40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 325 of 350  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  8959   Thu Aug 1 22:58:45 2013 CharlesUpdateISSCTN Servo - Explicit Requirement and Proposed Servo

 In PSL elog 1270, Evan elucidated the explicit requirements for the CTN ISS board. Essentially, the transfer function of the ISS should be something like:

     TF_mag = (Unstabilized RIN) / (Calculated RIN Requirement)

I took Evan's data and did exactly this. I then designed a servo (using the general design I proposed here) to meet this requirement with a safety factor of ~10. By safety factor, I mean that if the ISS operates exactly according to theory, it should suppress the noise by a factor of 10 more than what is necessary/set out by the requirement. Below is a plot of the loop gain obtained directly from the requirement (the above expression for TF_mag) and the transfer function of the servo I am proposing.

CTN_Servo_TF_-_Proposed_v_Req.png

I don't have the actual schematics attached as I was working with a LISO file and have yet to update the corresponding Altium schematic. The LISO file is attached and I will add the schematics later, although one can reference the second link to find a simple drawing.

Attachment 2: CTNServo_v3.fil
# Stage 1
r R31 1.58k in n_inU3
op U3 ad829 p_inU3 n_inU3 outU3
r R35 1k p_inU3 gnd
c C33 1u p_inU3 gnd
c C32 10n n_inU3 outU3
r R34 158k n_inU3 outU3

# Stage 2
#r R41 15.8 outU3 n_inU4U5
... 24 more lines ...
  8961   Fri Aug 2 21:59:36 2013 CharlesUpdateISSFinalized ISS Schematic (hopefully)

Attached is the finalized schematic. The general circuit topology should remain the same from this point forward, although individual component values are subject to change. I will also be adding some more annotations to ensure everything on the board is clear.

In general, I have finally included all of the correct components (i.e. front panel switches are now actually switches and front panel LEDs are now included). I also added an external 'Boost' switch, which can be used to enable or disable the boosts. The motivation for including this switch is that one might want to test functionality of the ISS without using the 'fancy' RMS detection and triggering circuitry. Additionally, one can disable the boosts when all the circuitry is stuffed in order to troubleshoot, so it essentially grants the board some flexibility in its operation.

I am now working on the PCB layout and I should hopefully have that done next week. 

Attachment 1: ISS_v3.pdf
ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf
Attachment 2: ISS_v3-Power_Reg.pdf
ISS_v3-Power_Reg.pdf
  9016   Thu Aug 15 21:42:53 2013 CharlesUpdateISSISS - Schematic + PCB Layout

 After many, many moons of getting to know exactly how frustrating Altium can be, I have completed the PCB layout for my ISS board (final page of ISS_v3.pdf).

Before I get into detail about the PCB, there is one significant schematic change to note: the comparator circuit was changed (with significant help from Koji) so that the voltage reference for boost triggering is established in a more logical way. Instead of the somewhat convoluted topology I had before, now there are only two feedback resistors, R82 and R83. Because their resistances (500k and 50k respectively) are so much larger than the total resistance of the 1k potentiometer (used to establish a tunable threshold voltage), the current flowing through the feedback loop is negligible compared to the 5 mA current flowing through the potentiometer (the pot is rated for 2 W and with 5 mA -> 25 mW dissapation). This allows one to set the threshold voltage for my schmitt trigger, at pin 2 of both the pot and the comparator, entirely with the pot. This trigger also has hysteresis given by the relation deltaV ~ (R83/R82) * (Voh - Vol) where deltaV is the separation between threshold voltages, Voh is the high-level comparator ouput and Vol is the low-level comparator output. Koji simulated this using CircuitLab and I plan to verify the behavior by making a quick prototype circuit.

Now, on to the PCB. The board itself is of a 'standard' LIGO size (11" x 6") has 3 routing layers and 3 internal planes, one for +15 V, one for -15 V and one for GND. In the attached pdf, red is the top routing layer, blue is the bottom layer and brown is the middle routing layer (used for ±5 V exclusively). The grey circles are pads and vias (drilled through) and anything in black is silkscreen overlay. I placed each component and track by hand, attempting to minimize the signal path and following the general rules below,

  • Headers for power, ±5 V and ±15V, are at the back of the board
  • For sections of the board such as filter stages or buffers, resistors and capacitors were grouped around their respective op-amps.
  • As often as was possible, routing was confined to the top layer. Tracks on the bottom layer were placed mostly out of necessity (i.e. no possible connection on top routing layer).
  • The signal generally proceeds from left to right (directions with respect to the attached printout) in the same logical order as on the schematic sheets. Refer to the global sheet (page 1) of the attached "ISS_v3.pdf".
  • External ports such as the PD input, various monitoring ports and panel mounted switches/LEDs were all connected to the board via headers located along the front edge. These are also ordered following the schematic layout.
  • Occasionally, similar signal paths were grouped together although this was a rarity on my board

Sections of the board have been partitioned and labeled with silkscreen overlay to help in both signal pathway recognition as well as eventual troubleshooting.

On the board, I have also included holes so that it can be mounted inside of an enclosure. There is a DCC number printed as well as a 'barcode' (TrueType font: IDAutomationC39S), although they both contain filler asterisks as I haven't published this to the DCC and thus do not have a number.

Attachment 1: ISS_v3.pdf
ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf ISS_v3.pdf
Attachment 2: ISS_v3-Power_Reg.pdf
ISS_v3-Power_Reg.pdf
  9019   Fri Aug 16 19:36:49 2013 CharlesUpdatePSLPMC_trans Channel

Rana and I connected the PMC_trans output to the BNC connector board on the west end of the PSL table (the channel is labeled). I took a few spectra off of PMC_trans and the SR785 was connected directly to the PMC_trans output for about an hour.

Data will follow.

  9330   Sat Nov 2 19:36:15 2013 CharlesUpdateGeneralPossible misalignment?

 I was working on the electronics bench and what sounded like a huge truck rolled by outside. I didn't notice anything until now, but It looks like something became misaligned when the truck passed by (~6:45-6:50 pm). I can hear a lot of noise coming out of the control room speakers and pretty much all of the IOO plots on the wall have sharp discontinuities.

I haven't been moving around much for the past 2 hours so I don't think it was me, but I thought it was worth noting.

  9331   Sat Nov 2 22:49:44 2013 CharlesUpdateISSCTN ISS Noise Suppression Requirement - Updated 10/27

 Previously in elog 8959, I gave a very simple method for determining the noise suppression behavior of the ISS. Recently, I recalculated this requirement in a more correct fashion and again redesigned the ISS to be used in the CTN experiment.

  • Determining the Requirement

Just as before, the data from PSL elog 1270 is necessary to infer a noise suppression requirement. The data presented there by Evan consists of two noise spectra, 1) the unstabilized RIN presently observed in the CTN experiment readout and 2) the theoretical brownian noise produced by thermal processes in the mirror coating+substrate. The statement "TF_mag = (Unstabilized RIN) / (Calculated Brownian Noise Limit)", where TF_mag refers to the required open-loop gain of the ISS, is actually a first order approximation of the 'required' noise suppression. In fact if we wanted the laser noise to be suppressed below the calculated brownian noise level, it is more correct to say 

        Closed-loop ISS gain = (Calculated Brownian Noise Limit) / (Unstabilized RIN)

As this essentially gives a noise suppression spectrum i.e. a closed-loop gain in linear control theory. Below is a very simple block diagram showing how the ISS fits into the CTN experiment. The F(f) block represents my full servo board.

    ISS_path.png

Some of the relevant quantities involved:

            plant-quant_1.png

            plant-quant_2.png

So looking at the block diagram, our full closed-loop transfer function is given by,

cl-loop.png

So then to determine the required F(f), i.e. the required transfer function for my servo, we consider the expression 

               requirement.png

The plant transfer function is simply Plant = (C(f) * a * P * A) ~ 0.014 V/V, where I have ignored the cavity pole around 97 kHz as our open-loop transfer function ends up crossing unity gain around 10 kHz. In the above, I have included what I call a 'safety factor' of 10. Essentially, I want to design my servo such that it suppresses noise well beyond what is actually required so that we can be sure noise contributions to experiment readouts are not significantly influenced by the laser intensity noise.

  • Proposed Servo Design

Using the data Evan reported for the brownian noise and free-running RIN, I came up with an F(f) to the meet the requirement as shown below.

CTN_TF_req-vs-proposed.png

 Where the blue curve includes the safety factor mentioned before. This plot just demonstrates that using my modular ISS design, I can meet the given noise suppression requirements.

To be complete, I'll say a little more about the final design.  As usual, the servo consists of three stages. The first is the usual LP filter that is always 'on' when the ISS loop is closed. The boosts I have chosen to use consist of an integrator with a single zero and a filter that looks somewhat like a de-whitening filter. The simulated open-loop transfer functions are shown below.

switching-filters.png

 

 

 

 

 

 

 

 

  9332   Sun Nov 3 00:05:52 2013 CharlesSummaryISSISS Update - Bout' time

Right near the end of summer, I had an ISS board that was nominally working, but had a few problems I couldn't really sort out. Since I've been back, I've spent a lot of time just replacing parts, trying different circuit topologies and generally attempting to make the board function as I hoped it might in all those design stages. Below is a brief list of some of the problems I've been fixing as well as the first good characterization of the board transfer function that I've been able to get.

We'll start with some of the simple problems and proceed to more complicated ones.

  • The 5V reference I was using to obtain an error signal from some arbitrary DC photodiode readout was only producing ~2.5 V. 
    • Turns out I just need a FET type op-amp for the Sallen-Key Filter that I was using to clean up any noise in the reference output, as the leakage current in a AD829 was causing a significant voltage drop. I put in an OPA140 and everything worked marvelously.
  • The way I set up input grounding (i.e. send a ~0 amplitude signal through the board as an input) passed a few Amps through one of my chips causing it to burn out rather fantastically.
    • There isn't a good way to fix this on the current board (besides just getting rid of the functionality altogether) so my solution so far has just been to redesign that particular sub-system/feature and when we implement the second version of the ISS, the input grounding will be done correctly
  • One of the ICs I'm using, specifically the AD8436 RMS-to-DC converter, causes some super strange oscillations in -5V power line. When this chip is soldered onto the board, the -5V supply jumps between -3V and -10V rather sporadically and the DC power-supply used to provide that -5V says that board is drawing ~600 mA on that particular power line.
    • To date, I don't really have any idea what's going with this chip, and I've tried a lot of things to remedy the problem. My first thought was that I had some sort of short somewhere so I took the chip off the board, cleaned up all the excess solder and flux around the chip's footprint and then meticulously soldered a new chip on (when I say meticulously, it took over an hour to solder 20 little feet. I really really didn't want to short anything accidentally as the chip only comes in a package with ridicously small spacing between the leads). Lo and behold, nothing happened. I still saw the same oscillations in power supply and the board was still drawing between >500 mA on that line. Just to be sure, I soldered on a third chip taking the same amount of care and had the same problems.
    • I went over the schematic in Altium that we used to order the board, and unless the manufacturer made a mistake somewhere, there aren't any incorrectly routed signals would cause, say, two active devices to try setting the voltage of a particular node to different values.
    • I got some QSOP-to-DIP package converters so that I could mess around with the AD8436 on a breadboard to make sure it functioned correctly. I set up an identical circuit to the one on the PCB and didn't see any oscillations in the power supply, both for +-5V and +-15V as the chip can handle both supply voltages. I'm not really sure how to interpret this...
    • I'm still actively trying to figure this particular problem out, but I'm shooting in the dark at this point. 
  • Initial attempts to measure the transfer-function of the board were wrought with failure.
    • I figured out, with Nic's help, that the board needs the 'loop closed' with a significant broadband attenuator (to simulate the plant optics discussed in elog 9331) in order to not have constant railing of the high gain op-amp filter stages. Even after I did this, the measured transfer functions were not at all consistent with simulation. I wasn't sure if it was just a part issue, a design issue or a misunderstanding/bad data collection on my part so I just redesigned the whole servo and stuffed the board with entirely new components from around the 40m. Turns out the newly designed servo behaved more properly, as I will show below.

The above list encompasses all the issues I've had in making the ISS board function correctly. No other major problems exist to my knowledge.

I was able to measure both the open- and closed-loop transfer functions of the servo with the SR785. The results are shown below.

full-op-loop.png

The transfer function with the boosts on caps at a particular value set by op-amp railing, i.e. below 100 Hz, the op-amps are already putting out their max voltage. This is the usual physical limitation when measuring the transfer function of an integrator. We can also see that the measured phase follows the simulated phase above ~300 Hz. The 'phase matching' at low frequency is again do to the op-amp railing in the servo output..

The closed-loop gain is shown below,

full-cl-loop.png

The measured closed-loop gain with the boosts on again matches the LISO simulation quite well except at low frequency where we are limited by op-amp railing. We compare the measured closed-loop transfer function to the desired noise suppression stipulated in my previous elog 9331,

req-vs-meas.png

 And we might hopefully conclude that my servo functions as desired. One should note that the op-amp railing seen in these measurements is not indicative of limitations we might face in some application of the ISS for the following reason. These transfer functions were measured with a 100 mV excitation signal (it is necessary to keep this signal amplitude large enough so that the inherent signal-to-noise ratio of the excitation source is large enough for accurate measurement) which leads to somewhat prompt railing of the op-amps. When the ISS operates to actually stabilize a laser, the input error signal will be much smaller (on the order of a few 10's of mV or less) and will decrease significantly assuming correct operation of the ISS. This means we won't see the same type of gain limitations.

 

What now, you ask?

Aside from the problem with the AD8436 chip, the ISS board seems to be functioning correctly. The transfer functions we have measured are correct to within the component tolerances and all of the various subsystems are behaving as they were designed to. Moving toward the goal of having this system work in situ for the CTN experiment, I need to do the following things,

  • Design a housing for the board -> order said housing and the front panel previously designed
  • Make sure the power supply daughter PCB boards are compatible with the ISS board and can provide power correctly
  • Talk to Evan and Tara about integrating the ISS with their experiment and make sure my board can do everything it needs to in that context.

So close, or so I say all the time 

 

  9746   Mon Mar 24 19:42:12 2014 CharlesFrogsVACPower Failure

 The 40m experienced a building-wide power failure for ~30 seconds at ~7:38 pm today.

Thought that might be important...

  11124   Mon Mar 9 16:50:35 2015 Champagne DuckFrogsTreasureCelebrating Lock

Attachment 1: 2015-03-09_16.35.47.jpg
2015-03-09_16.35.47.jpg
  437   Tue Apr 22 17:08:04 2008 CarynUpdateIOOno signal for C1:IOO-MC_L
C1:IOO-MC_L signal was at zero for the past few days
  480   Thu May 15 14:39:33 2008 CarynSummaryPEMfiltering mode cleaner with mic
Tried filtering for mode cleaner data(C1:IOO-MC_L) using a siso-firwiener filter and microphone data(C1:PEM-AS_MIC) for noise input. The noise reduction in mode cleaner data using the microphone-filter is comparable to the noise reduction when an accelerometer(C1:PEM-ACC_MC1_X) filter is used. See attached graphs.
Attachment 1: MC_L_with_PEM-AS_MIC_filter.pdf
MC_L_with_PEM-AS_MIC_filter.pdf
Attachment 2: MC_L_with_PEM-ACC_MC1_X_filter.pdf
MC_L_with_PEM-ACC_MC1_X_filter.pdf
  494   Fri May 23 21:21:52 2008 CarynSummaryGeneralfiltering mode cleaner with wiener filter
I tried filtering some saved MC_L data (from Mon May19 4:30pm) with multiple MISO filters of different orders, with various sampling rates, at different times. Plotted the max rms error (where error is signal minus signal-estimate). 2min of data (around Mon May19 4:30pm) were used to calculate each filter. And each filter was applied to data at later times to see how well it performed as time progressed. Plots are attached. There appears to have been a disturbance during the 3rd hour. Rana pointed out perhaps it would be better to use data from the evening rather than during the day.
Attachment 1: error_vs_N_for_different_times_64Hz.pdf
error_vs_N_for_different_times_64Hz.pdf
Attachment 2: error_vs_N_for_different_times_128Hz.pdf
error_vs_N_for_different_times_128Hz.pdf
Attachment 3: error_vs_N_for_different_times_256Hz.pdf
error_vs_N_for_different_times_256Hz.pdf
Attachment 4: error_vs_N_for_different_times_512Hz.pdf
error_vs_N_for_different_times_512Hz.pdf
Attachment 5: error_vs_srate_for_different_times_256.pdf
error_vs_srate_for_different_times_256.pdf
Attachment 6: error_vs_srate_for_different_times_512.pdf
error_vs_srate_for_different_times_512.pdf
Attachment 7: error_vs_srate_for_different_times_1024.pdf
error_vs_srate_for_different_times_1024.pdf
Attachment 8: error_vs_time_for_different_srates_256.pdf
error_vs_time_for_different_srates_256.pdf
Attachment 9: error_vs_time_for_different_srates_512.pdf
error_vs_time_for_different_srates_512.pdf
Attachment 10: error_vs_time_for_different_srates_1024.pdf
error_vs_time_for_different_srates_1024.pdf
  518   Wed Jun 4 16:25:06 2008 CarynSummaryPEMmicrophone moved
The microphone 'C1:PEM-AS_MIC' has been moved right a bit. This change didn't seem to have much effect on filtering the 'C1:IOO-MC_L' signal, at least not compared to how the filter changes with time. Also used microphone data to filter MC_L data using firwiener filter/levinson. The N(order) and sample rate were varied to see how the filter changed. Attached are graphs of the max(rms(noise_estimate)) vs N or IR for varying srate. Note that filtered_signal=signal-noise_estimate. So, the larger the noise_estimate, the more the filter subtracts from the signal.
Green-filtered signal
blue-noise estimate
red-MC_L signal
note decreasing sample rate is more effective than increasing N (higher N takes more time to compute)
note sample rate doesn't change the max(rms(noise_estimate)) very much if impulse response time remains constant
note the 64hz, N=7000 (impulse response about 110s) filter is a better filter than the 512Hz, N=7000(impulse response about 14s)
Attachment 1: 1_MC_L.pdf
1_MC_L.pdf 1_MC_L.pdf 1_MC_L.pdf 1_MC_L.pdf
  522   Fri Jun 6 11:19:13 2008 CarynSummaryPEMFiltering MC_L and MC_F with PEM:ACC and microphone
Tried to filter MC_L and MC_F with acc/seis data and microphone data using wiener filter (levinson)

-Used get_mic_data.m and miso_filter_lev.m to make SISO filter for 2 minutes of IOO-MC_F data. Used PEM-AS_MIC signal as noise input data. Filters calculated at initial time were applied to later data in 1 hour intervals.
-microphone filter did not seem to filter MC_F very well in high frequency range using this filtering procedure.
-residual is larger than est (see MC_F pdf)
-Used do_all_time_lev.m to make graph of max(rms(residual)) to N(order) for different times.(note for each N, filter was calculated for initial time and then applied to data at other times).
-relation of max(rms(residual)) to N(order) is time sensitive (note-on graph, time interval is 1hour) (see MC_F pdf)
-Presumably, max(rms(residual)) should decrease as N increases and increase as time increases since the filter probably becomes worse with time. I think the reason this isn't always true in this case is that the max(rms(residual)) corresponds to a peak (possibly a 60Hz multiple) and the wiener filter isn't filtering out that peak very well.


-Used get_z_data.m and miso_filter_lev.m to make MISO filter for 2 minutes of IOO-MC_L used the following signals as noise input data
PEM-ACC_MC1_X
PEM-ACC_MC2_X
PEM-ACC_MC1_Y
PEM-ACC_MC2_Y
PEM-ACC_MC1_Z
PEM-ACC_MC2_Z
PEM-SEIS_MC1_Y
-Filter was applied to later data in 2hour intervals.
-Used do_all_time_lev.m to make graph of max(rms(residual)) to N(order) for different times.(note for each N, filter was calculated for initial time and then applied to data at other times).
-acc/seis filter seemed to filter MC_L OK for 128,256,512Hz srates. 64 Hz wasn't ok for certain N's after a period of time.
-residual is smaller than est for srates not 64Hz (see MC_L pdf)
-residual is larger than est for 64Hz at N=1448 for later times (see MC_L pdf)
-relation of max(rms(residual)) to N is not as time sensitive for higher sample rates (note-on graph, time interval is 2hours) (see MC_L pdf). Perhaps the levinson 64Hz sample rate filter doesn't do as well as time passes for these signals. When the filter didn't do well, the max(rms(residual)) seemed to increase with N.
-For 512Hz sample rate filter the max(rms(residual)) decreased with time. If the max(rms(residual)) were an indication of filter performance, it would mean that the 512Hz filter calculated at the initial time was performing better later as hours passed by! Perhaps max(rms(residual)) isn't always great at indicating filter performance.

Programming notes
-I had to modify values in do_all_time_lev.m to get the program to loop over the srates,N's,times I wanted
-do_all_time_lev.m is not as clean as do_all_lev.m
-for making the plots do_all_lev.m (which isn't really a procedure and is messy) has some examples of how to plot things from do_all_time_lev.m.
Attachment 1: MC_F.pdf
MC_F.pdf MC_F.pdf MC_F.pdf
Attachment 2: MC_L.pdf
MC_L.pdf MC_L.pdf MC_L.pdf MC_L.pdf MC_L.pdf MC_L.pdf MC_L.pdf MC_L.pdf
Attachment 3: miso_filter_lev.m
function [s] = miso_filter_lev(N,srate,rat,z)
%MISO_FILTER_LEV(N,srate,z) uses miso_firlev to get levinson
%   FIR Wiener filter of order N-1, using impulse response of 
%   N/srate. z is a structure gotten from the get_data function. 
%   z(end) is the signal which is filtered using z(i) for all i.
%   'rat' is the fraction of z which will be put into filter
%   funtion. The data from z is downsampled using srate and 
%   detrended. Let rat=1. I don't have that part working yet.


... 107 more lines ...
Attachment 4: get_mic_data.m
function[z,t0,duration]=get_mic_data(t,d_t,d)
%get_mic_data gets data for'C1:IOO-MC_F', 'C1:PEM-AS_MIC,
% Example:  z = get_mic_data('now',120,60)
%  start time is 't- d_t' so  d_t should be given in seconds. t should be given
%  as a number like 893714452. d is duration in seconds. get_mic_data saves
%  data to a file in current directory named 'temp_mic'. You will be asked to
%  save file as 'mic_(start_time)_(duration)'.

duration = d;

... 32 more lines ...
Attachment 5: do_all_time_lev.m
function[r] = do_all_time_lev(n,t0,int,duration,N,srate,rat,order,time,MC_L,MC_F,sample_rate)
%do_all_time explores how filter performance changes with time, sample rate,
%and order of filter. Outputs data,noise estimate, structure of max
%rms error and other info. It uses get_data, miso_filter_lev, and miso_filter_int and retrives
%MC_Ldata or MC_Fdata for multiple times, calculates a miso_filter for initial-time data
%file, applies filter to the other data files, and keeps track of the...
%max(rms(residual)) for each filter. n+1 is number of data files. int is time interval between
%data files, t0 is start time, duration is duration of each data file, srate
%is the sample rate for which filter is calculated, n_N is number of orders
%of the filter you want the program to calculate,int_N is interval by which N
... 215 more lines ...
Attachment 6: do_all_lev.m
function[r] = do_all_lev(n,t0,int,duration,n_N,int_N,n_srate,int_srate,rat,MC_L,MC_F)
%do_all_lev explores how filter performance changes with time, sample rate,
%and order of filter. Outputs data,noise estimate, structure of max
%rms error and other info. It uses get_data, miso_filter_lev, and miso_filter_int and retrives
%MC_Ldata or MC_Fdata for multiple times, calculates a miso_filter for initial-time data
%file, applies filter to the other data files, and graphs the rms of the cost
%function vs time. n+1 is number of data files. int is time interval between
%data files, t0 is start time, duration is duration of each data file, srate
%is the sample rate for which filter is calculated, n_N is number of orders
%of the filter you want the program to calculate,int_N is interval by which N
... 283 more lines ...
Attachment 7: do_all_plot.m
function[r] = do_all_plot(r,x,v)
 %do_all_plot plots variables contained in r(structure from
 %do_all_time_lev).Plots error(r.B.y) vs x. x can be
 %'s'(srate),'N'(order),'t'(time),'p'(impulse response). v can be 's','N','t'. 
 %example: do_all_plot(r,'s','t') makes a plot of error vs srate for
 %different times.

kk=1

err_N_srate=0
... 388 more lines ...
Attachment 8: miso_filter_int.m
function [s] = miso_filter_int(s,y)
%miso_filter_int inputs a filter and a structure array of data sets y, applies filter to data, and
%outputs a structure with fields: ppos(signal frequ spectrum),perr(cost
%function frequ spectrum),pest(signal estimate frequency
%spectrum),f(frequency),target(signal),est_darm(noise estimate),t(time).
%data file for which filter has been calculated is s (obtained using miso_filter). 
%y consists of data structures which will be filtered using
%filter from s. Then the power spectrum of the difference between signal and filtered-data is
%graphed for all the data files of y for comparison too see how well filter performs
%over time. Note if you want to create a y, take z1,z2,z3,etc. structures
... 120 more lines ...
  1130   Wed Nov 12 11:14:59 2008 CarynDAQPSLMC temp sensor hooked up incorrectly
MC Temperature sensor was not hooked up correctly. It turns out that for the 4 pin LEMO connections on the DAQ like J13, J14, etc. the channels correspond to horizontal pairs on the 4 pin LEMO. The connector we used for the temp sensor had vertical pairs connected to each BNC which resulted in both the differential pairs on J13 being read by the channel.
To check that a horizontal pair 4 pin LEMO2BNC connector actually worked correctly we unlocked the mode cleaner, and borrowed a connector that was hooked up to the MC servo (J8a). We applied a sine wave to each of the BNCs on the connector, checked the J13 signal and only one of the differential pairs on J13 was being read by the channel. So, horizontal pairs worked.
  1142   Mon Nov 17 20:47:19 2008 CarynSummaryGeneralDrove MC at 28kHz to excite drum modes
Rana, Alberto and I observed drum mode frequencies at 23.221kHz(MC1), 28.039kHz(MC2), 28.222kHz(MC3) while driving the mode cleaner. We observed no peaks when we didn't drive the mode cleaner. We used the SR785 to send a ~80mV noise signal in the 28-28.2kHz band to the mode cleaner mirrors via 1Y4-MC1,2,3-POSIN. Then we looked at 1Y2-Mode Cleaner-Qmon on the SR785 and saw peaks.
  1143   Tue Nov 18 13:28:08 2008 CarynDAQIOOnew channel for MC drum modes
Alberto has added a channel for the Mode Cleaner drum modes.
C1:IOO-MC_DRUM1
sample rate-2048
chnum-13648
  1158   Sat Nov 22 10:55:51 2008 CarynConfigurationIOODrum modes Lock-In settings changed
I unhooked the MC Demod Board's Qmon signal from the Lock-In. Set the demodulation frequency to 31.11Hz with 1V amplitude, and
put the output into MC_DRUM1. DTT showed a ~30Hz peak. Dataviewer showed signal with amplitude ~20,000.
Otherwise the settings were as Rana had them: Time Constant-100us,24dB/Sensitivity-200us/Low Noise
Want to check if Lock-In frequency drifts.
  1189   Tue Dec 9 10:48:17 2008 CarynSummaryGeneralcalibrating the jenne laser: impedance mismatch?

We sent RFout of network analyzer to a splitter, with one side going back to the network analyzer and the other to the laser modulation input. We observed a rippled transfer function through the splitter. The ripple is probably due to reflection due to an impedance mismatch in the laser.
Attachment 1: reflection.png
reflection.png
  1528   Tue Apr 28 12:55:57 2009 CarynDAQPEMUnplugged Guralp channels

For the purpose of testing out the temperature sensors, I stole the PEM-SEIS_MC1X,Y,Z channels.

I unplugged Guralp NS1b, Guralp Vert1b, Guralp EW1b cables from the PEM ADCU(#10,#11,#12) near 1Y7 and put temp sensors in their place (temporarily).

  4422   Tue Mar 22 00:03:29 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing

 OK. Today we did the same type of measurement for the Y arm laser as was done for the X arm laser here: http://nodus.ligo.caltech.edu:8080/40m/3759 

And attached here is a preliminary plot of the outcome - oddities with adding on the fitted equations, but they go as follows

(Red)    T_yarm = 1.4435*T_PSL - 14.6222

(Blue)    T_yarm = 1.4223*T_PSL - 10.9818

(Green) T_yarm = 1.3719*T_PSL - 6.3917


 

 PSL_vs_Y_arm_Temperatures.png

It's a bit of a messy plot - should tidy it up later...

  4425   Tue Mar 22 19:03:45 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing

Quote:

 I'm going to take the easy question - What are the pink data points??

And I'm going to answer the easy question - they're additional beat frequency temperature pair positions which seem to correspond to additional lines of beat frequencies other than the three highlighted, but that we didn't feel we had enough data points to make it worthwhile fitting a curve.

It's still not entirely clear where the multiple lines come from though - we think they're due to the lasers starting to run multi-mode, but still need a bit of thought on that one to be sure...

  4437   Thu Mar 24 13:50:30 2011 BryanConfigurationGreen LockingY arm laser

 Just a quick update... the Lightwave laser has now been moved up to the end of the Y arm. It's also been mounted on the new mounting block and heatsinks attached with indium as the heat transfer medium.

A couple of nice piccies...IMG_0188.JPG

Attachment 2: IMG_0190.JPG
IMG_0190.JPG
  4439   Thu Mar 24 15:30:59 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing
Fine-grained temperature vs temperature data around the current operating point of the PSL laser.
 
The last set of data was taken in 1 degreeC steps, but we want a bit more detail to find out what happens around the current PSL operating point. So we took some data with a 0.1 degC resolution.

The good news is that we seem to be running in a linear region of the PSL laser with a degree or so of range before the PSL Innolight laser starts to run multi-mode. On the attached graph we are currently running the PSL at 32.26degrees (measured) which puts us in the lower left corner of the plot. The blue data is the Lightwave set temperature (taken from the display on the laser controller) and the red data is the Lightwave laser crystal measured temperature (taken from the 10V/degC calibrated diagnostic output on the back of the laser controller - between pins 2 and 4).

The other good news is that we can see the transition between the PSL laser running in one mode and running in the next mode along. The transition region has no data points because the PMC has trouble locking on the multi-mode laser output - you can tell when this is happening because, as we approach the transition the PMC transmitted power starts to drop off and comes back up again once we're into the next mode region (top left portion of the plot).

 

The fitted lines for the region we're operating in are:

Y_arm_Temp_meas = 0.95152*T_PSL + 3.8672

Y_arm_Temp_set = 0.87326*T_PSL + 6.9825

Temp_Beating_Day02_html_m2d719182.jpg

 

  4440   Thu Mar 24 16:33:32 2011 BryanConfigurationGreen LockingPSL vs Y arm laser temperature pairing

X_arm and Y_arm vs PSL comparison.

 

 

Just a quick check of the performance of the X arm and Y arm lasers in comparison to the PSL. Plotting the data from the X arm vs PSL and Y arm vs PSL on the same plot shows that the X arm vs the PSL has no observable trending of mode-hopping in the laser, while the Y arm vs the PSL does. Suspect this is due to the fact that the X arm and PSL are both Innolight lasers with essentially identical geometry and crystals and they'll tend to mode-hop at roughly the same temperatures - note that the Xarm data is rough grained resolution so it's likely that any mode-hop transitions have been skipped over. The Lightwave on the other hand is a very different beast and has a different response, so won't hop modes at the same temperatures.

Given how close the PSL is to one of the mode-transition regions where it's currently operating (32.26 degC) it might be worth considering shifting the operating temperature down one degree or so to around 31 degC? Just to give a bit more headroom. Certainly worth bearing in mind if problems are noticed in the future.

PSL_vs_X-end_T_data_fine.jpg

  4464   Wed Mar 30 19:43:33 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Right. I've got a whole load of info and data and assorted musings I've been saving up and cogitating upon before dumping it into these hallowed e-pages. there's so much I'll probably turn it into a threaded entry rather than put everything in one massive page.

An overview of what's coming:

I started out using http://lhocds.ligo-wa.caltech.edu:8000/40m/Advanced_Techniques/Green_Locking?action=AttachFile&do=get&target=modematch_END.png as a reference for roughly what we want to achieve... and from http://nodus.ligo.caltech.edu:8080/40m/100730_093643/efficiency_waist_edit.png we need a waist of about 50um at the green oven. Everything else up to this point is pretty much negotiable and the only defining things that matter are getting the right waist at the doubling oven with enough available power and (after that point) having enough space on the bench to separate off the green beam and match it into the Y arm.

 

So…

Step 1: Measure the properties of the beam out of the laser. Really just need this for reference later because we'll be using more easily measurable points on the bench.


Step 2:
Insert a lens a few cm from the laser to produce a waist of about of a few 100um around the Faraday. Note that there's really quite a lot of freedom here as to where the FI has to be - on the X arm it's around columns 29/30 on the bench, but as long as we get something that works we can get it closer to the laser if we need to.


Step 3:
After inserting the FI need to measure the beam after it (there *will* be some distortion and the beam is non-circular to begin with)


Step 3b:
If beam is non-circular, make it circular.


Step 4:
Insert a lens to produce a 50um waist at the doubling oven position. This is around holes 7/8 on the X arm but again, we're free to change the position of the oven if we find a better solution. The optical set-up is a little bit tight near that side of the bench on the X end so we might want to try aiming for something a bit closer to the middle of the bench? Depends how the lenses work out, but if it fits on the X end it will fit on the Y end.

 
Oh... almost forgot. While I've been doing most of the grunt-work and heavy lifting - thanks go out to Suresh, Kiwamu, Koji, Steve and everyone else who's helped out with discussion of results and assorted assists to numerous to mention.

 

  4465   Wed Mar 30 19:54:19 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

RIght! Overview out of the way - now comes the trivial first bit

 

Step 1: Beam out of the laser - this will be tricky, but we'll see what we can actually measure in this set-up. Can't get the Beamscan head any closer to the laser and using a lambda/2 plate + polariser to control power until the Faraday isolator is in place. Using 1 inch separation holes as reference points for now - need better resolution later, but this is fine for now and gives an idea of where things need to go on the bench. The beam is aligned to the 3rd row up (T) for all measurements, the Beamscan spits out diameters (measuring only the 13.5% values) so convert as required to beam radius and the beam is checked to ensure a reasonable Gaussian profile throughout.

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

32 2166.1 1612.5

31 2283.4 1708.3

30 2416.1 1803.2

29 2547.5 1891.4

27 2860.1 2070.3

26 2930.2 2154.4

25 3074.4 2254.0

24 3207.0 2339.4

 

OK. As expected, this measurement is in the linear region of the beampath - i.e. not close to the  waist position and beyond the Rayleigh length) so it pretty much looks like two straight lines. There's no easy way to get into the path closer to the laser, so reckon we'll just need to infer back from the waist after we get a lens in there. Attached the plot, but about all you really need to get from this is that the beam out of the laser is very astigmatic and that the vertical axis expands faster than the horizontal.

Not terribly exciting, but have to start somewhere.

 

laser_output_non_circular.png

 

 

 

  4466   Wed Mar 30 20:08:34 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 2: Getting the beam through the Faraday isolator (FI).

Started out with an f=100mm lens at position 32,T on the bench which gave a decent looking waist of order 100 um in the right sort of position for the FI, but after checking the FI specs, it's limited to 500W/cm^2. In other words, if we have full power from the laser passing into it we'd need a beam width of more than 211 um. Solution? Use an f=150mm lens instead and don't put the FI at the waist. I normally don't put a FI at a waist anyway, for assorted reasons - scattering, thermal lensing, non-linear magnetic fields, the sharp changing of the field components in an area where you want as constant a beam as possible.  Checked with others to make sure they don't do things differently around these parts… Koji says it doesn't matter as long as it passes cleanly through the aperture. So… next step is inserting the Faraday.

The beam profiles in vertical and horizontal around the FI position with the f=150mm lens in place are attached. Note that the FI will be going in at around 0.56m.

Beam_Matching_02c_Vertical.pngBeam_Matching_02c_Horizontal.png

 

 

 

  4467   Wed Mar 30 20:14:17 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Additional:

I fired up some old waistplotter routines, and set the input conditions as the measured waist after the lens and used that to work out what the input waist is at the laser. It may not be entirely accurate, but it /will/ be self consistent later on.

 

Vertical waist      = 105.00 um at 6.282 cm after laser output (approx)

Horizontal waist = 144.63 um at 5.842 cm after laser output (approx)

 

Definitely astigmatic.

 

  4468   Wed Mar 30 20:31:30 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 3: Inserting FI and un-eliptical-ification of the beam

The FI set up on it's mount and the beam passes through it - centrally through the apertures on each side. Need to make sure it doesn't clip and also make sure we get 93% through (datasheet specs say this is what we should achieve). We will not achieve this, but anything close should be acceptable.

Setting up for minimum power through the FI is HWP @125deg.

Max is therefore @ 80deg

 

Power before FI = 544 mW

Power after FI =     496 mW (after optimising input polarisation)

Power dumped at input crystal = 8.6mW

Power dumped at input crystal from internal reflections etc = 3.5mW

Power dumped at output crystal on 1st pass = approx 8mW

 

OK. that gives us a 90.625% transmission and a 20.1mW absorption/unexplained loss.

 

Well - OK. The important part about isolators isn't their transmission, it's about how well they isolate. Let's see how much power gets ejected on returning through the isolator…

 

Using a beam splitter to pick off light going into and returning from the FI. A 50/50 BS1-1064-50-1025-45P. And using a mirror near the waist after the FI to send the beam back through. There are better ways to test the isolation performance of FI's but this will suffice for now - really only want to know if there's any reasonable isolation at all or if all of the beam is passing backwards through the device.

 

Power before BS = 536 mW (hmmn - it's gone down a bit)

Power through BS = (can't access ejected on first pass)

Power through FI = 164 mW (BS at odd angle to minimise refractive effect so less power gets through)

Power lost through mirror = 8.3mW (mirror is at normal incidence so a bit transmissive)

 

Using earlier 90.6% measurement as reference, power into FI = 170.83 mW

So BS transmission = 170.83/536 = 0.3187

BS reflectivity therefore = 1 - 0.3187 = 0.6813

 

Power back into FI = Thru FI - Thru mirror = 155.7 mW

 

Power reflected at BS after returning through FI = 2.2mW

Baseline power at BS reflection from assorted internal reflections in FI (blocked return beam) = 1.9mW

Note - these reflections don't appear to be back along the input beam, but they *are* detectable on the power meter.

 

Actual power returning into FI that gets reflected by BS = 0.3 mW

(note that this is in the fluctuating noise level of measurement so treat as an upper limit)

 

Accounting for BS reflectivity at this angle, this gives a return power = 0.3/0.6813 = 0.4403 mW

 

Reduction ratio (extinction ratio) of FI =  0.4403/155.7 = 0.00282

 

Again - note that this upper limit measurement is as rough and ready as it gets. It's easy to optimise this sort of thing later, preferable on a nice open bench with plenty of space and a well-calibrated photodiode. It's just to give an idea that the isolator is actually isolating at all and not spewing light back into the NPRO.

 

Next up… checking the mode-matching again now that the FI is in place. The beam profile was scanned after the FI and the vertical and horizontal waists are different...

  4469   Wed Mar 30 20:50:43 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 3b: Non-circular? We can fix that...

A quick Beamscan sweep of the beam after the Faraday:

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

25.8 503.9 478.8

25 477.5 489.0

24 447.1 512.4

21 441.6 604.5

20 476.3 645.4

19 545.4 704.1

18 620.3 762.8

 

After_Faraday.png

 

OK. It looks not too bad - doesn't look too different from what we had. Note that the x axis is in local table units - I found this useful for working out where things were relative to other things (like lenses and the FI) - but it means the beam propagates from right to left in the plot. in other words, the horizontal waist occurs first and is larger than the vertical waist. Also - they're not fitted curves - they're by-eye, best guesses and there's no solution for the vertical that doesn't involve offsets... discussion in a later part of the thread.

 

Anyway! The wonderful thing about this plot is that the horizontal and vertical widths cross and the horizontal focussing at this crossing point is shallower than the vertical. This means that we can put a lens in at the crossing point and rotate it such that the lens is stronger in the horizontal plane. The lens can be rotated until the effective horizontal focal length is right to fix the astigmatism.

 

 

I used a 200mm lens I had handy - a rough check sweeping the Beamscan quickly indicated should be about right though. Adjusting the angle until the beam size at a distant point is approx circular - I then move the profiler and adjust again. Repeat as required. Now… taking some data. with just that lens in:

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

24 371.7 366.1

21 360.3 342.7

20 447.8 427.8

19 552.4 519.0

18 656.4 599.2

17 780.1 709.9

16 885.9 831.1

 

After_Faraday_and_Rotated_Lens.png

 

Well now. That looks quite OK. Fit's a bit rubbish on vertical but looks like a slight offset on the measurement again.

The angle of the lens looks awful, but if it's stupid and it works then it isn't stupid. If necessary, the lens can be tweaked a bit more, but there's always more tweaking possible further down the line and most of the astigmatic behaviour has been removed. It's now just a case of finding a lens that works to give us a 50 um beam at the oven position...

 

 

  4470   Wed Mar 30 21:21:15 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 4: Matching into the oven

 

 

Now that the astigmatism is substantially reduced, we can work out a lens solution to obtain a 50um waist *anywhere* on the bench as long as there's enough room to work with the beam afterwards. The waist after the Faraday and lens is at position 22.5 on the bench. A 50 mm lens placed 18 cm after this position (position 14.92 on the bench) should give a waist of 50 um at  24.57 cm after the waist (position 12.83 on the bench). This doesn't give much room to measure the beam waist in though - the Beamscan head has a fairly large finite size… wonder if there's a slightly less strong lens I could use…

OK. With a 66 mm lens at 23 cm (position 13.45 on the bench) after the waist we get a 50 um waist at 31.37 cm after the waist (position 10.15 on the bench). 

 

Oven_Lens_Solution_66mm.png

 

Closest lens I found was 62.9mm which will put the 50um point a bit further towards the wall, but on the X-arm the oven is at position 8.75 ish. So anything around there is fine.

 

Using this lens and after a bit of manual fiddling and checking with the Beamscan, I figured we needed a close in, fine-grained measurement so set the Beamscan head up on a micrometer stage Took a whoie bunch of data around position 9 on the bench:

 

 

Position A1_13.5%_width A2_13.5%_width

(mm) (um mean) (um mean)

-15 226.8 221.9

-14 210.9 208.3

-13 195.5 196.7

-12 181.0 183.2

-11 166.0 168.4

-10 154.0 153.1

-9 139.5 141.0

-8 127.5 130.0

-7 118.0 121.7

-6 110.2 111.6

-5 105.0 104.8

-4 103.1 103.0

-3 105.2 104.7

-2 110.9 110.8

-1 116.8 117.0

0 125.6 125.6

0 125.6 125.1

1 134.8 135.3

2 145.1 145.6

3 155.7 157.2

4 168.0 168.1

5 180.5 180.6

6 197.7 198.6

7 211.4 209.7

8 224.0 222.7

9 238.5 233.7

10 250.9 245.8

11 261.5 256.4

12 274.0 270.4

13 291.3 283.6

14 304.2 296.5

15 317.9 309.5

 

Matching_Into_Green_Oven_zoomed_out.pngMatching_Into_Green_Oven_zoomed_in.png

 

And at this point the maximum power available at the oven-waist is 298mW. With 663mW available from the laser with a desired power setting of 700mW on the supply. Should make sure we understand where the power is being lost. The beam coming through the FI looks clean and unclipped, but there is some stray light around.

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

7 868.5   739.9

6 1324 1130

5 1765 1492

4 2214 1862

 

The plot looks pretty good, but again, there looks to be an offset on the 'fitted' curve. Taking a couple of additional points further on to make sure it all works out as the beam propagates. I took a few extra points at the suggestion of Kiwamu and Koji - see the zoomed out plot.  The zoomed in plot has by-eye fit lines - again, because to get the right shape to fit the points there appears to be an offset. Where is that coming from? My suspicion is that the Beamscan doesn't take account of the any background zero offsets when calculating the 13.5% and we've been using low power when doing these measurements - very small focussed beams and didn't want to risk damage to the profiler head.

 

Decided to take a few measurements to test this theory. Trying different power settings and seeing if it gives different offset and/or a changed width size

 

7 984.9 824.0 very low power

7 931.9 730.3 low power

7 821.6 730.6 higher power

7 816.4 729.5 as high as I'm comfortable going

 

Trying this near the waist…

 

8.75 130.09 132.04 low power

8.75 106.58 105.46 higher power

8.75 102.44 103.20 as high as it can go without making it's saturated

 

So it looks like offset *is* significant and the Beamscan measurements are more accurate with more power to make the offsets less significant. Additionally, if this is the case then we can do a fit to the previous data (which was all taken with the same power setting) and simply allow the offset to be a free parameter without affecting the accuracy of the waist calculation. This fit and data coming to an e-log near you soon.

 

Of course, it looks from the plots above (well... the code that produces the plots above) that the waist is actually a little bit small (around 46um) so some adjustment of the last lens back along the beam by about half a cm or so might be required.

 
  4476   Thu Mar 31 14:10:00 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Quote:

 I went through the entries.

1. Give us a photo of the day. i.e. Faraday, tilted lens, etc...

2. After all, where did you put the faraday in the plot of the entry 4466?

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.
How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

 OK. Taking these completely out of order in the easiest first...

2. The FI is between positions 27.75 and 32 on the bench - i.e. this is where the input and output apertures are. (corresponds to between 0.58 and 0.46 on the scale of those two plotsand just before both the vertical and horizontal waists) At these points the beam radius is around 400um and below, and the aperture of the Faraday is 4.8mm (diameter).

1. Photos...

Laser set up - note the odd angles of the mirrors. This is where we're losing a goodly chunk of the light. If need be we could set it up with an extra mirror and send the light round a square to provide alignment control AND reduce optical power loss...

P3310028.JPG

 

Faraday and angled lens - note that the lens angle is close to 45 degrees. In principle this could be replaced with an appropriate cylindrical lens, but as long as there's enough light passing through to the oven I think we're OK.

P3310029.JPG

3. Fitting... coming soon once I work out what it's actually telling me. Though I hasten to point out that the latter points were taken with a different laser power setting and might well be larger than the actual beam width which would lead to astigmatic behaviour.

  4477   Thu Mar 31 15:23:14 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Quote:

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.

How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

Right. Fitting to the data. Zoomed out plots first. I used the general equation f(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c for each fit which is basically just the Gaussian beam width parameter calculation but with an extra offset parameter 'c'

Vertical fit for zoomed out data:

Coefficients (with 95% confidence bounds):

       c =   7.542e-06  (5.161e-06, 9.923e-06)

       w_o =   3.831e-05  (3.797e-05, 3.866e-05)

       z_o =       1.045  (1.045, 1.046)

 

Goodness of fit:

  SSE: 1.236e-09

  R-square: 0.9994

 
Horizontal fit for zoomed out data:
 

Coefficients (with 95% confidence bounds):

       c =   1.083e-05  (9.701e-06, 1.195e-05)

       w_o =   4.523e-05  (4.5e-05, 4.546e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 2.884e-10

  R-square: 0.9998

  Adjusted R-square: 0.9998

  RMSE: 2.956e-06

 

Zoomed_out_fitting01.png

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

 

OK. Looking at the plots and residuals for this, the deviation of the fit around the waist position, and in fact all over, looks to be of the order 10um. A bit large but is it real? Both w_o values are a bit lower than the 50um we'd like, but… let's check using only the zoomed in data -  hopefully more consistent since it was all taken with the same power setting.

 

 

Vertical data fit using only the zoomed in data:

 

Coefficients (with 95% confidence bounds):

       c =   1.023e-05  (9.487e-06, 1.098e-05)

       w_o =   4.313e-05  (4.252e-05, 4.374e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 9.583e-11

  R-square: 0.997

 

Horizontal data fit using only the zoomed in data:

 

Coefficients (with 95% confidence bounds):

       c =   1.031e-05  (9.418e-06, 1.121e-05)

       w_o =    4.41e-05  (4.332e-05, 4.489e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 1.434e-10

  R-square: 0.9951

 

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

Zoomed_in_fitting01.png

 

The waists are both fairly similar this time 43.13um and 44.1um and the offsets are similar too  - residuals are only spread by about 4um this time.

 

I'm inclined to trust the zoomed in measurement more due to the fact that all the data was obtained under the same conditions, but either way, the fitted waist is a bit smaller than the 50um we'd like to see. Think it's worthwhile moving the 62.9mm lens back along the bench by about 3/4 -> 1cm to increase the waist size.

 

 

 

 

 

  4481   Fri Apr 1 18:54:41 2011 BryanConfigurationGreen LockingY end doubling oven

The doubling oven is now ready to go for the Y arm. The PPKTP crystal is mounted in the oven:

P4010036.JPG

Note - the crystal isn't as badly misaligned as it looks in this photo. It's just an odd perspective shot. I then closed it up and checked to make sure the IR beam on the Y bench passes through the crystal. It does. Just need to tweak the waist size/position a bit and then we can actually double some frequencies!

P4010041.JPG

  4485   Mon Apr 4 14:20:32 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Last bit of oven matching for now.

 

I moved the lens before the oven position back along the beam path by about 1cm - waist should be just above position 9 in this case. Note - due to power-findings from previous time I'm maximising the power into the head to reduce the effect of offsets.

 

From position 9:

Position A1_13.5%_width A2_13.5%_width

(mm) (um mean) (um mean)

-1 121.1 123.6

0 112.5 113.8

1 106.4 106.1

2 102.9 103.4

3 103.6 103.6

4 106.6 107.4

5 111.8 112.5

6 118.2 120.1

7 126.3 128.8

8 134.4 137.1

9 143.8 146.5

10 152.8 156.1

11 163.8 167.1

12 175.1 176.4

13 186.5 187.0

14 197.1 198.4

15 210.3 208.9

16 223.5 218.7

17 237.3 231.0

18 250.2 243.9

19 262.8 255.4

20 274.7 269.0

21 290.4 282.3

22 304.3 295.5

23 316.7 303.1

 

Note - had to reduce power due to peak saturation at 15mm - don't think scale changed, but be aware just in case. And saturated again at 11. And again at 7. A little bit of power adjustment each time to make sure the Beamscan head wasn't saturating. Running the fit gives...

 

Waist_Fits_from_laser.pngWaist_Fits_Bench_Position.png

 

OK. The fit is reasonably good. Residuals around the area of interest (with one exception) are <+/- 2um and the waists are 47.5um (vertical) and 50.0um (horizontal) at a position of 9.09 on the bench. And the details of the fitting output are given below.

 

-=-=-=-=-=-=-=-=-=-=-=-

Vertical Fit

 

cf_ =

 

     General model:

       cf_(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c

     Coefficients (with 95% confidence bounds):

       c =   5.137e-06  (4.578e-06, 5.696e-06)

       w_o =   4.752e-05  (4.711e-05, 4.793e-05)

       z_o =        1.04  (1.039, 1.04)

 

 

cfgood_ = 

 

           sse: 1.0699e-11

       rsquare: 0.9996

           dfe: 22

    adjrsquare: 0.9996

          rmse: 6.9738e-07

 

-=-=-=-=-=-=-=-=-=-=-=-

Horizontal Fit

 

cf_ =

 

     General model:

       cf_(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c

     Coefficients (with 95% confidence bounds):

       c =    3.81e-06  (2.452e-06, 5.168e-06)

       w_o =   5.006e-05  (4.909e-05, 5.102e-05)

       z_o =        1.04  (1.04, 1.04)

 

 

cfgood_ = 

 

           sse: 4.6073e-11

       rsquare: 0.9983

           dfe: 22

    adjrsquare: 0.9981

          rmse: 1.4471e-06

 

 

 

  4486   Mon Apr 4 18:58:44 2011 BryanConfigurationGreen LockingA beam of purest green

We now have green light at the Y end. 

The set-up (with careful instructions from Kiwamu) - setting up with 100mW of IR into the oven.

Input IR power = 100mW measured.

 

Output green power = 0.11mW

(after using 2 IR mirrors to dump IR light before the power meter so losing a bit of green there light too)

 

And it's pretty circular-looking too. Think there might be a bit more efficiency to be gained near the edges of the crystal with internal reflections and suchlike things but that gives us an UGLY looking beam.  Note - the polarisation is wrong for the crystal orientation so used a lambda/2 plate to get best green  power out.

 

Efficiency is therefore 0.11/100 = 0.0011 (0.11%) at 100mW input power.

 

Temperature of the oven seems to be around 35.5degC for optimal conversion.

Took a picture. Ta-dah! Green light, and lots more where that came from! Well... about 3x more IR available anyway.

 

P4040042.JPG

 

 

  4495   Wed Apr 6 22:13:24 2011 BryanConfigurationGreen LockingResonating green light!

Every so often things just work out. You do the calculations, you put the lenses on the bench, you manually adjust the pointing and fiddle with the lenses a bit, you get massive chunks of assistance from Kiwamu to get the alignment controls and monitors set up and after quite a bit of fiddling and tweaking the cavity mirror alignment you might get some nice TEM_00 -like shapes showing up on your Y-arm video monitors.

So. We have resonating green light in the Y-arm. The beam is horribly off-axis and the mode-matching, while close enough to give decent looking spots, has in no way been optimised yet. Things to do tomorrow - fix the off-cavity-axis problem and tweak up the mode-matching... then start looking at the locking...

  4520   Wed Apr 13 16:56:08 2011 BryanConfigurationGreen LockingY-ARM Green-Locked!

 Locked!

The Y-arm can now be locked with green light using the universal PDH servo. Modulation frequency is now 277kHz - chosen because it seems to produce smaller offsets due to AM effects

To lock, turn on the servo, align the system to give nice circular-looking TEM_00 resonances, and wait for a good one. It'll lock on a decent mode for a few seconds and then you can turn on the local boost and watch it lock for minutes and minutes and minutes.

The suspensions are bouncing around a bit on the Y-arm and the spot is quite low on the ETMY and a little low on ITMY, but from this point it can be tweaked and optimised.

 

 

 

  4525   Thu Apr 14 17:45:59 2011 BryanConfigurationGreen LockingI leave you with these messages...

OK… the Y-arm may be locked with green light, which was the goal, and this is all good but it's not yet awesome. Awesome would be locked and aligned properly and quiet and optimised. So...  in order to assist in increasing the awesome-osity, here are a few stream-of-consciousness thoughts and stuff I've noticed and haven't had time to fix/investigate or have otherwise had pointed out to me that may help...

 

Firstly, the beam is not aligned down the centre of the cavity. It's pretty good horizontally, but vertically it's too low by about 3/4->1cm on ETMY. The mirrors steering the beam into the cavity have no more vertical range left, so in order to get the beam higher the final two mirrors will have to be adjusted on the bench. Adding another mirror to create a square will give more range AND there will be less light lost due to off 45degree incident angles. When I tried this before I couldn't get the beam to return through the Faraday, but now the cavity is properly aligned this should not be a problem.

 

A side note on alignment - while setting cameras and viewports and things up, Steve noticed that one of the cables to one of the coils (UL) passes behind the ETMY. One of the biggest problems in getting the beam into the system to begin with was missing this cable. It doesn't fall directly into the beam path if the beam is well aligned to the cavity, but for initial alignment it obscures the beam - this may be a problem later for IR alignment.

 

Next, the final lambda/2 waveplate is not yet in the beam. This will only become a problem when it comes to beating the beams together at the vertex, but it WILL be a problem. Remember to put it in before trying to extract signals for full LSC cavity locking.

 

Speaking of components and suchlike things, the equipment for the green work was originally stored in 3 plastic boxes which were stored near the end of the X-arm. These boxes, minus the components now used to set up the Y-end, are now similarly stored near the end of the Y-arm.

 

Mechanical shutter - one needs to be installed on the Y-end just like the X-end. Wasn't necessary for initial locking, but necessary for remote control of the green light on/off.

 

Other control… the Universal PDH box isn't hooked up to the computers. Connections and such should be identical to the X-arm set-up, but someone who knows what they're doing should hook things up appropriately.

 

More control - haven't had a chance to optimise the locking and stability so the locking loop, while it appears to be fairly robust, isn't as quiet as we would like. There appears to be more AM coupling than we initially thought based on the Lightwave AM/PM measurements from before. It took a bit of fiddling with the modulation frequency to find a quiet point where the apparent AM effects don't prevent locking. 279kHz is the best point I've found so far. There is still a DC offset component in the feedback that prevents the gain being turned up - unity gain appears limited to about 1kHz maximum. Not sure whether this is due to an offset in the demod signal or from something in the electronics and haven't had time left to check it out properly yet. Again, be aware this may come back to bite you later.

 

Follow the bouncing spot - the Y-arm suspensions haven't been optimised for damping. I did a little bit of fiddling, but it definitely needs more work. I've roughly aligned the ETMY oplev since that seems to be the mass that's bouncing about most but a bit of work might not go amiss before trusting it to damp anything.

 

Think that's about all that springs to mind for now…

 

Thanks to everyone at the 40m lab for helping at various times and answering daft questions, like "Where do you keep your screwdrivers?" or "If I were a spectrum analyser, where would I be?" - it's been most enjoyable!

 
  4532   Fri Apr 15 13:43:23 2011 BryanConfigurationGreen LockingI leave you with these messages...

Y-end PDH electronics.

The transfer function of the Y-end universal PDH box:

Y_End_Electronics_TF.png

 

  13792   Thu Apr 26 18:58:21 2018 BruceConfigurationALSNew look EX Fiber coupling - pol stability

  8160   Mon Feb 25 20:25:33 2013 BrettUpdateSUSNew Global Damping MEDM Screens

Global damping screens are in progress for the new global damping infrastructure Jamie discussed in log #8159. The main overview screen is /opt/rtcds/caltech/c1/medm/c1sus/master/C1SUS_GLOBAL.adl. The overview screen links to a few sub-screens in the same directory called C1SUS_GLOBAL_DAMPFILTERS.adl, C1SUS_GLOBAL_GLOBALTOLOCAL.adl, and C1SUS_GLOBAL_LOCALTOGLOBAL.adl.

This global damping is in intended to damp the 4 test masses along global interferometer degrees of freedom that are orthogonal to the cavity signals. Ideally the result will be that OSEM sensor noise from the damping loops is invisible to the cavity signals. Mismatches in the suspensions' dynamics and gains will cause some noise to leak through anyway, but we should be able to tune some of this out by carefully scaling the drives to each suspension.

  8161   Mon Feb 25 20:49:07 2013 BrettUpdateSUSMinor Mod made to SUS_GLOBAL block

 I made a minor modification to install some output filters in the new global damping GLOBAL box in c1sus.mdl. These will be needed for tuning the suspension drives to compensate for mismatches in the pendulums.

I recompiled and installed the model, but did not start it. Basically same as Jamie left it in 8159. Interestingly, I did not see the new POSOUT that was put in before the SUSPOS DOF filter. I made sure to reopen the .mdl file fresh before making more mods, but for some reason I do not see that update...

  8172   Tue Feb 26 16:13:18 2013 BrettUpdateSUSITMY and ETMY mysterious loop gain difference of 2.5

While doing initial measurements for the new global damping infrastructure I discovered that the ETMY loop between the OSEM actuation and the OSEM sensors has a gain that is 2.5 times greater than the ITMY.  The result is that to get the same damping on both, the damping gain on the ETMY must be 2.5 times less than the ITMY. I do not know where this is coming from, but I could not find any obvious differences between the MEDM matrices and gains.

I uploaded a screenshot of measured transfer functions of the damped ITMY and ETMY sus's. Notice that the ETMY measurement is 2.5 times higher than the ITMY. The peak also has a lower Q, despite having the same damping filters running because of this mysterious gain difference. Lowering the damping gain of the ETMY loop by this 2.5 factor results in similar Q's.

Attachment 1: Screenshot.png
Screenshot.png
  8174   Tue Feb 26 17:56:15 2013 BrettUpdateSUSGlobal Damping Update

The global damping input and output matrices were installed to run for the Y-arm. Since we are using just one arm for now, only the DARM and CARM DOFs were entered into the matrices.

The input matrix was set to have elements with magnitudes of 0.5 while the output matrix was set to have elements with magnitudes of 1. The input matrix gets the 0.5 because the sensor signals must be avergaed for each global DOF, to make an 'equivalent sensor' with the same gain. The output matrix gets magnitudes of 1 so that the overall gain of the global loops is the same as the local loops. A transfer function was measured on the CARM loop to check that the overall gain is in fact the same as the measured ITMY and ETMY loops.

Simple damping filters were installed for the ITMY and ETMY as well as the global y arm CARM and DARM loops.

The ETMY output tuning filter ETMY_GLOBPOS was set to have a gain of 0.4 because there is an extra gain of 2.5 relative to ITMY in some mysterious place as discussed in log 8172.

  8193   Wed Feb 27 22:28:53 2013 BrettUpdateSUSGlobal Damping Update

 New excitation points were added after the global damping loops for more testing options. The updated c1sus.mdl model was re-committed to the svn. Two interesting simulink 'requirements' were found during this minor modification. First, excitation points must be placed on the top level of the diagram. If they are in a subsystem you will get compiling errors. Second, the excitation name must end in _EXC. It will compile OK if you don't do this, but the excitation points will not put out any excitations.

To do further investigation on the mysterious gain factor of 2.5 between the ETMY and ITMY POS damping loops, I measured TFs in the POS direction to the locked YARM signal for each. This provides an additional sensor, common to both, so we can see if the gain is coming from the actuation side or sensing side of the damping loops. The difference in these TFs is about 

2.895

So it seems the majority of the damping gain difference is on the actuation side with some small difference on the sensing side. In order to allow for the later splitting of YARM LSC control between ITMY and ETMY (global damping and the cavity control must be along the same coordinate system), I placed this gain of 2.95 in ITMY_LSC.

To get a first measure of the relative performance of global damping to local damping I measured some TFs between the sensor signal inputs and YARM. So first, while the cavity was still locked with just ETMY, I measured a TF between C1:SUS-ITMY_SUSPOS_EXC and C1:LSC-YARM_IN1. Second, I split the cavity control evenly between the ETMY and ITMY by adjusting C1:LSC-OUTPUT_MTRX. I turned off the local damping and turned on the common DOF global damping (called CARM at this point despite being on just one arm). I then repeated the same TF but driving from C1:SUS-GLOBAL_CARMDAMP_EXC.

The resulting TFs are displayed in the attached figure. The blue curve is then the TF from local damping sensor noise to YARM. The green is global damping sensor noise to YARM. The suppression between local to global is in red. The global damping curve is about 50 to 100 times lower (better) than local damping. This can probably be improved with further tuning to account for remaining differences between the ITMY and ETMY.

Note, the damping loop used in the filter modules for all of these is zpk(0,[15 15],1), with a gain of 30. This purposely has little high frequency filtering so it is easier to see the influence on YARM.

Attachment 1: DampNoise_to_YARM_fig_27Feb2013.png
DampNoise_to_YARM_fig_27Feb2013.png
  8207   Fri Mar 1 16:37:45 2013 BrettUpdateSUSGlobal Damping Update

Brett and Kamal

The global damping testing for the week is now complete. The c1sus.mdl simulink diagram settled on the attached screenshot. The top level of c1sus.mdl is shown on the left zoomed in over the new global damping block. The right shows the inside of that block. Also attached in the second screenshot are two of the modal damping MEDM screens. The left shows the main overview screen, the right shows the global damping filters. The overview screen is called C1SUS_GLOBAL.adl and is found in ...medm/c1sus/master/.

We have measured transfer functions and power spectra that show that global damping, with just a moderate amount of tuning (30 minutes of work) reduces the OSEM damping noise seen by YARM_IN1 by a factor between 50 and 80. Log 8193 highlights the transfer function measurements. The power spectra directly measure the noise in the cavity. I am not putting that data here because I have to catch. I will process the data and post it here later.

Overall the global damping tests appear to have been successful, isolating (not removing) the test mass damping noise from the cavity by almost 2 orders of magnitude. Presumably even more isolation is possible with more tuning.

Attachment 1: GlobalDamp_Simulink.png
GlobalDamp_Simulink.png
Attachment 2: GlobalDampScreens.png
GlobalDampScreens.png
  8220   Mon Mar 4 16:26:45 2013 BrettUpdateSUSGlobal Damping Noise Measurement

Here is an amplitude spectrum plot of y-arm cavity noise with a 50 Hz cutoff damping filter of the form zpk(0,[50;50],1). The low passing of this filter was intentionally extremely poor in order to see the damping noise in the cavity. The blue trace is the noise with no damping, which may be considered the 'best case' scenario from a noise point of view. The green has regular local damping on the ITMY. The ETMY has no damping for this measurement because the cavity control feedback to the ETMY takes care of its control when the cavity is locked. Notice the the large increase in noise from 40 Hz to 250 Hz, up to 1 order of magnitude. This noise is from the OSEM sensors passing through the damping loops. The red curve shows the y-arm noise with the exact same damping, except it is now applied in the global scheme. In this case, the damping noise falls completely below the baseline level of the cavity and becomes indistinguishable from the 'no damping' case.

If the damping injected enough noise I'd expect we would see a drop of 50 to 80 times switching from local to global. That is, the same factor measured in the transfer functions listed in log entry 8193.  However, the damping noise is only at most 1 order of magnitude above the baseline in this measurement. We would have to increase the damping noise by about another order of magnitude before we could expect to see the global damping noise in the cavity measurement.

The units of the cavity displacement in the plot were calculated using the 1.4e12 counts per meter calibration in log 6834. The measured UGF of the LSC loop at the time was 205 Hz. The peak in the plot above 200 Hz appears to be from this unity crossing. Moving the UGF also moves this peak.

Moral of the story: global damping can isolate the damping noise pretty well from the cavity signal.

Attachment 1: YARM_Noise.png
YARM_Noise.png
  4257   Mon Feb 7 19:21:32 2011 Beard PapaMetaphysicsPhotosThe Adventures of Dr Stochino and Beard Papa

ELOG V3.1.3-