40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 310 of 341  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  14613   Thu May 16 13:07:14 2019 gautamUpdateSUSFirst contact residue removal

I  used a pair of tweezers to remove the stray fiber of first contact. As Koji predicted, this was rather dry and so it didn't have the usual elasticity, so while I was able to pull most of it off, there is a small spot remaining on the HR surface of the ETM. We will remove this with a fresh application of a small patch of FC.

I the meantime, I'm curious if this has actually fixed the suspension woes, so yet another round of freeswinging data collection is ongoing. From the first 5 mins, looks positive, I see 4 peaks around 1Hz cool!

The following optics were kicked:
ETMY
Thu May 16 13:06:39 PDT 2019
1242072418

Update 730pm: There are now four well-defined peaks around 1 Hz. Together with the Bounce and Roll modes, that makes six. The peak at 0.92 Hz, which I believe corresponds to the Yaw eigenmode, is significantly lower than the other three. I want to get some info about the input matrix but there was some NDS dropout and large segments of data aren't available using the python nds fetch method, so I am trying again, kicked ETMY at 1828 PDT. It may be that we could benefit from some adjustment of the OSEM positions, the coupling of bounce mode to LL is high. Also the SIDE/POS resonances aren't obviously deconvolved. The stray first contact has to be removed too. But overall I think it was a successful removal, and the suspension characteristics are more in line with what is "expected". 

Attachment 1: etmy_sensors.pdf
etmy_sensors.pdf
Attachment 2: etmy_BRmode.pdf
etmy_BRmode.pdf
  14615   Thu May 16 23:31:55 2019 gautamUpdateSUSETMY suspension characterization

Here is my analysis. I think there are still some problems with this suspension.

Attachment #1: Time domain plots of the ringdown. The LL coil has peak response ~half of the other face OSEMs. I checked that the signal isn't being railed, the lowest level is > 100 cts.

Attachment #2: Complex TF from UL to the other coils. While there are four peaks now, looking at the phase information, it isn't possible to clearly disentangle PIT or YAW motion - in fact, for all peaks, there are at least three face shadow sensors which report the same phase. The gains are also pretty poorly balanced - e.g. for the 0.77 Hz peak, the magnitude of UR->UL is ~0.3, while LR->UL is ~3. Is it reasonable that there is a factor of 10 imbalance?

Attachment #3: Nevertheless, I assumed the following mapping of the peaks (quoted f0 is from a lorentzian fit) and attempted to find the input matrix that best convers the Sensor basis into the Euler basis.

DoF f0 [Hz]
POS 1.004
PIT 0.771
YAW 0.920
SIDE 0.967

Unsurprisingly, the elements of this matrix are very different from unity (I have to fix the normalization of the rows).

Attachment #4: Pre and post diagonalization spectra. The null stream certainly looks cleaner, but then again, this is by design so I'm not sure if this matrix is useful to implement.

Next steps:

  1. Repeat the actuator diagnonality test detailed here.
  2. ???

In case anyone wants to repeat the analysis, the suspension was kicked at 1828 PDT today and this analysis uses 15000 seconds of data from then onwards.

​Update 18 May 3pm:  Attachment #5 better presentation of the data shown in Attachment #2, the remark about the odd phasing of the coils is more clearly seen in this zoomed in view.  Attachment #6 shows Lorentzian fits to the peaks - the Qs are comparable to that seen for the other optics, although the Q for the 0.77 Hz peak is rather low.

Attachment 1: ETMY_sensors_timeDomain.pdf
ETMY_sensors_timeDomain.pdf
Attachment 2: ETMY_cplxTF.pdf
ETMY_cplxTF.pdf
Attachment 3: matrixDiag.png
matrixDiag.png
Attachment 4: ETMY_diagComp.pdf
ETMY_diagComp.pdf
Attachment 5: ETMY_cplxTF.pdf
ETMY_cplxTF.pdf
Attachment 6: ETMY_pkFitNaive.pdf
ETMY_pkFitNaive.pdf
  14617   Fri May 17 10:57:01 2019 gautamUpdateSUSIY chamber opened

At ~930am, I vented the IY annulus by opening VAEV. I checked the particle count, seemed within the guidelines to allow door opening so I went ahead and loosened the bolts on the ITMY chamber.

Chub and I took the heavy door off with the vertex crane at ~1015am, and put the light door on.

Diagnosis plan is mainly inspection for now: take pictures of all OSEM/magnet positionings. Once we analyze those, we can decide which OSEMs we want to adjust in the holders (if any). I shut down the ITMY and SRM watchdogs in anticipation of in-chamber work.

Not related to this work: Since the annuli aren't being pumped on, the pressure has been slowly rising over the week. The unopened annuli are still at <1 torr, and the PAN region is at ~2 mtorr.

  14620   Fri May 17 17:01:08 2019 gautamUpdateSUSETMY suspension characterization

To investigate my mapping of the eigenfrequencies to eigenmodes, I checked the Oplev spectra for the last few hours, when the Oplev spot has been on the QPD (but the optic is undamped).

  1. Based on Attachment #1, I can't figure out which peak corresponds to what motion.
    • The most prominent peak (judged by peak height) is at 0.771 Hz for both PITCH and YAW
    • Assuming the peak at 0.92 Hz is the other angular mode, the PIT/YAW decoupling is poor in both peaks, only ~factor of 2 in both cases.
  2. Why are the POS and SIDE resonances sensed so asymmetrically in the PIT and YAW channels? There's a factor of 10 difference there...

So, while I conclude that my first-contact residue removal removed a constraint from the system (hence the pendulum dynamics are accurate and there are 6 eigenmodes), more thought is needed in judging what is the appropriate course of action.

Attachment 1: etmy_oplevs.pdf
etmy_oplevs.pdf
  14623   Mon May 20 11:33:46 2019 gautamUpdateSUSITMY inspection

With Chub providing illumination via the camera viewport, I was able to take photos of ITMY this morning. All the magnets look well clear of the OSEMs, with the possible exception of UR. I will adjust the position of this OSEM slightly. To test if this fix is effective, I will then cycle the bias voltage to the ITM between 0 and the maximum allowed, and check if the optic gets stuck.

  14625   Mon May 20 17:12:57 2019 gautamUpdateSUSETMY LL adjustment

Following the observation that the response in the LL shadow sensor was lower than that of the others, I decided to pull it out a little to move the signal level with nominal DC bias voltage applied was closer to half the open-voltage. I also chose to rotate the SIDE OSEM by ~20 degrees CCW in its holder (viewed from the south side of the EY chamber), to match more closely its position from a photo prior to the haphazhard vent of the summer of 2018. For the SIDE OSEM, the theoretical "best" alignment in order to be insensitive to POS motion is the shadow sensor beam being horizontal - but without some shimming of the OSEM in the holder, I can't get the magnet clear of the teflon inside the OSEM.

While I was inside the chamber, I attempted to minimize the Bounce/Roll mode coupling to the LL and SIDE OSEM channels, by rotating the Coil inside the holder while keeping the shadow sensor voltage at half-light. To monitor the coupling "live", I set up DTT with 0.3 Hz bandwidth and 3 exponentially weighted averages. For the LL coil, I went through pi radians of rotation either side of the equilibrium, but saw no significant change in the coupling - I don't understand why.

In any case, this wasn't the most important objective so I pushed ahead with recovering half-light levels for all the shadow sensors and closed up with the light doors. I kicked the optic again at 1712:14 PDT, let's see what the matrix looks like now.


before starting this work, i had to key the unresponsive c1auxey VME crate.

  14627   Mon May 20 22:06:07 2019 gautamUpdateSUSITMY also kicked

For good measure:

The following optics were kicked:
ITMY
Mon May 20 22:05:01 PDT 2019
1242450319
  14628   Tue May 21 00:15:21 2019 gautamUpdateSUSMain objectives of vent achieved (?)

Summary:

  1. ETMY now shows four suspension eigenmodes, with sensible phasing between signals for the angular DoFs. However, the eigenfrequencies have shifted by ~10% compared to 16 May 2019.
  2. PIT and YAW for ETMY as witnessed by the Oplev are now much better separated.
  3. ITMY can have its bias voltage set to zero and back to nominal alignment without it getting stuck.
  4. The sensing matrix for ETMY that I get doesn't make much sense to me. Nevertheless, the optic damps even with the "naive" input matrix.

So the primary vent objectives have been achieved, I think. 


Details:

  1. ETMY free-swinging data after adjusting LL and SIDE coils such that these were closer to half-light values
    • Attachment #1 - oplev witnessing the angular motion of the optic. PIT and YAW are well decoupled.
    • Attachment #2 - complex TF between the suspension coils. There is still considerable imbalance between coils, but at least the phasing of the signals make sense for PIT and YAW now.
    • Attachment #3 - DoFs sensed using the naive and optimized sensing matrices.
    • Attachment #4 - sensing matrix that the free swinging data tells me to implement. If the local damping works with the naive input matrix but we get better diagonality in the actuation matrix, I think we may as well stick to the naive input matrix.
  2. BR mode coupling minimization:
    • As alluded to in my previous elog, I tried to reduce the bounce mode coupling into the shadow sensor by rotating the OSEM in its holder.
    • However, I saw negligible change in the coupling, even going through a full pi radian rotation. I imagine the coupling will change smoothly so we should have seen some change in one of the ~15 positions I sampled in between, but I saw none.
    • The anomalously high coupling of the bounce mode to the shadow sensor readout is telling us something - I'm just not sure what yet.
  3. ITMY:
    • The offender was the LL OSEM, whose rotational orientation was causing the magnet to get stuck to the teflon part of the OSEM coil when the bias voltage was changed by a sufficiently large amount.
    • I rectified this (required adjustment of all 5 OSEMs to get everything back to half light again).
    • After this, I was able to zero the bias voltage to the PIT/YAW DoFs and not have the optic get stuck - huzzah 😀 
    • While I have the chance, I'm collecting the free-swinging data to see what kind of sensing matrix this optic yields.

Tomorrow and later this week:

  1. Prepare ETMY for first contact cleaning to remove the residual piece. 
    • Drag wipe the HR surface with dehydrated acetone 
    • Apply F.C. as usual, inspect the HR face after peeling for improvement if any.
    • This will give us a chance to practise the F.C.ing with the optic EQ-stopped (moving cage etc).
  2. Confirm ETMY actuation makes sense.
    • Use the green beam for an ASS proxy implementation?
  3. High quality close out pictures of OSEMs and general chamber layout.
  4. Anything else? Any other tests we can do to convince ourselves the suspensions are well-behaved?

While we have the chance:

  1. Fix the IPANG alignment? Because the TT drift/hysteresis problem is still of unknown cause.
  2. Check that the AS beam is centered on OMs 1-6?
  3. Recover the 70% AS light that is being diverted to the OMC?

Unrelated to this work: megatron is responding to ping but isn't ssh-able. I also noticed earlier to day that the IMC autolocker blinky wasn't blinking. So it probably requries a hard reboot. I left the lab for tonight so I'll reboot it tomorrow, but no nds data access in the meantime... 

Attachment 1: etmy_oplevs_20190520.pdf
etmy_oplevs_20190520.pdf
Attachment 2: ETMY_cplxTF.pdf
ETMY_cplxTF.pdf
Attachment 3: ETMY_diagComp.pdf
ETMY_diagComp.pdf
Attachment 4: Screen_Shot_2019-05-21_at_12.37.08_AM.png
Screen_Shot_2019-05-21_at_12.37.08_AM.png
  14629   Tue May 21 21:33:27 2019 gautamUpdateSUSETMY HR face cleaned

[koji, gautam]

We executed this plan. Photos are here. Summary:

  1. Optic was EQ-stopped (face stops only)., with the OSEMs in situ. We tried to do this as evenly as possible to avoid any magnets getting stuck on OSEMs.
  2. We used the specially procured acetone from Chub to drag wipe the HR face. This was a definite improvement, we should always get the correct grade of solvents when we attempt cleaning optics.
  3. It was observed that drag-wiping did not really have the desired cleaning effect. So Koji went in with hemostat / lens tissue soaked in acetone and wiped the HR face. This improved the situation.
  4. Applied a layer of F.C. Waited for it to dry, and then peeled it off. Under the green flashlight, the optic still looks horrific - but we decided against further drag-wiping/first-contacting. If the loss is truly 50 ppm, this is totally not a show-stopper for now.
  5. Suspension cage was replaced. EQ stops were released. Bias voltages were adjusted to bring the Oplev spot back to the center of the QPD. Now a free-swinging data collection is ongoing...
The following optics were kicked:
ETMY
Tue May 21 22:58:18 PDT 2019
1242539916

So if nothing, we got to practise this new wiping technique with OSEMs in situ successfully.

Quote:
 
  1. Prepare ETMY for first contact cleaning to remove the residual piece. 
    • Drag wipe the HR surface with dehydrated acetone 
    • Apply F.C. as usual, inspect the HR face after peeling for improvement if any.
    • This will give us a chance to practise the F.C.ing with the optic EQ-stopped (moving cage etc).
  14630   Wed May 22 11:53:50 2019 gautamUpdateSUSETMY EQ stops backed out

Yesterday we noticed that the POS and SIDE eigenmodes were degenerate (with 1mHz spectral resolution). Moreover, the YAW peak had shifted down by ~500 mHz compared to earlier this week, although there was still good separation between PIT and YAW in the Oplev error signals. Ideas were (i) check if EQ stops were not backed out sufficiently, and (ii) look for any fibers/other constraints in the system. Today morning, I inspected the optic again. I felt the EQ stop viton tips were a bit close to the optic, so I backed them out further. Apart from this, I adjusted the LR and SIDE OSEM position in their respective holders to make the sensor voltages closer to half-light. Kicked the optic again just now, let's see if there is any change.

Remaining tasks:

  1. Check EY table leveling.
  2. Check EY actuation matrix diagonality using this technique.
  3. Check that IR resonances are seen (and all the usual pre-pumpdown alignment checks).
  4. Take close out pictures.
  5. Heavy doors on, pump down.

If everything goes smoothly, I think we should plan for the heavy doors going back on and commencing the pumpdown tomorrow. After discussion with Koji, we came to the conclusion that it isn't necessary to investigate IPANG (high likelihood of it falling off the steering optics during the pumpdown) / AS beam clipping (no strong evidence that this is a problem) for this vent.

Update 1235: Indeed, the eigenmodes are back to their positions from earlier this week. Indeed, the POS and SIDE modes are actually better separated! So, the OSEM/magnet and EQstop/optic interactions are non-negligible in the analysis of the dynamics of the pendulum.

Attachment 1: ETMY_eigenmodes.pdf
ETMY_eigenmodes.pdf
  14725   Thu Jul 4 10:54:21 2019 KojiSummarySUSSuspension damping recovered, ITMX stuck

So Cal Earthquake. All suspension watchdogs tripped.

Tried to recover the OSEM damping. 

=> The watchdogs for all suspensions except for ITMX were restored. ITMX seems to be stuck. No further action by me for now.

  14727   Fri Jul 5 20:57:04 2019 KojiUpdateSUSAnother M7.1 EQ

[Kruthi, Koji]

Koji came to the lab to align the IMC/IFO, but found the mirrors are dancing around. Kruthi told me that there was M7.1 EQ at Ridgecrest. Looks like there are aftershocks of this EQ going on. So we need to wait for an hour to start the alignment work.

ITMX and ETMX are stuck.

Attachment 1: Screenshot_from_2019-07-05_21-03-06.png
Screenshot_from_2019-07-05_21-03-06.png
  14728   Fri Jul 5 21:53:10 2019 KojiUpdateSUSAnother M7.1 EQ

- ITM unstuck now
- IMC briefly locked at TEM00

A series of aftershocks came. I could unstick ITMX by turning on the damping during one of the aftershocks.
Between the aftershocks, MC1~3 were aligned to the previous dof values. This allowed the IMC flashing. Once I got the lock of a low order TEM mode, it was easy to recover the alignment to have a weak TEM00.
Now at least temporarily the full alignment of the IMC was recovered.

  14729   Fri Jul 5 22:21:13 2019 KojiUpdateSUSAnother M7.1 EQ

In fact, ETMX was not stuck until the M7.1 EQ today. After that it got stuck, but during the after shocks, all the OSEMs occasionally showed full swing of the light levels. So I believe the magnets are OK.

Attachment 1: Screenshot_from_2019-07-05_22-19-57.png
Screenshot_from_2019-07-05_22-19-57.png
  14730   Fri Jul 5 23:28:52 2019 rana, kruthiSummarySUSETMX unstuck by shaking the stack

We unstuck ETMX by shaking the stack. Most effective was to apply large periodic human sized force to the north STACIS mounts.

At first, we noticed that the face OSEMs showed nearly zero variation.

We tried unsticking it through the usual ways of putting large excitations through AWG into the pit/yaw/side DOFs. This produced only ~0.2 microns of motion as seen by the OSEMs.

After the stack shake, we used the IFO ALIGN sliders to get the oplev beam back on the QPD.

The ETMX sensor trends observed before and after the earthquake are attached.

** plots deleted; SOMEONE, tried to take raster images and turn them into PDF as if this would somehow satisfy our vetor graphics requirement. Boo. lpots must be actual vector graphics PDF

  14736   Tue Jul 9 08:33:31 2019 gautamSummarySUSETMX PIT bias voltage changed by ~1V

After this activity, the DC bias voltage required on ETMX to restore good X arm cavity alignment has changed by ~1.3 V. Assuming a full actuation range of 30 mrad for +/- 10 V, this implies that the pitch alignment of the stack has changed by ~2 mrad? Or maybe the suspension wires shifted in the standoff grooves by a small amount? This is ~x10 larger than the typical change imparted while working on the table, e.g. during a vent.

Main point is that this kind of range requirement should probably be factored in when thinking about the high-voltage coil driver actuation.

Quote:

We unstuck ETMX by shaking the stack. Most effective was to apply large periodic human sized force to the north STACIS mounts.

  14742   Wed Jul 10 10:04:09 2019 gautamUpdateSUSTip-Tilt moved from South clean cabinet to bake lab cleanroom

Arnaud and I moved one of the two spare TT suspensions from the south clean cabinet to the bake lab clean room. The main purpose was to inspect the contents of the packaging. According to the label, this suspension was cleaned to Class A standards, so we tried to be clean while handling it (frocks, gloves, masks etc). We found that the foil wrapping contained one suspension cage, with what looked like all the parts in a semi-assembled state. There were no OSEMs or electronics together with the suspension cage. Pictures were taken and uploaded to gPhoto. Arnaud is going to plan his tests, so in the meantime, this unit has been stored in Cabinet #6 in the bake lab cleanroom.

  14745   Wed Jul 10 16:53:22 2019 gautamUpdateSUSPRM watchdog condition modified

[koji, gautam]

We noticed that the PRM watchdog was tripping frequently. This is a period of enhanced seismic activity. The reason PRM in particular trips often is because the SIDE OSEM has 5x increased transimpedance. We implemented a workaround by modifying the watchdog tripping condition to scale the SD channel RMS by a factor of 0.2 (relative to the UL and LL channels). We restarted the modbus process on c1susaux and tested that the new logic works. Here is the relevant snippet of code:

# Disable fast DAC if variation tests too high
# PRM Side is special, see elog 14745
record(calc,"C1:SUS-PRM_LOGIC")
{
    field(DESC,"Tests whether RMS too high")
    field(SCAN,"1 second")
    field(PHAS,"1")
    field(PREC,"0")
    field(HOPR,"1")
        field(LOPR,"0")
        field(CALC,"(A<B)&(C<B)&(0.2*D<B)")
        field(INPA,"C1:SUS-PRM_ULPD_VAR  NPP  NMS")
        field(INPB,"C1:SUS-PRM_PD_MAX_VAR  NPP  NMS")
        field(INPC,"C1:SUS-PRM_LLPD_VAR  NPP  NMS")
        field(INPD,"C1:SUS-PRM_SDPD_VAR  NPP  NMS")
}

The db file has a note about this as well so that future debuggers aren't mystified by a factor of 0.2.

  14755   Fri Jul 12 07:37:48 2019 gautamUpdateSUSM4.9 EQ in Ridgecrest

All suspension watchdogs were tripped ~90mins ago. I restored the damping. IMC is locked.

ITMX was stuck. I set it free. But notice that the UL Sensor RMS is higher than the other 4? I thought ITMY UL was problematic, but maybe ITMX has also failed, or maybe it's coincidence? Something for IFOtest to figure out I guess. I don't think there is a cable switch between ITMX/ITMY as when I move the ITMX actuators, the ITMX sensors respond and I can also see the optic moving on the camera.

Took me a while to figure out what's going on because we don't have the seis BLRMS - i moved the usual projector striptool traces to the TV screen for better diagnostic ability.

Update 16 July 1515: Even though the RMS is computed from the slow readback channels, for diagnosis, I looked at the spectra of the fast PD monitoring channels (i.e. *_SENSOR_*) for ITMX - looks like the increased UL RMS is coming from enhanced BR-mode coupling and not of any issues with the whitening switching (which seems to work as advertised, see Attachment #3, where the LL traces are meant to be representative of LL, LR, SD and UR channels).

Attachment 1: 56.png
56.png
Attachment 2: ITMXunstick.png
ITMXunstick.png
Attachment 3: ITMX_UL.pdf
ITMX_UL.pdf
  14763   Tue Jul 16 15:00:03 2019 gautamUpdateSUSMultiple small EQs

There were several small/medium earthquakes in Ridgecrest and one medium one in Blackhawk CA at about 2000 UTC (i.e. ~ 2 hours ago), one of which caused BS, ITMY, and ETM watchdogs to trip. I restored the damping just now.

  14776   Fri Jul 19 12:50:10 2019 gautamUpdateSUSDC bias actuation options for SOS

Rana and I talked about some (genius) options for the large range DC bias actuation on the SOS, which do not require us to supply high-voltage to the OSEMs from outside the vacuum.

What we came up with (these are pretty vague ideas at the moment):

  1. Some kind of thermal actuation.
  2. Some kind of electrical actuation where we supply normal (+/- 10 V) from outside the vacuum, and some mechanism inside the chamber integrates (and hence also low-pass filters) the applied voltage to provide a large DC force without injecting a ton of sensor noise.
  3. Use the blue piers as a DC actuator to correct for the pitch imbalance --- Kruthi and Milind are going to do some experiments to investigate this possibility later today.

For the thermal option, I remembered that (exactly a year ago to the day!) when we were doing cavity mode scans, once the heaters were turned on, I needed to apply significant correction to the DC bias voltage to bring the cavity alignment back to normal. The mechanism of this wasn't exactly clear to me - furthermore, we don't have a FLIRcam picture of where the heater radiation patter was centered prior to my re-centering of it on the optic earlier this year, so we don't know what exactly we were heating. Nevertheless, I decided to look at the trend data from that night's work - see Attachment #1. This is a minute trend of some ETMY channels from 0000 UTC on 18 July 2018, for 24 hours. Some remarks:

  1. We did multiple trials that night, both with the elliptical reflector and the cylindrical setup that Annalisa and Terra implemented. I think the most relevant part of this data is starting at 1500 UTC (i.e. ~8am PDT, which is around when we closed shop and went home). So that's when the heaters were turned off, and the subsequent drift of PIT/YAW are, I claim, due to whatever thermal transients were at play.
  2. Just prior to that time, we were running the heater at close to its maximum rated current - so this relaxation is indicative of the range we can get out of this method of actuation.
  3. I had wrongly claimed in my discussion with Rana this morning that the change in alignment was mostly in pitch - in fact, the data suggests the change is almost equal in the two DoFs. Oplev and OSEMs report different changes though, by almost a factor of 2....
  4. The timescale of the relaxation is ~20 minutes - what part(s) of the suspension take this timescale to heat up/cool down? Unlikely to be the wire/any metal parts because the thermal conductivity is high? 
  5. In the optimistic scenario, let's say we get 100 urad of actuation range - over 40m, this corresponds to a beam spot motion of ~8mm, which isn't a whole lot. Since the mechanism of what is causing this misalignment is unclear, we may end up with significantly less actuation range as well.
  6. I will repeat the test (i.e. drive the heater and look for drift in the suspension alignment using OSEMs/Oplev) in the afternoon - now I claim the radation pattern is better centered on the optic so maybe we will have a better understanding of what mechanisms are at play.

Also see this elog by Terra.

Attachment #2 shows the results from today's heating. I did 4 steps, which are obvious in the data - I=0.6A, I=0.76A, I=0.9A, and I=1.05A.


In science, one usually tries to implement some kind of interpretation. so as to translate the natural world into meaning.

Attachment 1: heaterPitch_2018.pdf
heaterPitch_2018.pdf
Attachment 2: Screenshot_from_2019-07-19_16-39-21.png
Screenshot_from_2019-07-19_16-39-21.png
  14798   Mon Jul 22 13:32:55 2019 KruthiUpdateSUSTest mass pitch adjustment test

[Kruthi, Milind]

On Friday, Milind and I performed the pitch adjustment test Rana had asked us to do. Only 1 blue beam in case of ITMX and two in case of ETMY, ETMX and ITMY were accessible. Milind (of mass 72 kg as of 10 May 2019) stood on each of the accessible blue beams of the test mass chambers for one minute and I recorded the corresponding gps time. Before moving to the next beam, we spared more than a minute for relaxation after the standing end time. Following are the recorded gps times. 

 

ETMX

ITMX

ETMY

ITMY

 

Beam 1

Beam 2

Beam 1

Beam 1

Beam 2

Beam 1

Beam 2

Standing start time (gps)

1247620911

1247621055

1247621984

1247622394

1247622585

1247622180

1247622814

Standing end time (gps)

1247620974

1247621118

1247622058

1247622459

1247622647

1247622250

1247622880

PS: For each blue beam relaxation time ~ 1 min after the standing end time

Attachment 1: ETMX.pdf
ETMX.pdf
Attachment 2: itmx.pdf
itmx.pdf
Attachment 3: ETMY.pdf
ETMY.pdf
Attachment 4: ITMY.pdf
ITMY.pdf
Attachment 5: 3f1a82f2-b86a-469e-8914-9278a216c5f9.jpg
3f1a82f2-b86a-469e-8914-9278a216c5f9.jpg
Attachment 6: 1d174307-d940-42e6-812b-83417d0f5f6a.jpg
1d174307-d940-42e6-812b-83417d0f5f6a.jpg
  14977   Fri Oct 18 17:35:07 2019 gautamUpdateSUSETMX sat box disconnected

Koji suggested systematic investigation of the ETMX suspension electronics. The tests to be done are:

  1. Characterization of PD whitening amplifiers - with the satellite box disconnected, we will look for glitches in the OSEM channels.
  2. Characterization of LT1125s in the PD chain of the amplifiers - with the in-vacuum OSEMs disconnected, we will look for glitches due to the on-board transimpedance amplifiers of the satellite box.
  3. Characterization using the satellite box tester - this will signal problems with the physical OSEMs.
  4. Characterization of the suspension coil driver electronics - this will happen later.

So the ETMX satellite box is unplugged now, starting 530 pm PDT.

The satellite box was reconnected and the suspension was left with watchdog off but OSEM roughly centered. We will watch for glitches over the weekend.

  14982   Mon Oct 21 16:02:21 2019 gautamUpdateSUSETMX over the weekend

Looking at the sensor and oplev trends over the weekend, there was only one event where the optic seems to have been macroscopically misaligned, at ~11:05:00 UTC on Oct 19 (early Saturday morning PDT). I attach a plot of the 2kHz time series data that has the mean value subtracted and a 0.6-1.2 Hz notch filter applied to remove the pendulum motion for better visualization. The y-axis calibration for the top plot assumes 1 ct ~= 1 um. This "glitch" seems to have a timescale of a few seconds, which is consistent with what we see on the CCD monitors when the cavity is locked - the alignment drifts away over a few seconds.

As usual, this tells us nothing conclusive. Anyways, I am re-enabling the watchdog and pushing on with locking activity and hope the suspension cooperates.

Quote:
 

The satellite box was reconnected and the suspension was left with watchdog off but OSEM roughly centered. We will watch for glitches over the weekend.

Attachment 1: filteredData.pdf
filteredData.pdf
  15002   Wed Oct 30 19:20:27 2019 gautamUpdateSUSPRM suspension issues

While I was trying to lock the PRMI this evening, I noticed that I couldn't move the REFL beamspot on the CCD field of view by adjusting the slow bias voltages to the PRM. Other suspensions controlled by c1susaux seem to respond okay so at first glance it isn't a problem with the Acromag. Looking at the OSEM sensor input levels, I noticed that UL is much lower than the others - see Attachment #1, seems to have happened ~100 days ago. I plugged the tester box in to check if the problem is with the electronics or if this is an actual shorting of some pins on the physical OSEM as we had in the past. So PRM watchdog is shutdown for now and there is no control of the optic available as the cables are detached. I will replace the connections later in the evening.

Update 10pm:

  1. Measured coil inductances with breakout board and LCR meter - all 5 coils returned ~3.28-3.32 mH.
  2. Measured coil resistances with breakout board and DMM - all 5 coils returned ~16-17 ohms.
  3. Checked OSEM PD capacitance (with no bias voltage) using the LCR meter - each PD returned ~1nF.
  4. Checked resistance between LED Cathode and Anode for all 5 LEDs using DMM - each returned Hi-Z.
  5. Checked resistance between PD Cathode and Anode for all 5 PDs using DMM - each returned ~430 kohms.
  6. Checked that I could change the slow bias voltages and see a response at the expected pins (with the suspension disconnected).

Since I couldn't find anything wrong, I plugged the suspension back in - and voila, the suspect UL PD voltage level came back to a level consistent with the others! See Attachment #2.

Anyway, I had some hours of data with the tester box plugged in - see Attachment #3 for a comparison of the shadow sensor readout with the tester box (all black traces) vs with the suspension plugged in, local damping loops active (coloured traces). The sensing noise re-injection will depend on the specifics of the  local damping loop shapes but I suspect it will limit feedforward subtraction possibilities at low frequencies.

However, I continue to have problems aligning the optic using the slow bias sliders (but the fast ones work just fine) - problem seems to be EPICS related. In Attachment #4, I show that even though I change the soft PITCH bias voltage adjust channel for the PRM, the linked channels which control the actual voltages to the coils take several seconds to show any response, and do so asynchronously. I tried restarting the modbus process on c1susaux, but the problem persists. Perhaps it needs a reboot of the computer and/or the acromag chassis? I note that the same problem exists for the BS and PRM suspensions, but not for ITMX or ITMY (didn't check the IMC optics). Perhaps a particular Acromag DAC unit is faulty / has issues with the internal subnet?

Attachment 1: PRMUL.pdf
PRMUL.pdf
Attachment 2: PRMnormal.pdf
PRMnormal.pdf
Attachment 3: PRM-Sensors_noise.pdf
PRM-Sensors_noise.pdf PRM-Sensors_noise.pdf
Attachment 4: PRMsuspensionWonky.png
PRMsuspensionWonky.png
  15003   Wed Oct 30 23:12:27 2019 KojiUpdateSUSPRM suspension issues

Sigh... hard loch

  15155   Sun Jan 26 13:30:19 2020 gautamUpdateSUSAll watchdogs tripped, now restored

Looks like a M=4.6 earthquate in Barstow,CA tripped all the suspensions. ITMX got stuck. I restored the local damping on all the suspensions just now, and freed ITMX. Looks like all the suspensions damp okay, so I think we didn't suffer any lasting damage. IMC was re-aligned and is now locked.

Attachment 1: EQ_Jan25.pdf
EQ_Jan25.pdf
  15173   Wed Jan 29 03:05:47 2020 rana, gautamUpdateSUSMC misalignments / sat box games

In the last couple days, as the IMC ringdowns have been going on, we have noticed that the MC is behaving bad. Misaligning, drifting, etc.

Gautam told me a horror story about him, Koji, and melted wires inside the sat boxes.

I said, "Its getting too hot in there. So let's take the lids off!"

So then we:

  1. Removed the lid (only 4 screws were still there)
  2. cut off some of the shield - ground wires and insulated them with electrical tape
  3. squished the IDC connectors on tightly
  4. left it this way to see if MC would get better - certainly the painfully hot heatinks inside the box were now just 110 F or so

After some minutes, we saw no drifting. So maybe my theory of "hot heatsink partially shorting a coil current to GND through partially melted ribbon cable" makes sense? IF this seems better after a month, lets de-lid all the optics.

Let's look at some longer trends and be very careful next to MC2 for the next 3 days! I have put a dangerous mousetrap there to catch anyone who walks near the vacuum chamber.

gautam: the grounding situation per my assessment is that the shield of all the IDC cables are connected to a common metal strip at 1X5 - but in my survey, I didn't see any grounding of this strip to a common ground.

Attachment 1: IMG_8366.JPG
IMG_8366.JPG
  15261   Sat Mar 7 15:18:30 2020 gautamUpdateSUSEQ tripped some suspensions

An earthquake around 330 UTC (=730pm yesterday eve) tripped ITMX, ITMY and ETMX watchdogs. ITMX got stuck. I released the stuck optic and re-enabled the local damping loops just now.

Attachment 1: EQ_6Mar.png
EQ_6Mar.png
  15262   Tue Mar 10 14:30:16 2020 yehonathanUpdateSUS 

ETMX was grossly misaligned.

I re-aligned it and the X arm now locks.

7:00PM with Koji

Both the alignment of the X and Y arms was recovered.

~>z avg 10 C1:LSC-TRX_OUT C1:LSC-TRY_OUT
C1:LSC-TRX_OUT 0.9914034307003021
C1:LSC-TRY_OUT 0.9690877735614777

We are running ass for the X arm to recover the X arm alignment.

Meanwhile, i want to block the Y arm trans PD (Thorlabs). To do it, the PD<->QPD thresholds were changed from 5.0/3.0 to 0.5/0.3.

Attachment 1: Screenshot_from_2020-03-10_19-02-31.png
Screenshot_from_2020-03-10_19-02-31.png
  15263   Tue Mar 10 19:58:16 2020 yehonathanUpdateSUS 

I returned the triggering threshold to normal values (5/3).

Meanwhile, i want to block the Y arm trans PD (Thorlabs). To do it, the PD<->QPD thresholds were changed from 5.0/3.0 to 0.5/0.3.

  15335   Fri May 15 19:10:42 2020 gautamUpdateSUSAll watchdogs tripped, now restored

This EQ in Nevada seems to have tripped all watchdogs. ITMX was stuck. It was released, and all the watchdogs were restored. Now the IMC is locked.

  15373   Wed Jun 3 19:19:11 2020 gautamUpdateSUSAll watchdogs tripped

This EQ seems to have knocked all suspensions out. ITMX was stuck. It is now released, and the IMC is locked again. It looks like there are some serious aftershocks going on so let's keep an eye on things.

  15376   Thu Jun 4 20:54:40 2020 gautamUpdateSUSMC1 Slow Bias issues

Summary:

I found that there is an issue with the MC1 slow bias voltages. 

Details:

I usually offload the DC part of the output voltage from the WFS servos to the slow bias voltage sliders, so as to preserve maximum actuation range from the fast system. However, today, I found that this servo wasn't working well at all. So I dug a little deeper. Looking at the EPICS database records:

  • The user-facing channels are "PIT" and "YAW" bias voltages.
  • These are converted to voltages to be sent to individual coils by some calc channels in the EPICS database record. So, for example, the voltage to be sent to the "UL" coil (Upper Left, as viewed from the AR side of the optic), is A+B, where A is the "PIT" voltage and B is the "YAW" voltage. Similar combinations of A and B are used for the other 3 face coils.
  • The problem is obvious - if either A or B > 5V, then the requested voltage to be sent to the UL coil is > 10 V, while the Acromag DACs can put out a maximum of 10 V
  • As it happens, with the IFO currently aligned, MC1 is the only optic which faces this problem. 
  • Why has this not been an issue before? In fact, looking at some old data, the "PIT" and "YAW" bias voltages to MC1 were both ~1-2 V in 2018. But I confirmed that something in the region of ~5 V is required from each of the "PIT" and "YAW" channels to bring the MCREFL spot back to the center of the camera, so something has changed the DC alignment of MC1, maybe an earthquake or something? Anyway, with these settings, 2/4 coils are basically saturated, and so we can only move the optic diagonally. 😢 
  • Other coils that have  requested output voltages > 5V (so more than half the range of the DAC) include MC2 LL (5.2V), and ETMX LL and LR (5.5 and 5.8 V respectively).
  • Either a factor of 0.5 should be included in all the EPICS database records, or else, we should make the "PIT" and "YAW" sliders range only from -5 to +5 V, so that this kind of misleading info isn't wasting time.
  15377   Thu Jun 4 21:32:00 2020 KojiUpdateSUSMC1 Slow Bias issues

We can limit the EPICS values giving some parameters to the channels. cf https://epics.anl.gov/tech-talk/2012/msg00147.php

But this does not solve the MC1 issue. Only we can do right now is to make the output resister half, for example.

  15428   Wed Jun 24 22:33:44 2020 gautamUpdateSUSEQ tripped all suspensions

This earthquake tripped all suspensions and ITMX got stuck. The watchdogs were restored and the stuck optic was released. The IFO was re-aligned, POX/POY and PRMI on carrier locking all work okay.

  15431   Thu Jun 25 15:11:00 2020 gautamUpdateSUSMC1 coil driver resistance quartered

I implemented this change today. We only had 100 ohm, 3W resistors in stock (no 200 ohm with adequate power rating). Assuming 10 V is dropped across this resistor, the power dissipation is V^2/R ~ 1 W, so we should have sufficient margin. DCC entry has been updated with new schematic and photo of the component side of the board. Note that the series resistance of the fast actuation path was untouched.

As expected, the requested voltage no longer exceeds the Acromag DAC range, it is now more like 2.5 V. However, I still notice that the MC REFL spot moves somewhat diagonally on the camera image - so maybe the coil gains are seriously imbalanced? Anyway, the WFS control signals can once again be safely offloaded to the slow bias voltages once again, preserving the fast ADC range for other actuation.

The Johnson noise of the series resistor has now increased by a factor of 2, from ~6.4 pA/rtHz to 12.8 pA/rtHz. Assuming a current to force coefficient of 1.6 mN/A per coil, the length noise of the cavity is expected to be 12.8e-12 * 0.064/0.25/(2*pi*100)^2 ~ 8e-18 m/rtHz at 100 Hz. In frequency units, this is 80 uHz/rtHz. I think our IMC noise is at least 10 times higher than this at 100 Hz (in any case, the noise of the coil driver is NOT dominated by the series resistance). Attachment #1 confirms that there isn't any significant MCF noise increase, and I will check with the arm cavity too. Nevertheless, we should, if possible, align the optic better and use as high a series resistance as possible.

The watchdog for MC1 was disabled and the board was pulled out for this work. After it was replaced, the IMC re-locks readily.

Quote:

But this does not solve the MC1 issue. Only we can do right now is to make the output resister half, for example.

Attachment 1: MCF.pdf
MCF.pdf
  15434   Sun Jun 28 15:30:52 2020 gautamUpdateSUSMC1 sat-box de-lidded

Judging by the summary pages, some 18 hours after this change was made and the board re-installed, the MC1 shadow sensors began to report frequent glitches. I can't think of a plausible causal connection, especially given the 18 hour time lag, but also hard to believe there isn't one? As a result, the IMC is no longer able to stay locked for extended periods of time. I did the usual cable squishing, and also took off the lid to see if that helps the situation.

While the reduced series resistance means there is more current flowing through the slow path

  1. There isn't actually an increase in the net current flowing through the satellite box - this change just re-allocates the current from the fast path to the slow path, but by the time it reaches the satellite box, the current is flowing through the same conductor.
  2. afaik, the current buffers on the coil driver aren't overdriven - they are rated for 300 mA. No individual coil is drawing more than 30 mA.
  3. the resistors themselves should be running sufficiently below their rated power of 3W (I estimate 2.5 V ^2 / 100 ohms ~ 60 mW).
  4. The highest current should be through the UL and LR coils according to the voltage outputs from the Acromag. But the UL coil doesn't show significant glitching, and the LL one does despite drawing negligible DC current.

The attached FLIR camera image re-inforces what we already know, that the thermal environment inside the satellite box is horrible. The absolute temperature calibration may be off, but it was difficult to touch the components with a bare finger, so I'd say its definitely > 70 C.

Quote:

I implemented this change today. We only had 100 ohm, 3W resistors in stock (no 200 ohm with adequate power rating). Assuming 10 V is dropped across this resistor, the power dissipation is V^2/R ~ 1 W, so we should have sufficient margin. DCC entry has been updated with new schematic and photo of the component side of the board. Note that the series resistance of the fast actuation path was untouched.

Attachment 1: 20200628T144138.jpg
20200628T144138.jpg
  15435   Sun Jun 28 16:29:58 2020 ranaUpdateSUSMC1 sat-box de-lidded

does the FLIR have an option to export image with a colorbar?

How about just leave the lid open? or more open? I don't know what else can be done in the near term. Maybe swap with the SRM sat box to see if that helps?

  15436   Sun Jun 28 17:36:35 2020 gautamUpdateSUSMC1 sat-box de-lidded

Hmm I can't seem to export with the colorbar, might be just my phone though. I tried to add some "cursors" with the temperature at a few spots, but the font color contrast is poor so you have to squint really hard to see the temperatures in the photo I attached.

I'll leave the MC1 box open overnight and see if that improves the situation, and if not, I'll switch in the SRM satellite box tomorrow.

Quote:

does the FLIR have an option to export image with a colorbar?

How about just leave the lid open? or more open? I don't know what else can be done in the near term. Maybe swap with the SRM sat box to see if that helps?

  15438   Mon Jun 29 11:55:46 2020 gautamUpdateSUSMC1 sat-box de-lidded

There was no improvement to the situation overnight. So, I did the following today:

  1. Ramped bias voltages for SRM and MC1 to 0, shutdown watchdogs.
  2. Switched SRM and MC1 satellite boxes. The SRM satellite box lid was opened, while the MC1 lid was left open. The boxes have also been re-labelled lest there be some confusion about which box belongs where.
  3. Restored watchdogs and bias voltages. Curiously, the MC1 optic now only requires half the bias voltages it did before to have the correct DC alignment for the optic. The Satellite box is just supposed to be a passive conduit for the drive current, so this is indicative of some PCB traces/cabling being damaged inside what was previously the MC1 satellite box?

IMC is now locked again, I will monitor for glitching/stability.

Update 6pm PDT: as shown in Attachment #1, there is a huge difference in the stability of the lock after the sat box swap. Let's hope it stays this way for a while...

Quote:

I'll leave the MC1 box open overnight and see if that improves the situation, and if not, I'll switch in the SRM satellite box tomorrow.

Attachment 1: SatBoxSwap.jpg
SatBoxSwap.jpg
  15440   Mon Jun 29 20:30:53 2020 KojiUpdateSUSMC1 sat-box de-lidded

Sigh. Do we have a spare sat box?

  15506   Thu Jul 30 16:16:43 2020 gautamUpdateSUSSuspension recovery

This earthquake and friends had tripped all watchdogs. I used the scripted watchdog re-enabler, and released the stuck ITMX (this operation is still requires a human and hasn't been scripted yet). IMC is locked again and all Oplevs report healthy optic alignment.

  15610   Sun Oct 4 15:32:21 2020 gautamUpdateSUSSuspension health check

Summary:

After the earthquake on September 19 2020, it looks to me like the only lasting damage to suspensions in vacuum is the ETMY UR magnet being knocked off. 

Suspension ringdown tests:

I did the usual suspension kicking/ringdown test:

  • One difference is that I now kick the suspension "N" times where N is the number of PSD averages desired. 
  • After kicking the suspension, it is allowed to ring down with the damping disabled, for ~1100 seconds so that we can get spectra with 1mHz resolution.
  • We may want to get more e-folding times in, but since the Qs of the modes are a few hundred, I figured this is long enough.
  • I think this kind of approach gives better SNR than letting it ringdown 10,000 seconds (for 10 averages with 10 non overlapping segments of 1000 seconds), and I wanted to test this scheme out, seems to work well.
  • Attachment #1 shows a summary of the results.
  • Attachment #2 has more plots (e.g. transfer function from UL to all other coils), in case anyone is interested in more forensics. The data files are large but if anyone is interested in the times that the suspension was kicked, you can extract it from here.

Conclusions:

  1. My cursory scans of the analysis don't throw up any red flags (apart from the known problem of ETMY UR being dislodged) 👌 
  2. The PRM data is weird 
    • I believe this is because the DC bias voltage to the coils was significantly off from what it normally is when the PRC is aligned.
    • In any case, I am able to lock the PRC, so I think the PRM magnets are fine.
  3. The PRC angular FF no longer works turns out this was just a weird interaction with the Oplev loop because the beam was significantly off-centered on the Oplev QPD. Better alignment fixed it, the FF works as it did before.
    • With the PRC locked and the carrier resonant (no ETMs), the old feedforward filters significantly degrade the angular stability to the point that the lock is lost.
    • My best hypothesis is that the earthquake caused a spot shift on PR2/PR3, which changed the TF from seismometer signal to PRC spot motion.
    • Anyways, we can retrain the filter.
    • The fact that the PRC can be locked suggest PR2/PR3 are still suspended and okay.
  4. The SRM data is also questionable, because the DC bias voltage wasn't set to the values for an aligned SRC when the data was collected
    • Nevertheless, the time series shows a clean ringdown, so at least all 5 OSEMs are seeing a signal.
    • Fact that the beam comes out at the AS port suggest SR3/SR2 suspensions are fine 👍 

Attachment #2 also includes info about the matrix diagonalization, and the condition numbers of the resulting matrices are as large as ~30 for some suspensions, but I think this isn't a new feature. 

Attachment 1: combined.pdf
combined.pdf
Attachment 2: allPlots.zip
  15712   Mon Dec 7 11:25:31 2020 gautamUpdateSUSMC1 suspension glitchy again

The MC1 suspension has begun to show evidence of glitches again, from Friday/Saturday. You can look at the suspension Vmon tab a few days ago and see that the excess fuzz in the Vmon was not there before. The extra motion is also clearly evident on the MCREFL spot. I noticed this on Saturday evening as I was trying to recover the IMC locking, but I thought it might be Millikan so I didn't look into it further. Usually this is symptomatic of some Satellite box issues. I am not going to attempt to debug this anymore.

  15720   Wed Dec 9 16:22:57 2020 gautamUpdateSUSYet another round of Sat. Box. switcharoo

As discussed at the meeting, I decided to effect a satellite box swap for the misbehaving MC1 unit. I looked back at the summary pages Vmon for the SRM channels, and found that in the last month or so, there wasn't any significant evidence of glitchiness. So I decided to effect that swap at ~4pm today. The sequence of steps was:

  • SRM and MC1 watchdogs were disabled.
  • Unplugged the two satellite boxes from the vacuum flanges.
  • For the record: S/N 102 was installed at MC1, and S/N 104 was installed at SRM. Both were de-lidded, supposedly to mitigate the horrible thermal environment a bit. S/N 104 was the one Koji repaired in Aug 2019 (the serial number isn't visible or noted there, but only one box has jumper wires and Koji's photos show the same jumper wires). In June 2020, I found that the repaired box was glitching again, which is when I swapped it for S/N 102.
  • After swapping the two units, I re-enabled the local damping on both optics, and was able to re-lock the IMC no issues.

One thing I was reminded of is that the motion of the MC1 optic by controlling the bias sliders is highly cross-coupled in pitch and yaw, it is almost diagonal. If this is true for the fast actuation path too, that's not great. I didn't check it just now.

While I was working on this, I took the opportunity to also check the functionality of the RF path of the IMC WFS. Both WFS heads seem to now respond to angular motion of the IMC mirror - I once again dithered MC2 and looked at the demodulated signals, and see variation at the dither frequency, see Attachment #1. However, the signals seem highly polluted with strong 60 Hz and harmonics, see the zoomed-in time domain trace in Attachment #2. This should be fixed. Also, the WFS loop needs some re-tuning. In the current config, it actually makes the MC2T RIN worse, see Attachment #3 (reference traces are with WFS loop enabled, live traces are with the loop disabled - sorry for the confusing notation, I overwrote the patched version of DTT that I got from Erik that allows the user legend feature, working on getting that back).

Quote:

The MC1 suspension has begun to show evidence of glitches again, from Friday/Saturday. You can look at the suspension Vmon tab a few days ago and see that the excess fuzz in the Vmon was not there before. The extra motion is also clearly evident on the MCREFL spot. I noticed this on Saturday evening as I was trying to recover the IMC locking, but I thought it might be Millikan so I didn't look into it further. Usually this is symptomatic of some Satellite box issues. I am not going to attempt to debug this anymore.

Attachment 1: WFS2.png
WFS2.png
Attachment 2: WFS_lineNoise.png
WFS_lineNoise.png
Attachment 3: WFSchar.pdf
WFSchar.pdf
  15730   Thu Dec 10 22:45:42 2020 gautamUpdateSUSMore spare OSEMs

I acquired several spare OSEMs (in unknown condition) from Paco. They are stored alongside the shipment from UF.

  15747   Sun Jan 3 16:26:06 2021 KojiUpdateSUSIMC WFS check (Yet another round of Sat. Box. switcharoo)

I wanted to check the functionality of the IMC WFS. I just turned on the WFS servo loops as they were. For the past two hours, they didn't run away. The servo has been left turned on. I don't think there is no reason to keep it turned off.

Attachment 1: Screen_Shot_2021-01-03_at_17.14.57.png
Screen_Shot_2021-01-03_at_17.14.57.png
  15777   Tue Jan 26 10:58:30 2021 gautamUpdateSUSMC2 tickler stuck on

For whatever reason, the autolocker didn't turn the tickle off for several hours. Seems to work okay now. The linked plot suggests that the coil balancing on MC2 is pretty lousy.

  15783   Thu Jan 28 22:34:21 2021 gautamUpdateSUSDe-whitening

Summary:

  1. We will need de-whitening filters for the BHD relay optics in order to meet the displacement noise requirements set out in the DRD. I think these need not be remotely switchable (depends on specifics of LO phase control scheme). SR2, PR2 and PR3 can also have the same config, and probably MC1, MC3 as well.
  2. We will need de-whitening filters for the non test mass core IFO optics (PRM, SRM, BS, and probably MC2).
  3. I am pretty sure we will not be able to have sufficient DAC range for the latter class of optics if we have to:
    1. Supply the DC bias.
    2. Do the LSC and ASC actuation in the presence of reasonable sensing noise levels.
    3. Engage de-whitening to low-pass-filter the DAC noise at ~200 Hz.

Details:

Attachment #1 shows the DAC noise models for the General Standards 16-bit and 18-bit DACs we are expecting to have.

  • The 16-bit model has been validated by me at the 40m a few years ago.
  • We have never used the 18-bit flavor at the 40m, and there are all manner of quirks apparently related to zero crossings and such. So the noise may be up to x2 higher (we won't have as much freedom necessarily as the sites to bias the DAC on one side of the zero crossing if we also need to use the same DAC channel to supply the DC bias current for alignment.

Attachment #2 shows the expected actuation range for DC optic alignment, assuming we use the entire DAC range for this purpose.

  • Clearly, we need to do other things with the same DAC channels as well, so this is very much an upper bound of what will be possible.
  • Let's assume we will not go lower than 100ohms.
  • For all new optics we are suspending, we should aim to get the pitch balancing to within 500urad. With a 2x2m=4m optical lever arm, this corresponds to a 2mm spot shift. Should be doable.
  • This could turn out to be a serious problem for PRM, BS and SRM if we hope to measure squeezing - the <AUX DOF>-->DARM coupling could be at the level of -40dB, and at 200 Hz, the DAC noise would result in PRCL/MICH/SRCL noise at the level of ~10^-15m/rtHz, which would be 10^-17m/rtHz in DARM. I don't think we can get 20dB of feedforward cancellation at these frequencies. For demonstrating locking using a BHD error signal, maybe this is not a big deal.

Attachment #3 shows the current and proposed (by me, just a rough first pass, not optimized in any way yet) de-whitening filter shapes. These shapes can be tweaked for sure.

  • The existing de-whitening filter is way too aggressive. FWIW, the DRD "models" a "4th order Chebyshev low pass filter" which doesn't exist anywhere as far as I know.
  • Since the DAC noise is below 1 uV/rtHz at all frequencies of interest, we never need to have >60dB de-whitening anywhere as the input referred noise of any circuit we build will exceed 1 nV/rtHz.
  • I propose 3 poles, 3 zeros. In the plot, these poles are located at 30Hz, 50Hz, 2kHz, and the zeros are at 300 Hz, 300 Hz, 800 Hz. 
  • The de-whitening is less agressive below 100 Hz, where we still need significant LSC actuation ability. Considering the sensing noise levels at the 40m, I don't know if we can have reasonable LSC and ASC loop shapes and still have the de-whitening.
  • Once again, PRM, SRM and BS will be the most challenging.
  • For the BHD relay optics, once we have the de-whitening, we won't have the option of turning on a high-frequency (~kHz) dither line because of insufficient DAC range. 

Attachment #4 puts everything into displacement noise units. The electronics noise of the coil driver / de-whitening circuit have not been included so at high frequencies, the projection is better than what will actually be realizable, but still well below the BHD requirement of 3e-17 m/rtHz.

Attachment 1: DACnoiseModels.pdf
DACnoiseModels.pdf
Attachment 2: actuationRange.pdf
actuationRange.pdf
Attachment 3: deWhiteTFs.pdf
deWhiteTFs.pdf
Attachment 4: dispNoiseModels.pdf
dispNoiseModels.pdf
ELOG V3.1.3-