a 16 -x 15 (averaging=16 and excitation amplitude=15 dBm[the max]), in addition to the usual command line options described in the help file, were used to minimize noise. 

The data is located in /users/alex.cole. The file names are in the format [PDNAME]DemodFilt_1000000.dat (e.g. REFL11DemodFilt_1000000.dat). Results for POP110 are shown below.

Attachment 1: photo_(3).JPG
photo_(3).JPG
Attachment 2: test.jpg
test.jpg
  9005   Tue Aug 13 11:54:40 2013 Alex ColeHowToElectronicsRF PD Fiber-Coupled Laser Operation

This post pertains to the fiber-coupled diode laser mounted in rack 1Y1.

To turn the laser on, first turn the power supply's key (red) to the clockwise. Then make sure that the laser is in "current" mode by checking that the LED next to "I" in the "Laser Mode" box in lit up. If the light is not on, press the button to the right of the "I" light until it is. Now press the output button (green). This is like removing the safety for the laser. Then turn the dial (blue) until you have your desired current. Presently, the current limit is set to around 92 mA.

To turn the laser off, dial the current back down to 0mA and turn the key (red) counterclockwise.

Attachment 1: photo_(4).pdf
photo_(4).pdf
  9006   Tue Aug 13 13:30:41 2013 Alex ColeConfigurationElectronicsCable Routing

 I routed cables (RG405 SMA-SMA) from several demodulator boards in rack 1Y2 to the RF Switch in rack 1Y1 using the overhead track. Our switch chassis contains two 8x1 switches. The COM of the "right" switch goes to channel 7 of the "left" switch to effectively form a 16x1 switch. The following is a table of correspondences between PD and RF Switch input.

 

PD Left/Right Switch Channel Number
REFL11

R

0
POX11 L 0
AS55 R 1
REFL55 R 7
POP22 R 6
REFL165 R 5
REFL33 L 7

 

ThePOP110 demod board has not yet had a cable routed from it to the switch because I ran out of RG405.

We should also consider how important it is to include MCREFL in our setup. Doing so would require fabrication of a ~70 ft RG405 cable. 

Attachment 1: photo_(6).JPG
photo_(6).JPG
  9059   Fri Aug 23 21:01:38 2013 Alex ColeHowToElectronicsAutomated Photodetector Frequency Response System

 This post describes how to use the Automated Photodetector Frequency Response System.

On the mechanical side, turn on:

-the diode laser (in rack 1Y1)

-the RF Switch (in rack 1Y1)

-the reference PD (under the POY table)

-the AG4395A Network Analyzer

The NA’s RF output should go to the laser’s modulation input, the reference PD’s output should go to the NA’s R input, and the RF Switch Chassis’s output (which is the combination of the two switches’ COM channels using a splitter) should go to the NA’s A input.

Once this is done, navigate into /users/alex.cole and run PDFR.sh. This script collects data for each photodetector under consideration by switching using a python script and communicating with the NA via GPIB. It then sends all the data to RF.m, which fits the functions, plots the latest data against canonical data, and saves the plots to file.

The fitting function, fit.m, also outputs peak frequency to the command line. This function uses PD name data (e.g. ‘REFL33’) to choose an interval with minimal noise to fit.

The main script prompts the user to press enter after each NA sweep to make sure that measurements don’t get interrupted/put out of order by RF switching.

Once you're done, you should turn off the laser, NA, RF Switch, and reference PD.

Troubleshooting

Sometimes, the NA throws up and doesn’t feel like running a particular sweep. If this happens, it’s a good idea to keep the matlab script from trying to analyze this PD’s data. Do this by opening up RF.m and commenting out the calls to ‘fit’ and ‘canonical’ for that PD.

If fit.m complains about a particular set of data, it is often the case that the N/P ratio (where N is order of approximation and P is number of points in the interval) is too high. You can fix this by reducing N or making the PD’s frequency range (chosen in the fnew_idx line) larger.

Choosing a single PD

If you only want to grab the transfer function for one PD, first look up which switch input it belongs to. This information is contained in /users/alex.cole/switchList. To turn the switch to a particular input, type something like:

python rf.py “ch7”

This command uses TCP/IP to tell the switch to look at channel 7. Switch input numbers range from 1 to 16, though not all of them are in use.

Once the switch is looking at the correct input, you can run a sweep and download the data by typing /opt/rtcds/caltech/c1/scripts/general/netgpibdata/NWAG4395A -s 1000000 -e 500000000 -c 499000000 -f [filestem for output] -d [path of directory for output] -i 192.168.113.108 -g 10 -x 15. 

  8795   Wed Jul 3 11:07:17 2013 AlexSummary Photodetector Characterization

 [Alex, Koji]

We characterized Koji's BBPD MOD for REFL165 (see attachment).

First, we calibrated the Agilent 4395 Network Analyzer (NA) to account for differences in cable features between the Ref PD and Test PD connections. This was done using the 'Cal' softkey on the NA. 

Then we performed transimpedance measurements for the test PD and reference PD relative to the RF output of the NA and relative to each other (see 2nd attachment. Note that the NA's RF output is split and sent to both the IR Laser and the NA's Ref input).

Next, we made DC measurements of the outputs of the photodetectors to estimate the photocurrent distribution of the transimpedance setup (like the 2nd attachment, but with the outputs of the PDs going to a multimeter). By photocurrent distribution, we mean how the beamsplitter and respective quantum efficiencies/generalized impedance/etc. of the PDs influence how much current flows through each PD at with a DC input.

Finally, we measured the output noise as a function of photocurrent (like the 2nd attachment, but with a lightbulb instead of the IR Laser). Input voltages for the lightbulb ranged from 0mV to 6V. Data was downloaded from the NA using netgpibdata from the scripts directory. Analysis is currently in progress; graphs to come soon.

 

Attachment 1: BBPD_PCB.pdf
BBPD_PCB.pdf
Attachment 2: transimpedance_measurement.pdf
transimpedance_measurement.pdf
  8806   Mon Jul 8 16:27:49 2013 AlexUpdate Planned rack additions

Alex and Eric

For the photodetector frequency response automation project, we plan to add modules to rack 1y1 as shown in the attached picture (Note: boxes are approximately to scale). 

The RF switch will choose which photodetector's output is sent to the Agilent 4395A Network Analyzer.

The Diode Laser Module is powered by Laser Power Supply, will be modulated by the Network Analyzer and will be output to a 1x16 optical splitter which is already mounted in another rack (not pictured). 

The Transformer Module has not been built yet.

We would like to install the power supply and the laser module tomorrow and will not begin routing fibers and cables until we post a drawing in the elog.

Also, our reference photoreceiver arrived today.

 

Attachment 1: Annotated_Rack_1y1.pdf
Annotated_Rack_1y1.pdf
  8829   Thu Jul 11 12:00:50 2013 AlexUpdate Planned rack additions

[Eric, Alex]

We mounted our Laser Module and Laser Power Source in rack 1y1. We plan to add our RF Switch and Transformer Module to the rack, as pictured. (Note: drawn-in boxes in picture are approximately to scale.) Note that the panel of knobs which the gray boxes overlap is obsolete and will soon be removed.

Attachment 1: Annotated_Rack_1y1_-_update.pdf
Annotated_Rack_1y1_-_update.pdf
  8849   Mon Jul 15 16:44:46 2013 AlexUpdateOMCOMC North Safety

 [Eric Alex]

We are planning on testing our laser module soon, so we have added aluminum foil and a safety announcement to the door of OMC North. The safety announcement is as pictured in the attachment.

Attachment 1: photo_2_(1).JPG
photo_2_(1).JPG
  8850   Mon Jul 15 16:51:37 2013 AlexConfiguration Planned AS Table addition

 [Eric, Alex]

We are planning to add our reference PD to the southern third of the AS Table as pictured in the attachment. The power supply will go under the table.

Attachment 1: AS_Table_Ref_PD_Addition.pdf
AS_Table_Ref_PD_Addition.pdf
  1947   Tue Aug 25 23:16:09 2009 Alberto, ranaConfigurationComputerselog moved in to the cvs path

In nodus, I moved the elog from /export to /cvs/cds/caltech. So now it is in the cvs path instead of a local directory on nodus.

For a while, I'll leave a copy of the old directory containing the logbook subdirectory where it was. If everything works fine, I'll delete that.

I also updated the reboot instructions in the wiki. some of it also is now in the SVN.

  2887   Thu May 6 17:47:01 2010 Alberto, kiwamu, Jc The 3rd (aka The Drigg)OmnistructureTMIMinutes from the Lab Organization Commitee meeting

Today we met and we finally come up with a lot of cool, clever, brilliant, outstanding ideas to organize the lab.

You can find them on the Wiki page created for the occasion.

http://lhocds.ligo-wa.caltech.edu:8000/40m/40m_Internals/Lab_Organization

Enjoy!

  3049   Fri Jun 4 11:32:51 2010 Alberto, kiwamuUpdateIOOMC MMT1 Mirror Tests
[Alberto, Kiwamu]
Last Wednesday, we measured the beam profile after the MC mode matching telescope n.1 (MMT1). We found that the reflected beam had an irregular profile when observed with the beam scan. Fringes also appeared on an IR card.
We thought that such effect could be due to interference of the main reflected beam with the beam reflected by the back surface of the mirror.
 
To test the hypothesis we checked the transmitted and the reflected beams of a spare optic identical to MMT1. (This was the same optic that got dropped during the cleaning/baking process.)
 
We tested it on the PSL table, using a 200mW beam coming from the new 2W Innolight  laser. To maximize the separation between the two beams, we tested MMT1 at 45 degrees. The setup we used is shown here:
 
MCMMT1spareOpticsTestSetup.png
 
We looked at the beam reflected by MMT1 about 5 meters from the mirror. At that distance the beam spot had a size of about 1-2cm. it didn't look perfectly round, but it showed no fringes, as it had happened with original MMT1 inside the MC chamber.
At the transmission, the second ghost beam due to the back surface reflection (see picture above) was very week. In order to be able to see it on an IR card, we had to increase the laser pumping current from 1A to about 1.5A.
 
We are now thinking of a way to measure the relative power between the two. The problem is that they run very close to each other and it's not easy to resolve them with a power meter or a photodiode.
  1193   Thu Dec 18 19:15:54 2008 Alberto, YoichiConfigurationSUSMode Cleaner Cavity Alignment

Quote:
This morning I found the MC locked to the 10 mode. When I locked it on the 00 mode, it was unstable and eventually it always got locked to the wrong mode.

I looked at the Drift Mon MEDM screen, which shows a reference record for position, pitch and yaw of each mirror, and I found that the MC optics were in a different status. Moving the sliders of the mirrors' actuators, I brought them back to the reference position. Then the lock got engaged and it was stable, although the MC reflection from the photodiode, with the wave front sensors (WFS) off, was about 2V. That's higher than the 0.5V the it could get when we aligned the cavity and the input periscope last time.

With the WFS on, the reflection dropped to 0.3V and, so far, the the cavity has been stably locked.


This evening the mode cleaner was again locking on a higher mode so we tweaked the mirrors' actuators by their sliders on the MEDM screen until we improved the reflection to 0.3V.

Then we went inside and, on the AS table, we centered the beam on the wave front sensors.

Now the mode cleaner is locked, the reflection is less than 0.3V and the transmission about 3V, tha is it is in ideal conditions. We'll see if it holds.
  1195   Fri Dec 19 11:29:16 2008 Alberto, YoichiConfigurationMZMZ Trans PD
Lately, it seems that the matching of the input beam to the Mode Cleaner has changed. Also, it is drifting such that it has become necessary to continuously adjust the MC cavity alignment for it to lock properly.

Looking for causes we stopped on the Mach Zehnder. We found that the monitor channel:
C1:PSL-MZ_MZTRANSPD

which supposedly reads the voltage from some photodiode measuring the transmitted power from the Mach Zehnder, is totally unreliable and actually not related to any beam at all.

Blocking either the MZ input or output beam does not change the channel's readout. The reflection channel readout responds well, so it seems ok.
  2477   Tue Jan 5 10:26:32 2010 Alberto, SteveOmnistructureEnvironmentAdded new wall cable-racks

we hung two new WALL cable racks. One is on the pillar next to the Sp table, the other is next to the PSL computer rack.

To do that we had to drill holes in the wall since the simple screws weren't strong enough to keep them up.

One of the racks, the yellow, is dedicated to 4-pin lemos and other thick cables.

DSC_1068-1.JPGDSC_1070-1.JPG

  2106   Fri Oct 16 16:44:39 2009 Alberto, SanjitUpdateComputerselog restarted

This afternoon the elog crashed. We just restarted it.

  1162   Tue Nov 25 18:38:03 2008 Alberto, RobUpdatePSLMC Periscope Alignment
This morning when I came in I found the MC cleaner unlocked and the autolocker script could not lock it. The reflected beam was quite off and showed in the bottom left corner of the IMCR camera. After turning off the WFS locking, I started slightly changing the alignment of the steering mirrors on the MC periscope, waiting for the LSC servo to lock the cavity. It didn't work. At some point I lost the beam from the IMCR camera and that is how someone might have found it when I left it for about one hour.

When I came back and tried again adjusting the steering mirrors, I noticed that the autolocker was working and was trying to lock the cavity. After just a bit of adjustment, the MC got easily locked.

After that, I spent a couple of hours trying to improve the alignment of the periscope to minimize the reflection and maximize the transmission. I started with a transmission of 0.4 V but, despite all the tweaking (I used the technique of turning both yaw knobs at the same time), I couldn't get more than 1.2 V (and 2.4 V at the reflection) if only the LSC servo was on. Looking at the camera, I moved the beam around to look for a more favorable spot but the MC wouldn't lock with the beam in other places. Maybe I could do better or maybe not because the cavity is not aligned. I'm going to try again tomorrow.
  1166   Tue Dec 2 17:56:56 2008 Alberto, RanaConfigurationPSLMC Alignment
In the attempt to maximize the Mode Cleaner transmission and minimize the reflection from the steering mirrors of the MC periscope, we could not get more ~2 V at the MC Trans PD and ~ 0.5 V at MC REFL_DC. As it turned out from the SUS Drift Monitor, the reason was that the MC optics had been somehow displaced from the optimal position.

After restoring the reference position values for the mirrors and tweaking again the periscope, we got ~3V at the MC TransPD and 0.5V at the reflection.
The beam was then probably clipped at the REFL PD so that we had to adjust the alignment of one of the BS in the transmitted beam path on the AS table.
We also zeroed the WFS PDs, but not before reducing the power from the MZ, for their QPDs not to saturate.

After relocking, the transmission was 3V and the reflection ~0.3V.

The beam isnow centered on the Trans PD and REFL PD and the Mode Cleaner locked. More details on the procedure will follow.
  1883   Mon Aug 10 20:49:13 2009 Alberto, RanaUpdatePSLPMC Mode Matching Lenses Tuning

Rana, Alberto

This afternoon we tried to improve the mode matching of the beam to the PMC. To do that we tuned the positions of the two lenses on the PSL table that come before the PMC.

We moved the first lens back an forth the without noticing any improvement on the PMC transmitted and reflected power. Then we moved the first backwards by about one cm (the order is set according to how the beam propagates). That made the things worse so we moved also the second lens in the same direction so that the distance in between the two didn't change significantly. After that, and some more adjustments on the steering mirrors all we could gain was about 0.2V on the PMC transmission.

We suspect that after the problems with the laser chiller of two months ago, the beam size changed and so the mode matching optics is not adequate anymore.

We have to replace the mode matching lenses with other ones.

 

  2468   Wed Dec 30 18:01:03 2009 Alberto, RanaUpdateGeneralAll watchdogs tripped this morning

WQuote:

This morning I found all the watchdogs had tripped during the night.

I restored them all.

I can't damp ITMX. I noticed that its driving matrix is all 1s and -1s as the the right values had been lost in some previous burtrestoring.

 

Rana fixed the problem. He found that the side damping was saturating. He lowered the gain a little for a while, waited for the the damping to slow down the optic and then he brought the gain back where it was.

He also upadted the MEDM screen snapshot.

  3029   Wed Jun 2 01:47:28 2010 Alberto, KiwamuUpdateIOOmode measurement of new input optics

The mode profile of the new input optics was measured.

Although the distance between each optic was not exactly the same as the design because of narrow space,

we measured the profile after the curved mirror (MMT1) that Jenne and Kevin put in the last week.

 


(interference from MMT1)

Below is a sketch of the current optical path inside of the chamber.

inside_vac_2.png

 

In the beginning of this measurement, the angle between the incident and the reflection on MMT1 (denoted as theta on the sketch) was relatively big (~40deg) although MMT1 was actually made for 0deg incident.

At that time we found a spatially large interference imposed on the Gaussian beam at the beam scan. This is not good for mode measurement

This bad interference can be caused by an extra reflection from the back surface of MMT1 because the interference completely vanished by removing MMT1  .

In order to reduce the interference we decreased the angle theta as small as possible. Actually we made it less than 10deg which was our best due to narrow space. 

Now the interference got less and the spot looks better.

The picture below shows an example of the beam shape taken by using the beam scan.

Top panel represents the horizontal mode and bottom panel represents the vertical mode.

You can see some bumps caused by the interference on the horizontal mode, these bumps may lead to overestimation of the horizontal spot size .

 

beam_profile.png

 

(result)

 afterMMT1.png

 The above plot shows the result of the mode measurement.

 Here are the parameter obtained by fitting. The data is also attached as attachment:4

waist size for vertical  w0v [mm]  0.509 +/-0.0237
waist size for horizontal

w0h  [mm]

 0.537  +/- 0.0150
waist position from MMT1 for vertical  xv[m]  -2.91 +/- 0.214
waist position from MMT1 for horizontal xh[m]   -2.90 +/-  0.127


Attachment 3: MMT1_.dat.zip
  3046   Thu Jun 3 14:40:28 2010 Alberto, KiwamuUpdateIOOmode measurement of new input optics

Quote:

inside_vac_2.png

 

For the record, we wanted to check whether the fringes on the beam spot were caused by SM2 (see diagram above). We tried two different mirrors for SM2,

The first was one of the flat, 45 degree ones that were already on the BS table. The last, which is the one currently in place, was inside the plastic box with the clean optics that Jenne left us .

The fringes were present in both cases.

  1261   Fri Jan 30 17:30:31 2009 Alberto, JosephbConfigurationComputersNew computer Ottavia set up
Alberto, Joseph,

Today we installed the computer that some time ago Joe bought for his GigE cameras. It was baptized "OTTAVIA".

Ottavia is black, weighs about 20 lbs and it's all her sister, Allegra (who also pays for bad taste in picking names). She runs an Intel Core 2 Quad and has 4GB of RAM. We expect much from her.

Some typical post-natal operations were necessary.

1) Editing of the user ID
  • By means of the command "./usermod -u 1001 controls" we set the user ID of the user controls to 1001, as it is supposed to be.

2) Connection to the Martian network
  • Ottavia was given IP address 131.215.113.097 by editing the file /etc/sysconfig/networ-scripts/ifcfg-eth0 (we also edited the netmask and the gateway address as in the Wiki)
  • In linux1, which serves as name server, in the directory /var/named/chroot/var/named, we modified both the IP-to-name and name-to-IP register files 131.215.113.in-addr.arpa.zone and 131.215.11in-addr.martian.zone.
  • We set the file /etc/resolv.conf so that the OS knows who is the name server.

3) Mounting of the /cvs/cds path
  • We created locally the empty directories /cvs/cds
  • We edited the files /etc/fstab adding the line "linux1:/home/cds /cvs/cds nfs rw,bg,soft 0 0"
  • We implemented the common variables of the controls environment by sourcing the cshrc.40m: in the file /home/controls/.cshrc we added the two lines "source /cvs/cds/caltech/cshrc.40m" and "setenv PATH ${PATH}:/cvs/cds/caltech/apps/linux64/matlab/bin/"
  2490   Fri Jan 8 20:13:49 2010 Alberto, JoBConfigurationComputersThe 40m Kaiser Permanent Reboot Marathon
This morning after Alex and Jo's tinkering with Megatron the RFM network crashed and it brought down also some computers. The effect was that it was not possible to lock the mode cleaner anymore.
A few computers crashed and things didn't come back to their origianl state.
After an endless day of rebooting and fixing problems with the single front ends (in particular with c1susvme1), eventually the mode cleaner got locked again.
Among my weapons I also used the Nuclear Option (TM).
Maybe I'll include more details in a future elog entry.
Anyway, in the end I burtrestored everything to Jan 8 2009 at 9:00.

pasadena_marathon.JPG

  2971   Fri May 21 16:41:38 2010 Alberto, JoUpdateComputersIt's a boy!

Today the new Dell computer for the GSCS (General SURF Computing Side) arrived.

We put it together and hooked it up to a monitor. And guess what? It works!

I'm totally impressed by how the Windows get blurred on Windows 7 when you move them around. Good job Microsoft! Totally worth 5 years of R&D.

  2520   Mon Jan 18 09:44:36 2010 Alberto, BobOmnistructureEnvironmentNo rain water infiltrations so far

It has rained continuously for the last 24 hours. Bob walked through the lab looking for possible water infiltrations. The floor looked dry: no puddles or leaks anywhere so far.

  131   Wed Nov 28 16:18:15 2007 AlbertoMetaphysicsEnvironmentso clean you can eat on it
I tidied up the desks in the lab, brought the Spectrum Analyzers back to the Salumeria (you don't want to know about that), sorted a lot of stuff and boxed up what I didn't know (you can find it in a couple of carton boxes on the table).
The blackmail with the pie might not work next time.
Please, preserve the common sort.


Alberto
Attachment 1: DSC_0180.JPG
DSC_0180.JPG
Attachment 2: DSC_0181.JPG
DSC_0181.JPG
  142   Thu Nov 29 18:10:13 2007 AlbertoHowToComputer Scripts / ProgramsGPIB Scripts
I've spent a lot of time trying to configurate the GPIB-USB interface for the HP4195. After installing 1) the Agilent libraries, 2) the drivers, 3) the matlab Instrument Toolbox, 4) Jamie script, 5) Alice's script the computer can see the HP but still they can't 'talk' to each other.
I give up. I asked Alice Wang how she managed to get data. I'm not sure she used the GPIB interace. Rob said she might have used the old fashion floppy disks that we can't read anymore here.
I would really appreciate any suggestion by anyone who happened to have the same problems.
  246   Thu Jan 17 18:22:14 2008 AlbertoUpdateElectronicsRF Monitor Band-pass Filter
After we finalized the schematic for the RF monitor board based on buffered LC resonators, on Richard Abbott's suggestion to avoid the complication brought in by the fast op-amps, we gave another chance to the a passive configuration of the band-pass filter based on a Chebyshev topology. Rich and Ben gave me an old but very powerful software tool to design that kind of filters and showed me the way to circumvent many hassles in making RF test boards.

I made a test circuit for the 166MHz line (see attached schematic), using tunable inductors. The TF are also attached.
We get more than 20 dB of isolation after 33MHz (with a loss of only few dB at the resonance - it could be less), which is enough for all the other frequencies (33,133,199 MHz) but we would like more for the 166. We are going to add one or two extra orders to the filter.

We also have to understand the spike at about 320Mhz and eventually somehow get rid of it.


Alberto
Attachment 1: RF166Mhz.png
RF166Mhz.png
Attachment 2: Chebyshevb.png
Chebyshevb.png
Attachment 3: Chebyshev2b.png
Chebyshev2b.png
  248   Fri Jan 18 11:53:50 2008 AlbertoUpdateElectronicsRF Monitor Band-pass Filter
The response is asymmetric and on the left side of the peak, we have at least 33dB within 33Mhz, which is enough for all the frequencies. We probably don't need an higher order filter but just low pass filters in series.

The spike at 320MHz doesn't depend on the circuit board. It's either the cables, their connection, or the splitters.

Note that the frequency of this test circuit has still to be tuned exactly at 166MHz (now it's 149).


Alberto



Quote:
After we finalized the schematic for the RF monitor board based on buffered LC resonators, on Richard Abbott's suggestion to avoid the complication brought in by the fast op-amps, we gave another chance to the a passive configuration of the band-pass filter based on a Chebyshev topology. Rich and Ben gave me an old but very powerful software tool to design that kind of filters and showed me the way to circumvent many hassles in making RF test boards.

I made a test circuit for the 166MHz line (see attached schematic), using tunable inductors. The TF are also attached.
We get more than 20 dB of isolation after 33MHz (with a loss of only few dB at the resonance - it could be less), which is enough for all the other frequencies (33,133,199 MHz) but we would like more for the 166. We are going to add one or two extra orders to the filter.

We also have to understand the spike at about 320Mhz and eventually somehow get rid of it.


Alberto
Attachment 1: Chebyshevb.png
Chebyshevb.png
  268   Fri Jan 25 15:53:59 2008 AlbertoUpdateElectronics40 dB from the 3rd order Chebyschev
I managed to tune the 7 knobs in the 3rd order Chebyshev bandpass filter obtaining the tranfer function attached to this entry. We have now 40 dB of attenuation between 166 Mhz and 133 and 199. With this tuning the insertion loss is rather high. We need a better one.


Alberto
Attachment 1: 166MhzElog.png
166MhzElog.png
  285   Wed Jan 30 11:49:30 2008 AlbertoSummaryElectronicsRF monitor's filters final schematics and transfer functions
These are the final schematics for the 6th order Chebyshev filters of the RF monitor board. I'm also attaching the TF as I measured. The tuning is probably not optimal, less insertion noise could be achieved.
Attachment 1: 33Melog30Jan08.png
33Melog30Jan08.png
Attachment 2: 133Melog30Jan08.png
133Melog30Jan08.png
Attachment 3: 166Melog30Jan08.png
166Melog30Jan08.png
Attachment 4: 199Melog30Jan08.png
199Melog30Jan08.png
Attachment 5: 33elog30Jan08.png
33elog30Jan08.png
Attachment 6: 133elog30Jan08.png
133elog30Jan08.png
Attachment 7: 166elog30Jan08.png
166elog30Jan08.png
Attachment 8: 199elog30Jan08.png
199elog30Jan08.png
  314   Wed Feb 13 11:41:00 2008 AlbertoUpdateElectronicsSome characterization of the RF Monitor Box (StocMon)
I'm attaching a table with some measurements and the power spectrum from the pd to help evaluate the numbers.

The box output ranges from 0.5V to 2.1V. The coefficient between power and voltage is negative so higher voltage means lower power.

The red numbers are the outputs from each channel at their resonant frequencies. As one can see these are not very well centered on the dynamic range of the power detectors.

The cross coupling seems to be not a problem.

Even if the 166 filter, which handles the smallest of the frequencies and is also the most lossy (for construction reason), mounts a preamplifier, the output is still rather small. this explain also the high bias due to the noise amplification at the maximum power (13dB). A better insertion loss either remaking the filter or re-tuning that one would simplify many problems, i.e. there is not much room in the metal pomona box to fit the amplifier. I might want to consider, after everything else is ready and if I have time before leaving next week, to work on a new 166 filter.
Attachment 1: CircuitCharacterization.png
CircuitCharacterization.png
Attachment 2: alberto.spectrum3.png
alberto.spectrum3.png
  321   Mon Feb 18 12:04:39 2008 AlbertoUpdateElectronicsRF Monitor (StocMon)
I put the amplifiers next to the monitor on the PSL table, layed the power and the RF SMA cables out to the rack. I'm powering the box and the amplifiers with the power supply, waiting for someone to show me tomorrow how to connect it to the Sorensen (Steve, Ben?).

I'm ready to hook up the channels into EPICS.
Attachment 1: DSC_0443.JPG
DSC_0443.JPG
  331   Fri Feb 22 08:29:07 2008 AlbertoUpdateElectronicsRF Monitor (StocMon)

Quote:
I put the amplifiers next to the monitor on the PSL table, layed the power and the RF SMA cables out to the rack. I'm powering the box and the amplifiers with the power supply, waiting for someone to show me tomorrow how to connect it to the Sorensen (Steve, Ben?).

I'm ready to hook up the channels into EPICS.


Me and Ben Abbot were plugging the cables that power that RF Monitor box into the PSL rack when inadvertently we made some arcs spark between the pins on the back of one of the ADC. Somehow that made the laser shut down although the MOPA stayed on. We also notice some smell of burn.

Later on, after several failed attempts, Rob, Ben and Steve could restart the laser. It took some times because the written procedure to start the chiller is not very precise.
  332   Fri Feb 22 08:33:18 2008 AlbertoUpdateElectronicsRF Monitor (StocMon)

Quote:
I put the amplifiers next to the monitor on the PSL table, layed the power and the RF SMA cables out to the rack. I'm powering the box and the amplifiers with the power supply, waiting for someone to show me tomorrow how to connect it to the Sorensen (Steve, Ben?).

I'm ready to hook up the channels into EPICS.


With Ben, we hooked up the RF Monitor box into the PSL rack and created 4 EPICS channels for the outputs:

C1:IOO_RF_STOC_MON_33
C1:IOO_RF_STOC_MON_133
C1:IOO_RF_STOC_MON_166
C1:IOO_RF_STOC_MON_199

The power cable bringing +15V to the preamplifier on the PSL table should be replaced eventually.
  545   Thu Jun 19 15:52:06 2008 AlbertoConfigurationComputersMeasure of the current absorbed by the new Megatron Computer
Together with Rich Abbot, sam Abbot and I measured the current absorbed by the new Megatron computer that we installed yesterday in the 1Y3 rack. The computer alone absorbs 8.1A at the startup and then goes down to 5.9A at regime. The rest of the rack took 5.2A without the computer so the all rack needs 13.3 at the startup and the 11.1A.

We also measured the current for the 1Y6 rack where an other similar Sun machine has been installed as temporary frame builder and we get 6.5A.


Alberto, Rich and Sam Abbot
  555   Mon Jun 23 21:51:19 2008 AlbertoUpdateGeneralArm Cavity Length Measurement
We measured the arm cavity lengths sweeping the ETM mirror position and looking at the reflected demodulated output. We excited the mirror by a sine wave of 0.2 Hz and amplitude of 30000 counts. From the time series of the occurrences of the resonances of the sidebands and of the carrier we evaluated the free spectral range of the cavities and thus the lengths. The details of the procedure are explained in the attached document. As discussed in it, for each cavity we obtain two possible values of the length depending on which of the sideband resonances is that corresponding to the upper sideband and which corresponds to the lower one instead. The numbers are:
Lx=(38.30 +/- 0.08)m / (38.45 +/- 0.08)m
Ly=(38.16 +/- 0.08)m / (38.70 +/- 0.08)m

Since the difference between the two possibilities is quite large, we should be able to decide which one is correct by somehow measuring directly the cavity length. We want to try it tomorrow by a tape meter.


Alberto and Koji
Attachment 1: 40mLengthMeasure.pdf
40mLengthMeasure.pdf 40mLengthMeasure.pdf
  621   Wed Jul 2 06:46:05 2008 AlbertoConfigurationGeneralNPRO on to warm up
This morning I turned on the NPRO on the AP table so that it can warm up for a few hours before I start using it today.
The flipping mirror is down so no beam is injected in to the IFO.


Alberto
  627   Wed Jul 2 19:15:52 2008 AlbertoUpdateGeneralStatus of the alignment of the NPRO beam for the Absolute Length Measurement
Today I've tried to bring the frequency of the NPRO laser close enough to that of the IFO beam so that the beat between the two beams can be at a detectable frequency for the photodiode. The way I've been changing the frequency is by the NPRO's temperature control on its driver.

Looking at the signal from the AS OSA should enable us to monitor the direction in which the frequency is changing. Every time the resonances of the IFO beam and of the NPRO beam overlap, we know that the frequencies of the two beams are some FSR of the OSA away from each other. At the overlapping of the resonances, if the difference of frequency is within the detectable range of the photodiode, we should see a peak in the network/spectrum analyzer.

This way turned out not very easy in practice because from the AS OSA one can hardly distinguish the resonances of the primary beam from those of the secondary beam. The cause is mainly the flashing of the IFO beam at the AS port which produces a pattern of resonances of different amplitude. Also for some reason, triggering the output signal from the OSA at the oscilloscope doesn't work very well.

However, even if we didn't have these problems, I think that the two beams are not very well aligned, at least not anymore. I'm attaching some pictures from the AS port. The bright spot on the left is the NPRO beam and the one in the center which flashes is the IFO beam. We probably need some more work in the alignment of the NRPO beam.
Attachment 1: DSC_0156.JPG
DSC_0156.JPG
Attachment 2: DSC_0158.JPG
DSC_0158.JPG
  634   Thu Jul 3 18:48:09 2008 AlbertoUpdateGeneralBeats of the two lasers in the absolute length measurement observed
I adjusted the alignment of the flipper mirror as suggested by Koji making the two beam spots match. I also aligned all the IFO mirrors (ITMs, PRM, SRM, ETMs) to have more power for the IFO signal at the AS port. When I did that I could see the beats at the AS OSA. Then I explored the range of temperature of the NPRO from 35deg (C) to 51.2807deg and at that point I could observe a peak corresponding to the beat at about 10MHz on the network analyzer. The peak tends to drift because the laser takes probably a longer time to actually thermalize and it moves very rapidly changing the temperature of the laser.
  637   Mon Jul 7 11:22:02 2008 AlbertoUpdateGeneralBeats of the two lasers in the absolute length measurement observed
I didn't post a screenshot from the RF SA because I had troubles with the interface with the computer (unfortunately the network SA cannot export the data either).

There is problem with the PLL circuit. The signal, beside the beat, also contains peaks at 33, 66 and 99 MHz, so we should think about filtering those out.


Quote:
Great! Conguraturation! I wish if I could see it! It's nice if you can put the photo or anything of the RF spectrum analyzer.

Next step:
o You can try to maximize the beat amplitude by the tuning of the Injection steering mirrors.

o At the south end of the SP table, I prepared a frequency mixer. You can put the beat signal into the RF input, and an oscillator (which you can bring from somewhere) to the LO input in order to obtain the error signal of the PLL. Put the IF output of the mixer in a SR560, and please try to lock it by a simple 6db/oct (1st order) LPF of the SR560. For the actuator you can use the fast-pzt input of the NPRO.


Quote:
Then I explored the range of temperature of the NPRO from 35deg (C) to 51.2807deg and at that point I could observe a peak corresponding to the beat at about 10MHz on the network analyzer.
  643   Mon Jul 7 19:15:38 2008 AlbertoUpdateGeneralOptics alignement on the ABS length experiment
Today I started setting up the PLL instruments to lock the frequency of the NPRO beam to the IFO beam. with no need of a new alignment after the weekend I was able to see the beat again, although this time I found at a different temperature of the NPRO laser of about 54 degrees (vs 51 of the last time).
I've got the Marconi as local oscillator (LO), the mixer Koji suggetsed, the SR560 and a 5 MHz low pass filter to cut the 33, 66 and 99 MHz present in the output signal from the PD. The filter worked well and I was able to single out only the beat resonance from the power spectrum.
In the attempt to enhance the amplitude of the beat, as Koji suggested, I tried to work on the alignment of the steering mirrors. While I was doing that, for some reason the pre-modecleaner lost the alignment and I had to ask John to help me lock it again. during the process I lost the old alignment but at the end I got a new one, apparently (from the camera) even better than the other. Although after that the beats were gone. Actually after the lock-in of the PMC the IFO beam didn't look as good as before, so it might be also for that reason.

I'll try again tomorrow, after that probably tonight Rob is going to reset the alignments of the interferometers.
  656   Thu Jul 10 19:12:07 2008 AlbertoUpdateGeneralabs cavity length measurement experiment
Yesterday morning, when I started, I found the IFO beam on a different position and the beam spot at the AS port looked very deformed. The overlapping with the secondary beam was not good enough to observe the beats anymore. Restoring the alignments of the interferometers did not work because, as John found out later, some of the photodiodes had offsets and gain which made the restore script ineffective. After resetting the parameters, we had to align every mirror of the interferometers and save the configuration twice. The second times was because on the first time the alignment had been done with the illuminators on. To avoid that in the future, John wrote an alarm to warn about the status of the lights.

After that we fixed the IFO beam, I had to realign the optics in the table to match the secondary beam to the IFO beam. I got the two beam overlapping and, even though the NPRO spot looked distorted, I could observe again some signal of the beat. To do that it was also necessary to have all the interferometer mirrors aligned so that we had more power from the ifo beam although it also made the spot flash. Ideally, to avoid the flashing (which we would also impede the PLL to work) we should work with the interferometer locked. Since that doesn't seem actually possible, we should just keep one of the ITM aligned and improve the beam matching so that we can observe the beats even with less power.

Today I spent the day trying to improve the alignement of the optics to observe the beats with only the ITM aligned, resetting the alignment of both beams with the ireses, with the Farady and all the rest. It was a rather long and tiring process but I think I'm close to the target and maybe tomorrow.
  668   Mon Jul 14 19:15:43 2008 AlbertoUpdateGeneralabs cavity length measurement experiment
Lately I've been dealing with the alignment of the interferometer to have a good beam spot at the AS port. Today the alignment script kept failing because of computer problems (failure of the frame builder) and also because the IFO was probably too far from the range where the automatic alignment works.

An other problem I keep having with the alignment of the optics on the AP table is with multiple reflection beams of the NPRO beam at the Farady.
Although I believe that now the two beams are quite well aligned, I don't see any reflection of the secondary beam from the IFO anymore.

It's like the more I try to improve the alignment, the worse I get from the beam matching. I'll keep working on this.
  669   Mon Jul 14 21:34:10 2008 AlbertoUpdateGeneralabs cavity length measurement experiment

Quote:
Lately I've been dealing with the alignment of the interferometer to have a good beam spot at the AS port. Today the alignment script kept failing because of computer problems (failure of the frame builder) and also because the IFO was probably too far from the range where the automatic alignment works.

An other problem I keep having with the alignment of the optics on the AP table is with multiple reflection beams of the NPRO beam at the Farady.
Although I believe that now the two beams are quite well aligned, I don't see any reflection of the secondary beam from the IFO anymore.

It's like the more I try to improve the alignment, the worse I get from the beam matching. I'll keep working on this.


Realigning the OSA I also had to move a little bit the mirror that reflects the IFO beam of at the AS port in order to raise the beam height. This had the effect of changing the position of the AS spot on the camera and on the monitors.

Tonight with John, we made sure that the AS beam was still aligned to the PD.
  683   Wed Jul 16 16:59:07 2008 AlbertoUpdateGeneralAligment
I think the two beams are aligned again - they both pass the Faraday, they match at the irises and all along the optical path on the AP table. Although the NPRO beam does not show up at the AS port.
  724   Wed Jul 23 16:31:02 2008 AlbertoConfigurationComputersMegatron connected
Joe, Rana, Alberto,

we found out the password for Megatron so we could log in and set a new one so that now it's the same as that for controls.
The IP address is 131.215.113.59.

We had to switch to another LAN ports to actually connect it.
  725   Wed Jul 23 17:19:48 2008 AlbertoConfigurationComputersMegatron connected
We changed the IP address. Ther new one is 131.215.113.95.

Joe, Alberto


Quote:
Joe, Rana, Alberto,

we found out the password for Megatron so we could log in and set a new one so that now it's the same as that for controls.
The IP address is 131.215.113.59.

We had to switch to another LAN ports to actually connect it.
ELOG V3.1.3-