40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 310 of 344  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  10841   Tue Dec 23 20:50:39 2014 rana, kojiUpdateIOOSeven transfer functions

Today we decided to continue to modify the TTFSS board.

The modified schematic can be found here: https://dcc.ligo.org/D1400426-v1 as part of the 40m electronics DCC Tree.

What we did

1) Modify input elliptic filter (L1, C3, C4, C5) to give zero and pole at 30 kHz and 300 kHz, respectively. L1 was replaced with a 1 kOhm resistor.  C3 was replaced with 5600 pF. C4 and C5 were removed. So the expected locations of the zero and pole were at 28.4 kHz and 256 kHz, respectively. This lead filter replaces the Pomona box, and does so without causing the terrible resonance around 1 MHz.

2) Removed the notch filters for the PC and fast path. This was done by removing L2, L3, and C52.

At this point we tested the MC locking and measured the transfer function. We successfully turned up the UGF to 170kHz and two super-boosts on.

3) Now a peak at 1.7MHz was visible and probably causing noise. We decided to revert L2 and adjusted C50 to tune the notch filter in the PC path to suppress this possible PC resonance. Again the TF was measured. We confirmed that the peak at 1.7MHz is at -7dB and not causing an oscillation. The suppression of the peak is limited by the Q of the notch. Since its in a weird feedback loop, we're not sure how to make it deeper at the moment.

4) The connection from the MC board output now goes in through the switchable Test1 input, rather than the fixed 'IN1'. The high frequency gain of this input is now ~4x higher than it was. I'm not sure that the AD829 in the MC board can drive such a small load (125 Ohms + the ~20 Ohms ON resistance of the MAX333A) very well, so perhaps we ought to up the output resistor to ~100-200 Ohms?


Also, we modified the MC Servo board: mainly changed the corner frequencies of the Super Boost stages and some random cleanup and photo taking. I lost the connecting cable from the CM to the AO input (unlabeled).

  1.  The first two Super Boost stages were changed from 20k:1k to 10k:500 to give us back some phase margin and keep the same low freq gain. I don't really know what the gain requirement is for this servo here at the 40m. The poles and zeros were chosen for iLIGO so as to have the frequency noise be 10x less than the SRD at 7 kHz.
  2. The third Super Boost (which we never used) was changed from 10k:500 to ~3k:150 (?) just in case we want a little more low freq gain.
  3. There was some purple vestigial wiring on the back side of the board with a flying resistor; I think this was a way to put a DC offset in to the output of the board, but its not needed anymore so I removed it.

 

  11343   Tue Jun 2 21:22:07 2015 rana, kojiConfigurationIOOAOM inserted in beam and aligned

We spent an hour today to put the AOM back in the beam before the PMC and verified that the diffraction is working.

  1. The fuse holder was missing from the rack. We inserted a 5A fuse. We expect that the quiesscent draw is < 0.5 A. The power is from the +24V Sorensen supply.
  2. The alignment was tricky, but we optimized it as well as we could in translation and the RZ direction. Its a fixed mount still.
  3. We noticed that according to the datasheet, the polarization is wrong! It wants S-Pol light and we're giving it P-Pol. How come no one noticed this? We expect that the efficiency is reduced because of this. We (Steve) need to brainstorm what kind of mount we can use there to mount it at 90 deg to the plane of the table.
  4. The lens after the AOM has f = +400 mm. The distance from the AOM to the lens is ~800-900 mm so its not so terrible. However, if someone were to put the AOM halfway between the turning mirrors there, the beam diffraction would be canceled.
  5. The AOM input impedance seems to be 50 Ohm as advertised. The previous Koji entry claim of 25 Ohm is mysterious. We checked the Ohmage by sending a signal into the AM input of the AOM using the DS345 which as a 50 Ohm output. 1 Vpp from the DS345 made 1 Vpp on the input of the AM input as measured by Oscope connected by T with high impedance setting.
  6. With 0.5 V offset and a 1 Vpp signal, we get ~20-25% modulation of the power.sad
  7. We have left it running with a 4444.4 Hz modulation and a small amplitude. This is to see if we can use this to measure the cavity poles of the MC and the arms.
  8. We noticed some hash on the Teed input monitor. It was backstreaming of the RF drive. Whoever uses this thing in an ISS feedback ought to make sure to put an RF choke between the servo and this AOM driver.

We also removed a 50/50 pickoff mirror which was used to take one of the NPRO -> EOM polarizer reject beams and send it across the table into a floppy dump. Its now hitting a closer floppy dump. Let's stop using these crappy anodized aluminum flappers anywhere, Steve.

We also noticed that the PMC REFL path uses a W1 from CVI to send the PMC reflection to the REFL RFPD. The dim beam from the AR coated surface is being used rather than the bright beam from the uncoated surface. Ooops. Steve, can you please order another W1 for 1064 from CVI, but get it with a 2-3 deg wedge angle? This one has a wedge which is too small.

  11361   Mon Jun 15 22:36:40 2015 rana, kojiUpdateGreen LockingBeatBox Assay: not looking good

Because the ALS beatbox schematic is out-of-date and misleading, we pulled the box to photograph the current implementation and figure out how to proceed. The box is out on the EE bench right now. Schematic Doc added to 40m Document tree: https://dcc.ligo.org/LIGO-D1102241. Some notes:

  1. The soldering on this board is pretty messy and there are a lot of flying wire and flying component hacks. I wouldn't trust all of the connections.
  2. The GV-81 RF amps in the front end are both stuffed. The 1 dB compression point is 19 dBm, so we want to use them below 10 dBm output. They have a gain of +10.5 dB, so that means they should not be used with and input to the beatbox of more than -10 dBm. Otherwise there will be nonlinear noise generation.
  3. Not stuffed: U1-Comparator, A1-attenuator, U2-splitter.
  4. Why is the filter after the mixer only 2nd order?? That's not a valid filter choice in any RF world. How much do we want to cut off the 2f mixer output before sending into our low noise, audio frequency (and prone to downconversion) amplifier? The Mini-Circuits amplifiers would have given us >60 dB attenuation in the stop band. This one is only going to give us 20-30 dB when the beat frequency is low. Get rid of diplexer. The schematic claims that its just one pole?? Seems like a 2nd order LP filter to me.
  5. The modified schematic (see Koji elog 8855) shows that an OP27 is used for the whitening stage. The current noise of the OP27 with the 3k resistor makes the OP27 current noise dominate below 1 Hz. And what is going on with that filter capacitor choice? We never want to use these tiny things for sensitive filter applications. (cf. Sigg doc on resistor and capacitor choice, the noise reduction book by Ott, H&H, etc.). That's why we have the larger metal-poly, paper, mylar, etc. caps sitting around.

Probably we ought to install a little daughter board to avoid having to keep hacking this dead horse. Koji has some of Haixing'g maglev filter boards. Meanwhile Koji is going to make us a new beatbox circuit in Altium and we can start fresh later this summer.

Interesting link on new SMD cap technology.

Photos of circuit as found

  11363   Fri Jun 19 01:24:26 2015 rana, kojiUpdateGreen LockingBeatBox Assay: not looking good

We had decided a few days ago, to bypass the IF part of the BeatBox board and put some of the Haixing Maglev generic filter boards in there so that we could get more whitening and also have it be low noise.

Tonight we wondered if we can ditch the whole BeatBox and just use the quad aLIGO demod box (D0902745) that Rich gave us a few years ago. Seems like it can.

But, it has no whitening. Can we do the whitening part externally? Perhaps we can run the RF signals from the output of the beat RF Amps over to the LSC rack and then put the outputs into the LSC Whitening board and acquire the signals in the LSC ?

  12639   Wed Nov 23 17:48:16 2016 rana, kojiUpdateIOOHow bad is the McWFS?

Medium.


Previous elog entries on this:

  14730   Fri Jul 5 23:28:52 2019 rana, kruthiSummarySUSETMX unstuck by shaking the stack

We unstuck ETMX by shaking the stack. Most effective was to apply large periodic human sized force to the north STACIS mounts.

At first, we noticed that the face OSEMs showed nearly zero variation.

We tried unsticking it through the usual ways of putting large excitations through AWG into the pit/yaw/side DOFs. This produced only ~0.2 microns of motion as seen by the OSEMs.

After the stack shake, we used the IFO ALIGN sliders to get the oplev beam back on the QPD.

The ETMX sensor trends observed before and after the earthquake are attached.

** plots deleted; SOMEONE, tried to take raster images and turn them into PDF as if this would somehow satisfy our vetor graphics requirement. Boo. lpots must be actual vector graphics PDF

  8741   Tue Jun 25 00:28:52 2013 rana, manasaUpdateLSCArm Cavity scan with X-ALS after ALS servo upgrade

[Rana, Manasa]

ALS noise suppressed to 1KHz/rtHz. 1kHz RMS.

Plot 1: Scan of X arm by changing offset into Phase Tracker -> Xarm loop. Filter bank ramp time set to 120 s + using a 30 mHz low pass filter. IR beam is aligned to x arm, but not well.

Plot 2: ALS error signal with loop open (BLUE), closed with old filters (PURPLE), and with new, better boost (RED).

Plot 3: Bode plot of new boost (FM10), v. old, sad boost (1:50 pole:zero). RMS is now less than 1 kHz or ~50 pm. (in your face, Kiwamu!)

Changes made to the ALS servo:

1. C1ALS-TRX 

ALS-TRX has been calibrated to read from 0-1 instead of counts in 1000 s. Calibration factor = 1/4500 = 0.00022

2. C1ALS_BEATX_FINE

Old antiwhitening filter has been removed. Added LPF at 1000Hz to remove glitches at high frequencies.

3. C1ALS-BEATX_FINE_PHASE

No changes made.

4. C1ALS-XARM

FIlter FM5 modified. 1000:1 changed to 3000:1

5. Offset for ALS scan were given through C1ALS_OFFSETTER1 with LPF50m enabled.

 

The filter modules of the servo were:

 ALS1.png

ALS2.png

ALS3.png

 

 Next:

Check PZT out range for ALS. Figure out what the deal is with ALS SLOW servos.

Add DQ channels for ALS.

Automatic ALS up script (enable and disable phase tracker included).

 

 

  3173   Wed Jul 7 22:52:38 2010 rana, nancyConfigurationIOObad length control offset for the MC

Rana found out that a connection was bad in the shown place, due to which the MEDM screen was showing bad offset for length control.

Basically, the offset slider value would not go into the system because of that bad connection, and was locking the mode cleaner at the wrong location.

  9089   Fri Aug 30 01:01:28 2013 rana, nicSummaryComputer Scripts / ProgramsaLIGO Noise Budget code installed and running

Chris Wipf has been developing a new Noise Budget code that allows us to use our existing Simulink models to handle all of the noise transfer functions. This is mainly by being clever about avoiding the numerical pitfalls that we encounter when doing linearization of Simulink models (e.g. linmod or linmod2).

Screen_Shot_2013-08-30_at_1.00.02_AM.png

In this model, the optical plant is done with analytic TFs using the formulae from the Sigg Frequency Response doc. The big Orange block has just the DAC and some simple pendulum TFs. The upper section contains the simulated digital system: input matrix, digital filter TFs, and output matrix. The digital filters are just based on my memory of iLIGO. The CARM path is made to be fast to approximate the high gain of the Common Mode servo. Without this high gain the PRC optical plant is unstable due to the right half plane zeros. This simple model is used just so that we could see the NB work on a multi-loop system. For the next steps of getting it to work for the 40m, we will use the Optickle TFs instead of analytic functions and also load the digital filters directly from the FOTON files. For the LLO DRMI, we'll add some simplified version of the SUS Simulink models for triples and quads.

 

Yesterday, Nic and I took my old iLIGO IFOmodel.mdl Simulink model and added the new NB hooks that allowed us to use the new code. The screenshot below is from a run of this code:

1) Figure 1 shows the DARM Noise budget. So far we have included shot noise in DARM, CARM, MICH, & PRC. Radiation pressure noise on the ITMs and ETMs. Coating thermal noise on all mirrors.

2) Figure 2 shows the breakdown of how each of the shot noises at each port couple to the DARM readout. The RED trace is the AS port DC readout shot noise. The GREEN trace is the MICH shot noise feeding through the MICH loop and being mostly cancelled by the scalar MICHdamp feedforward path.

3) Figure 3 shows that we've set the coating thermal noise to be equal on all 4 TMs.

4) Figure 78754 is a set of Bode plots of the open loop gains of the 4 LSC loops (inferred from the closed loop TF). Also plotted is the residual MICH2DARM TF (with the MICHdamp cancellation path ON).

5) Figure 9911123 are the step responses of the LSC loops: step inserted at the error point and response measured just after the excitation point.

The editor window on the left shows how simple the NB code is to use once the Simulink model has had all the hooks added to it.

  1888   Tue Aug 11 23:55:04 2009 rana, richSummaryOMCQuantum Efficiency and Dark Current measurements of eLIGO Photodiodes

Rich Abbott, Rana

Summary: We found that the 3mm InGaAs photodiodes from eGTRAN which are being used for the DC Readout in eLIGO are bad. The QE is ~50%. We will have to replace them ASAP.

Valera and Nic Smith have pointed out out a factor of ~2 discrepancy between the estimated power transmission to the dark port in H1 and L1. So we decided to measure the QE of the accused diodes.

 The data of the QE and dark current are attached here.

We used a 1064 nm CrystaLaser (which does not have a very stable power output). We attenuated the light with an ND1.0 for all measurements.

The photocurrent is estimated by reading out the voltage across one leg of the differential drive of the DC PD preamp. The photocurrent goes across a 100 Ohm resistor and then through 2 gain of  1 stages to get to this testpoint, so the overall transimpedance gain is 100 Ohms for this measurement.

By far, the Ophir power meter is the biggest source of error. Its absolute calibration is only 5% and the variation across the sensor face is ~5%. There are some hot and not hot spots on the face which can make even more variation, but we tried to avoid these.

We also inserted the power meter very close to the time when we read the voltage, so that the photocurrent and power estimates are made within 10 seconds of each other. This should reduce the error from the laser's power fluctuations.

All diodes still had the glass case on. We measured the reflected power to be ~5-7% of the incident power. This reflected power is NOT accounted for in these estimates.

 

Punch line: The eGTRAN diodes that we currently use are definitely bad. The JDSU and EG&G 2mm diodes have a better QE. We should immediately purchase 3 mm versions and get them cut and measured to be ready for the Sep. 1 commissioning surge.

  2095   Thu Oct 15 02:38:10 2009 rana, robUpdateOMCDark Port Mode Scan using the OMC

Bottom trace is proportional to the OMC PZT voltage - top trace is the transmitted light through the OMC. Interferometer is locked (DARM- RF) with arm powers = 80 / 100. The peaks marked by the cursors are the +(- ?) 166 MHz sidebands.

  2101   Fri Oct 16 03:16:50 2009 rana, robSummaryLSCfunny timing setup on the LSC

While measuring the Piezo Jena noise tonight we noticed that the LSC timing is setup strangely.

Instead of using the Fiber Optic Sander Liu Timing board, we are just using a long 4-pin LEMO cable which comes from somewhere in the cable tray. This is apparent in the rack pictures (1X3) that Kiwamu has recently posted in the Electronics Wiki. I think all of our front ends are supposed to use the fiber card for this. I will ask Jay and Alex what the deal is here - seems like to me that this can be a cause for timing noise on the LSC.

We should be able to diagnose timing noise between the OMC and the LSC by putting in a signal in the OMC and looking at the signal on the LSC side. Should be a matlab script that we can run whenever we are suspicious of this. This is an excellent task for a new visiting grad student to help learn how to debug the digital control system.

  2118   Mon Oct 19 14:48:15 2009 rana, robSummaryElectronicspiezo jena measuring box
Attached is the schematic of the Piezo Jena driver measuring box made in a Pomona box:
                2.2 uF
In ----o-------- | | --------o-------- Out
       |                     |
       _                     |
       _  1uF                R  7.5 kOhms
       |                     |
       |                     |
      GND                   GND
The 1 uF cap is there to simulate the piezo and the 2.2 uF and 7.5k resistor ac couple the signal for the spectrum analyzer. They give a ~10 Hz corner frequency.
  2311   Mon Nov 23 00:46:09 2009 rana, robUpdatePSLISS RIN: Its too high by 10x

This plot shows the RIN as measured by the ISS. Its ~2 x 10^-7, whereas its supposed to be more like 3 x 10^-8.

The ISS has DC coupled RIN channels (with a _F suffix) and AC coupled RIN channels (with a _FW suffix). By using a swept sine, Rob determined that the AC coupled channels have an AC coupling pole at ~80 Hz. The attached plot uses this and then has the overall gain adjusted to match with the _F channels below 10 Hz.

The _F channels can be converted directly into RIN by just dividing the spectra by the mean value of the time series. The dark offset of these channels is small and so this only introduces a ~5-10% calibration error.

Question #1: Why is the RIN so bad? According to the MEDM screen, the photocurrent on the MON/SENS PDs is 1.9/1.3 mA. That's sort of low, but should still allow us to get 5x10^-8 in RIN.

Question #2: Does it make an effect on the current DC Readout work? IF so, should we try to fix up the ISS in a temporary way? Since the in-loop and out-of-loop detectors are completely coherent, all of the noise is likely just unsuppressed noise from the laser. We are unable to increase the gain because of the high frequency noise from the NPRO.

 

Let's remember to replace this ISS with a new one that can drive an AOM. Need a volunteer to get us a new ISS.

 

  2125   Tue Oct 20 11:38:10 2009 rana, rolfUpdateAdaptive Filteringextra delay and noise in PEM -> ASS/OAF system

An email from Rolf about the delay in the 110Bs:

"...we do take the ~2msec pipeline delay into account when we send the data to DAQ. If I remember correctly, the delay is about 39 samples. On startup, the first 39 samples are 'thrown away', such that, from then on, data lines up with the correct time (just read 2msec later then Penteks)."

  3052   Sun Jun 6 08:08:05 2010 rana, sanjitSummaryElectronicsCapacitor Bridge Test

To get a feel for the Capacitive Bridge problems, we setup a simple bridge using fixed (1 nF) caps on a breadboard. We used an SR830 Lock-In amplifier to drive it and readout the noise.

CapacitanceBridge.png

We measured the cap values with an LCR meter. They were all within a few % of 0.99 nF.

With a 0.5 V drive to the top of the bridge, the A-B voltage was ~2 mV as expected from the matching of the capacitors.

(** Note about the gain in the SR830: In order to find the magnitude of the input referred signal, one has to divide by G. G = (10 V)/ Sensitivity. 'Sensitivity' is the setting on the front panel.)

  1. Directly measuring from Vs to ground gives 0.5 V, as expected. This is done to verify the calibration later on.
  2. Shorting the A and B wires to ground gives ~0 V and lets us measure the noise. On the spectrum analyzer it was ~400 nV/rHz at 100 Hz and rising slowly to 4 uV/rHz at 100 mHz. In this state, the sensitivity was 10 mV, so the overall gain was 1000. That gives an input referred level of ~0.4 nV/rHz at the input.
  3. Hooking up now to A-B: the signal is ~10x larger than the 'dark' noise everywhere. 2 uV/rHz @ 100 Hz, 10 uV/rHz @ 10 Hz, 50 uV/rHz @ 1 Hz. The spectrum is very non-stationary; changing by factors of several up and down between averages. Probably a problem with the cheapo contacts in the breadboard + wind. The gain in this state was still 1000. So at 1 Hz, its 50 nV/rHz referred to the input.

To convert into units of capacitance fluctuation, we multiply by the capacitance of the capacitors (1 nF) and divide out by the peak-peak voltage (1 V). So the bridge sensitivity is 50e-9 * 1e-9 = 5 x 10^-17 F/rHz.

If we assume that we will have a capacitive displacement transducer giving 1 nF capacitance change for a 0.1 mm displacement, this bridge would have a sensitivity of 5 x 10^-12 m/rHz @ 1 Hz. We would like to do ~50-100x better than this. The next steps should be:

  1. Solder it all together on a PCB to have less air current sensitivity and decent contacts.
  2. Use a low-noise FET input. Since the impedance of the bridge is ~5 kOhms at this frequency, we are probably current noise limited.
  3. Estimate the oscillator amplitude noise sensitivity.
  1601   Mon May 18 19:44:52 2009 rana, steveConfigurationVACCryo Pump turned off and valved off: 1 beer can only
I was seeing some excess noise in the ETMY oplev yaw and so we turned off the cryo and restarted c1vac2 to get the turbo pump channels back.

The RGA was also turned off to protect its innocence and we are now running on the single beer can Turbo (TP3). The pressure has risen
from 1e-7 to 2e-5 torr. We'll probably level off at 5e-5 overnight and that's fine for now.

Unfortunately, the VM1 valve, which is between the RGA and the main volume, keeps getting turned off by our interlock software
to protect the RGA. Probably because our Vac screen shows the RGA 'Normal' even though the power is off and the record is invalid (white;
although the MEDM screen doesn't show it white).

I also moved Steve's secret Vacuum control screen from the target/ directory to the correct medm directory (with all the other Vacuum
screens) and added it to the SVN.
  2598   Fri Feb 12 14:19:28 2010 rana, steveHowToloreInternational Fax

Steve showed me how to send an international fax today:

  1. Load paper.
  2. Dial:   011 - (country code) - number
  3. Press START (either the black or color option)
  4. wait for the screaming fax noise
  5. Done

 

  3284   Sat Jul 24 13:13:41 2010 rana, steve, albertoUpdateGeneralInitial Crane Inspection reveals flaws: wiring and oil

The guy from KroneCrane (sp?) came today and started the crane inspection on the X End Crane. There were issues with our crane so he's going to resume on Monday. We turned off the MOPA fur the duration of the inspection.

  1. None of our cranes have oil in the gearbox and it seems that they never did since they have never been maintained. Sloppy installation job. The crane oiling guy is going to come in on Monday.
  2. They tried to test the X-End crane with 2500 lbs. (its a 1 ton crane). This tripped the thermal overload on the crane as intended with this test. Unfortunately, the thermal overload switch disabled the 'goes down' circuit instead of the 'goes up' circuit as it should. We double checked the wiring diagram to confirm our hypothesis. Seems the X-End crane was wired up incorrectly in the first place 16 years ago. We'll have to get this fixed.

The plan is that they will bring enough weight to test it at slightly over the rating (1 Ton + 10 %) and we'll retry the certification after the oiling on Monday.

  3573   Wed Sep 15 01:27:52 2010 rana, steve, valeraUpdatePSLFSS cables connected

- connected the TTFSS cables (FSS fast goes directly to NPRO PZT for now)

- measured the reference cavity 21.5 MHz EOM drive to be 17.8 dBm

-  turned on the HV for the FSS phase correcting EOM (aka PC) drive

- connected and turned on the reference cavity temperature stabilization

- connected the RefCav TRANS PD

- fine tuned the RefCav REFL PD angle

  4281   Mon Feb 14 00:39:21 2011 rana, sureshUpdateElectronicsVCO Frequency Noise Measurement with the MFD

We hooked up the VCO Driver output to the MFD. We adjusted the levels with attenuators to match up to the Level 7 mixer that's being used.

The mixer the input to the SR560 is going in to the XARM_COARSE_OUT channel and the SR560 (AC coupled, Low Noise, G=1000, LP@1kHz) 600 Ohm output goes into XARM_FINE_OUT.

We calibrated these channels by putting in a 10 mVpp sine wave at 0.22 Hz into the Wideband Input of the VCO Driver box (which has been calibrated to have 1.75 MHz/V for f < 1.6 Hz). This should correspond to 17.5 kHz_pp.

To increase the sensitivity, we also added a 140 ft. BNC cable to the setup. We also added some extra short cable to make the overall phase shift be ~90 deg and zero out the mixer output.

I used the time series data in DTT to then calibrate the channels by changing the GAIN field in their filter modules. So now the DAQ channels are both calibrated as 1 count/Hz.

 

  3640   Fri Oct 1 21:34:14 2010 rana, taraUpdatePSLHigh Voltage Driver added to TTFSS -> NPRO

Quote:

We added the Thorlabs HV Driver in between the FSS and the NPRO today. The FSS is locking with it, but we haven't taken any loop gain measurements.

This box takes 0-10 V and puts out 0-150 V. I set up the FSS SLOW loop so that it now servos the output of FAST ot be at +5V instead of 0V. This is an OK

temporary solution. In the future, we should add an offset into the output of the FSS board so that the natural output is 0-10 V.

I am suspicious that the Thorlabs box has not got enough zip to give us a nice crossover and so we should make sure to measure its frequency response with a capacitive load.

 

 We measured the Thorlabs HV Driver's TF today. It is quite flat from 1k to 10k before going up to 25 dB at 100k,

and the response does not change with the DC offset input.

 

The driver is used for driving the NPRO's PZT which requires higher voltage than that of the previous setup.

We need to understand how the driver might effect the FSS loop TF, and we want to make sure that the driver

will have the same response with DC input offset.

 

Setup

 

We used SR785 to measure the TF. Source ch was split by a T, one connected to Driver's input, another one connected to the reference (ch A). See fig2.

The driver output was split by another T. One output was connected to NPRO,

another was connected to a 1nF capacitor in a Pomona box, as a high pass filer (for high voltage), then to the response (ch B)

 The source input is  DC offset by 2V which corresponds to 38 V DC offset on the driver's output.

The capacitance of the PZT on the NPRO is 2.36 nF, as measured by LC meter.

 

 The result shows that the driver's TF is flat from 1k to 10k, and goes up at higher frequency, see fig1.

 

The next step is trying to roll of the gain at high frequency for PZT. A capacitor connected to ground might be used to roll off the frequency of the driver's output.

We will inspect the TF at higher frequency (above 100 kHz) as well.

            

  3641   Mon Oct 4 06:47:46 2010 rana, taraUpdatePSLHigh Voltage Driver added to TTFSS -> NPRO

Inside the FSS box, the FAST path has a ~10 Hz pole made up from the 15k resistor and the 1 uF cap before the output connector.

This should be moved over to the output of the driver to make the driver happy - without yet measuring the high frequency response,

it looks like to me that its becoming unhappy with the purely capacitive load of the NPRO's PZT. This will require a little surgery inside

the FSS box, but its probably justified now that we know the Thorlabs box isn't completely horrible.

 

  3542   Wed Sep 8 00:01:07 2010 rana, valeraUpdatePSLPMC update

We ran the cables for the PMC: The RF cable for the 35.5 MHz drive was cheap and so we swapped the 29.5 MHz cable for it.

There now remain 1 RG-174 cable to drive the FSS PC (21.5 MHz) and 3 Heliax for the Kiwamu Tri-Mod EOM (11, 29.5, and 55 MHz).

We also changed the BLACK HV drive cable for the RED one (previously used for the MZ). All HV cables MUST be RED.

The BLACK cable is now used for the PMC_REFL DC.

The Heliax cables are routed onto the table - it remains a Alberto/Kiwamu job to strain relieve them and attach them to the TriMod box and EOM in the morning.

The PMC is locked and we did some partially bootless alignment and mode-matching. It locks easily on a TEM00 mode (with very poor visibility), but the

rest of the beam train can now be aligned while Valera does the PMC matching mambo.   

 

  4792   Mon Jun 6 23:56:16 2011 rana, valeraConfigurationSUSETMX/ETMY OSEM whitening

 We measured the OSEM PD whitening transfer function of the ETMX OSEM UL whitening stage (D000210) by comparing the input signal to the whitening amplifier (single pin LEMO monitor) to the output signal - both were piped into the DAQ. The transfer function was close to constant 0 dB/180 deg independent of the whitening switch selection (FM1 filter engaged/disengaged)  up to ~20 Hz where we run out of coherence. All other ETMX and ETMY spectra at the input of the digital whitening compensation don't change when the whitening is switched on/off so by induction we conclude that all the ETMX/ETMY OSEM PD hardware whitening filters are not on.

  12573   Wed Oct 19 18:32:25 2016 rana, yinziUpdatePSLRefCav thermal control: heater is dead

We wanted to re-activate the Heater for the reference cavity today to use it as a testbed for PID autotuning and the new heater driver circuit that Andrew is working on for the coating thermal noise experiment.

Unfortunately, it seems that the large power supply which is used for the heater is dead.sad Or maybe I don't remember how to use it?

The AC power cord was plugged in to a power strip which seems to work for IO chassis. We also tried swapping power strip ports.

We checked the front panel fuses. The power one was 3 Ohms and the 'bias' one was 55 Ohms. We also checked that the EPICS slider did, in fact, make voltage changes at the bias control input.

Non of the front panel lights come onfrown, but I also don't remember if that is normal.

Have those lights been dead a long time? We also reconnected the heater cable at the reference cavity side.

  1314   Mon Feb 16 22:58:51 2009 rana, yoichiConfigurationSUSHysteresis in SUS from Misalignments
WE wondered if there was some hysteresis in the SUS alignments. When we leave the optics misaligned for a
long time it seems to take awhile for the optic to settle down. Possibly, this is the slow deformation of
the wires or the clamps.

The attached PNG shows the plot of the bias sliders for a few days. You can see that we misalign some of the
optics much more than the others. This must be stopped.

Kakeru is going to use his nearly complete optical lever calibrations to quatify this by stepping the optics
around and measuring the effect in the optical lever. Of course, the misalignment steps will be too large to
catch on the OL, but he can calibrate the align-sliders into radians to handle this.
  1425   Wed Mar 25 01:37:35 2009 rana, yoichiSummaryIOONo Reference Cavity Required
We were wondering if we need to have a reference cavity. One possible reason to have one is to reduce the free running
frequency noise by some level so that the MC can handle it. According to my manifesto,
the free running noise of the laser is (10 kHz / f) Hz/rHz. The mode cleaner loop gain is sufficient to reduce this to
0.001 Hz/rHz everywhere below 1 kHz - radiation pressure noise and coating thermal noise limit the mode cleaner below
these levels.

So, since it seems like the reference cavity is superfluous (except for the 1 - 10 kHz band), we unlocked it and locked the
MC by feeding back directly to the laser.

In the old set up, the low frequency feedback is to MC2 and the high frequency to the VCO which actuates the FSS which
drives the NPRO PZT and the Pockel cell.

In this new way, we take the MC board's output to the VCO (the TNC monitor point) and send that to the TEST IN1 of the FSS
box. The FSS box then splits the drive to go to the PZT and the PC path. We also turned off the 40:4000 filter in the MC
board and inverted the sign of the MC FAST path.
Good settings for acquisition:
MC INPUT GAIN = 6 dB
40:4000        Disable
FAST polarity  MINUS
VCO Gain       -3 dB
MC LIMITER     Disable

FSS TEST1      TEST
FSS CG         -3 dB
FSS FG         13 dB

After our initial locking success, we realized that the new MC-FSS loop is conditionally stable: the old loop relied on
the 40 kHz refcav pole to make it stable. The new loop has a 4 kHz pole and so the phase lag in the MC-PZT path is too
much. We need to build a passive lead filter (40 kHz : 4 kHz) in a Pomona box to compensate.

There are several more issues:

- I think this will make the whole CM servo handoff easier: there is no more handoff.

- This will make the lock acquisition fringe velocity higher by a factor of the arm/mc length (40 m / 13 m) since
the frequency will be slewing around along with MC2 now. However, Jenne's FF system ought to take care of that.

- Having the laser frequency stabilized to the MC during lock acquisition will make all of the error signals quieter
immediately. This can only be good.

- If we can make this work here, it should translate to the sites directly since they have exactly the same electronics.
  1484   Wed Apr 15 02:20:46 2009 rana, yoichiUpdateDMFDMF now working copy

We found that DMF/ was not an SVN working copy, so I wiped out the SVN version, imported the on-disk copy, moved it to DMFold/ and then checked out the SVN version.

We can delete DMFold/ whenever we are happy with the SVN copy.

  1563   Fri May 8 04:46:01 2009 rana, yoichiSummaryoplevsBS/PRM/SRM table bad!
We went to center the oplevs because they were far off and found that (as usual) the numbers changed
a little after we carefully centered the oplevs and came back to the control room.

To see if the table was on something soft, we tried pushing the table: no significant effect with ~10 pounds of static force.

With ~10 pounds of vertical force, however, we saw a large change: ~0.25 Oplev units. This corresponds to
~20-30 microradians of apparent optic pitch.

In the time series below you can see the effects:

2.5 s: lid replaced on table after centering.

2.5 - 11 s: various force tests on table

11 s: pre-bias by aligning beams to +0.25 in pitch and then add lid.


So there's some kind of gooey behavior in the table. It takes ~1 s to
settle after we put the lid on. Putting the laptops on the table also
has a similar effect. Please do not put anything on this table lid.
  3438   Wed Aug 18 20:54:23 2010 rana, yoichiConfigurationEnvironmentChiller's chiller turned off

WE programmed the MOPA chiller's AC unit to turn off at 6PM each day and automatically turn on at 7 AM each morning. Its now very quiet in the control room at night.

Next, we'll leave it off during the day and see if it makes Steve go crazy or not.

  7169   Tue Aug 14 04:32:49 2012 rana, yoichiUpdateLockingPOX signal sometimes looks very funny

 The alignment was way off. We moved the PZT, the BS, and the x arm to get it to lock. Along the way we noticed that giving the ETM and POS offsets makes it tilt a lot. The DC coil balancing is no good at all.

After locking, we tuned up the X arm filters in the LSC and activated the filter module triggers.  I would attach a screenshot of the trigger screen, but sadly it has no snapshot button on it.

WE changed the integrator into a double integrator with a complex zero pair. We also replaced the 1:50 boost with a 2nd order complex pole:zero pair. And added a 18 Hz RG. These were all set by looking at the error point spectra and minimizing the RMS. Hopefully, this kind of work will all be obsolete once we get the optimal feedback code. For now, the arm is very stable - we're leaving it locked overnight since the filter triggering seems to work well.

The loop kept oscillating, so we turned the xarm gain down from the 0.3 that we found it at down to 0.045. We measured the loop gain using our old xarm loopgain DTT template (which is in the Templates directory, not in /users/IAmAnAmateur/secret/secret/bozo/). It shows that we are missing ~20 deg of phase at the peak of the phase bubble compared to the old days. We guess that its because of the downsample/upsample digital AA filters which we now have in addition to the 7kHz hardware AA/AI which we still have from the pre-upgrade times). We (Jamie) have to think about how to rationalize this: we cannot survive with double AA/AI.

Another big hindrance in the lock acquisition is that the whitening filters were on. Because the WG is set to 45 dB, the ADCs are getting saturated when the flashes are large. We should have the whitening filters switch after acquiring lock.

Also, why are all the camera views of the ITMs and ETMs different? Steve, please go back and make them all the same (angles, aperture, lenses, etc.). Without them being the same, we cannot compare them.

ETMXF_1028975007.bmp

ETMXT_1028975105.bmpAS_1028975166.bmp

 I have found the video capture scripts in Yuta's personal directory. This is illegal, of course. All useful scripts (even when in development) go into the shared scripts directory. As a punishment, I have added some nasty typos to a couple of his other scripts and then backdated the timestamps so that he cannot find it easily.

 Also, I fixed the "mcup" script. After the ringdown people inserted the pickoff for MC2 trans, no one adjusted the thresholds in the MC autolocker. I've fixed mcup to trigger at 7000 cts. This should be changed back if the pickoff is removed someday. MC WFS now coming on.

  10015   Mon Jun 9 22:26:44 2014 rana, zachUpdateCDSSLOW controls recovery

 All of the SLOW computers were in limbo since the fileserver/nameserver change, but me and Zach brought them back.

One of the troubles, was that we were unable to telnet into these computers once they failed to boot (due to not having a connection to their bootserver).

  1. Needed special DB9-RJ45 cable to connect from (old) laptop serial ports to the Motorola VME162 machines (e.g. c1psl, c1iool0, c1aux, etc.); thanks to Dave Barker for sending me the details on how to make these. Tara found 2 of these that Frank or PeterK had left there and saved us a huge hassle. Most new laptops don't have a serial port, but in principle there's a way to do this by using one of our USB-Serial adapters. We didn't try this, but just used an old laptop. The RJ45 connector must go into the top connector of the bottom 4; its labeled as 'console' on some of the VME computers. Thanks to K. Thorne for this very helpful hint and to Rolf for pointing me to KT.
  2. Installed 'minicom' on these machnes to allow communication via the serial port.
  3. Had to install RSH on chiara to allow the VME computers to connect to it. Also added the names of all the slow machines in /etc/hosts.equiv to allow for password-less login. Without this they were not able to load the vxWorks binary. It was tricky to get RSH to work, since its an insecure and deprecated service. 'rsh-server' doesn't work, but installing 'rsh-redone-server' did finally work for passwordless access. Must be that linux1 has RSH enabled, but of course, this was undocumented.
  4. Some of the SLOW machines didn't have their own target names or startup.cmd in their startup boot parameters (???). I fixed these.
  5. For C1VAC1, I have updated the boot parameters via bootChange, but I have not rebooted it. Waiting to do so when Koji and Steve are both around. We should make sure to not forget doing this on C1VAC2. Steve always tells us that it never works, but actually it does. It just crashes every so often.
  6. Leaving C1AUXEX and C1AUXEY for Q and Jacy to do, to see if this ELOG is good enough.
  7. The PSL crate still starts up with a SysFail light turned on red, but that doesn't seem to bother the c1psl operation. We (Steve) should go around and put a label on all the crates where SysFail is lit during 'normal' operation. Misleading warning lights are a bad thing.

We still don't have control completely of the MC Servo board, so we need the morning crew to start checking that out

An example session (using telnet, not the laptop/serial way) where we use bootChange to examine the correct c1aux config:

controls@pianosa|target> telnet c1aux
Trying 192.168.113.61...
Connected to c1aux.martian.
Escape character is '^]'.

c1aux > bootChange

'.' = clear field;  '-' = go to previous field;  ^D = quit

boot device          : ei
processor number     : 0
host name            : chiara
file name            : /cvs/cds/vw/mv162-262-16M/vxWorks
inet on ethernet (e) : 192.168.113.61:ffffff00
inet on backplane (b):
host inet (h)        : 192.168.113.104
gateway inet (g)     :
user (u)             : controls
ftp password (pw) (blank = use rsh):
flags (f)            : 0x0
target name (tn)     : c1aux
startup script (s)   : /cvs/cds/caltech/target/c1aux/startup.cmd
other (o)            :

value = 0 = 0x0
c1aux >

  554   Mon Jun 23 19:48:28 2008 rana,albertoSummaryIOOStochMon trends (80 days)
Here's a StochMon plot showing the RFAM after the MC. Remember that in these units, 2V means no RFAM
and 0 V means lots of RFAM. Alberto says "the calibration is in Tiramisu". So there you go.
  710   Mon Jul 21 19:55:16 2008 rana,jenneConfigurationIOONoise in MC_F
Jenne put the MC board on extender today - its still that way but everything is probably connected (check AO).

We measured the TFs of the DAQ section for MC_F because of how everything looked wrong in the plots Jenne
put in the log earlier. Everything we measured today seemed to jive with the schematic. We also looked up
the original traveler for this board which Betsy filled in years ago: it also is in spec for the DAQ filtering.

So then I looked at the power spectrum of the output signal to the VCO. It had lots of HFC (high frequency crap).
I adjusted the parameters of the FSS (common gain, fast gain, RF phase Astonished) and lowered the MC common gain. This
produced a global minimum in that 4D parameter space.

I think that basically, the FSS gain is too low even with the common gain slider maxed. Having the fast gain up
at 19 dB like I had left it was bad - even though it minimizes the PC control signal, it produces a lot of HFC
up around 100 kHz in MC_F. After John (finally) gets around to measuring the FSS loop we can figure out how to
better tune this. The MC gain then has to be tuned so as to best minimize the HFC given the new FSS gain; there's
basically no coupling from the MC gain to the FSS loop shape so its always best to tune the FSS first. Pleased

The RF phase of the FSS was a mystery - I have no idea why it should do anything and I have never heard of this
and I don't know why I tried it today. But...changing it by ~0.6-0.7 slider units reduced the HFC by another factor
of ~3. Somebody should put this slider into units of degrees.8-)

Here's a table of the changes. Please make these the new nominals:
you asked for:   diff 2008/07/21,13:00 2008/07/22,2:44:16 utc '.*FSS.*|.*MC.*'
LIGO controls: differences, 2008 07/21 13:00:00 utc vs. 2008 07/22 02:44:16 utc
__Epics_Channel_Name______   __Description__________   __value1____     __value2____
C1:IOO-MC_REFL_GAIN                                    22.000000        19.000000
C1:IOO-MC_REFL_OFFSET                                  0.818380         0.818100
C1:PSL-FSS_MGAIN                                       10.000000        30.000000
C1:PSL-FSS_PHCON                                       2.073170         1.413170

The attached plot shows the "SERVO" TNC output of the board; this is supposed to be the same as the voltage going to the
VCO box. So its V/Hz transfer function is flat above 40 Hz. Tomorrow Jenne will post more data and remove the extender
board.

Since I only used an SR785, I only saw noise up to 100 kHz. Its key to use an RF spectrum analyzer when checking out
the FSS and the MC systems.
  892   Wed Aug 27 13:55:43 2008 rana,jenneUpdatePSLPMC Servo Board
Board is back in. PMC is locked.

Nominal gain is now 15 dB with brick. We need to do more studies:

  • Find out why there is still 35 MHz signal at the error point. Order some low pass filters to cut off above 35 MHz.
  • Explore brick + no-brick loop shapes and error spectra.
  • Measure and set the OLG.

We've left the copper-wrapped lead brick installed to let it slowly conform to the glass better.
  895   Fri Aug 29 02:40:43 2008 rana,jenneUpdatePSLPMC Servo Board

Quote:
Board is back in. PMC is locked.


This entry has details about the low pass filter after the PMC mixer. This filter has a few purposes:

1] Remove the beat signal (at 2*f_mod) between the PD RF signal at f_mod and the LO signal at f_mod.
2] Remove the beat signal (at f_mod) between the PD RF signal at 2*f_mod (which comes from the
beating of the upper and lower RF sidebands) and the LO signal at f_mod.
3] Remove other RF signals from non-ideal behavior of the LO drive signal and distortion in the RF PD pre-amp.


So its important to have a very good rejection at 35 MHz and higher. I used the Hartmut LC network design which is
installed on H1, H2, & L1. Since there is a high gain in the audio amps right after the mixer we have to get rid of
the RF or else we'll get slew rate limited or otherwise rectified downconversion of the RF signal into our audio band.

Of course, what everyone immediately realizes from the above 3 points, is that this filter can't protect the PMC
noise performance from homodyne mixing (e.g. 2*f_mod in the LO and 2*f_mod in the RF PD). To get around that, we're
ordering some filters from Mini-Circuits to remove the 2f from those signals by ~30 dB. As long as we install
the same filters on the RF and LO legs, there should be no significant phase shift in the demodulated signal.

The attached 2 page PDF shows the calculated before and after TFs of this filter. The 2 attached .m files
calculate the TF's and have ascii art which shows how the filter works.

Here's a comparison of the attenuation (in dB) of 2 candidate Mini-circuits filters:

f(MHz)SLP-30SLP-50
31 0.5 0.4
35 1.3 0.4
38 6.1 0.4
40 10.8 0.42
61 46.3 14.8
71 60 29
91 76.9 48
10780 60

We don't have tabulated data at the same frequencies for both filters so I just made up some of the points by eye-balling the
plots from the catalog - but you get the idea: we can get away with using the SLP-30 at 35 MHz since it only attenuates the
signals by ~1.5 dB. So if someone can find 4 of these then Steve doesn't have to order any from Mini-Circuits.
  1208   Tue Dec 30 18:51:18 2008 rana,yoichiConfigurationElectronicsIlluminator Power Supply reset
We noticed that none of the illuminators were working.

The switches were off on all the ports. After turning them on it still didn't work.

The +24 V Sorensen power supply which powers all of the illuminators had its OVP light on.
We turned it off, ramped the voltage to zero, turned it back on, and then went back to +24 V.

We then checked the operation of the illuminators; ETMY is still MIA.

Each of the illuminators sucks ~0.6-0.7 A when the (unlabeled) rheostat knob panel is set
to the "25" setting.

It seems pretty unwise, in the EMI sense, to be sending Amps of unshielded, high current,
switching supply outputs for 40m down the arms. This creates a huge antenna for radiating
the switching noise. I hereby assign minus 5 points to whoever designed this system.

Illuminator Upgrade:
- Use LEDs of a wavelength that the OSEMs don't see. LEDs are also cool so that the
  Suspension won't drift in alignment.

- Use 2 power supplies so that the power is balanced.

- Make is +/-12 V twisted AWG 14 wire so that the EMI is contained. Should also
  be shielded cable.
  13278   Thu Aug 31 00:19:35 2017 rana[^r]UpdatePSLIMC/FSS FAST gain

nominal changed from 22 to 23 dB to minimize PC drive RMS

previous loop gain measurement is sort of bogus (made on SR785); need some 4395 loop measurements and checking of crossover and error point spectrum

  12937   Mon Apr 10 16:00:26 2017 rebeccaUpdateCamerasPylon installation warning

When trying to install an older version of Pylon packaged for Debian that Joe B. had sent, it gave the warning that the package was of bad quality along with the details below.

Is it safe to ignore the warning? Or should I hold off on the installation?

Lintian check results for /home/controls/Downloads/pylon-2.3.3-1.deb:
Use of uninitialized value $ENV{"HOME"} in concatenation (.) or string at /usr/bin/lintian line 108.
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/.IpConfigurator
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/.PylonViewerApp
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/.SpeedOMeter
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtBase.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtBase.so.1
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtBase.so.1.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtBase.so.1.0.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtStyle.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtStyle.so.1
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtStyle.so.1.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtStyle.so.1.0.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtWidgets.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtWidgets.so.1
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtWidgets.so.1.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonQtWidgets.so.1.0.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonViewerSdk.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonViewerSdk.so.1
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonViewerSdk.so.1.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libPylonViewerSdk.so.1.0.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libQtNetwork.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libQtNetwork.so.4
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libQtNetwork.so.4.3
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libQtNetwork.so.4.3.2
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libjpeg.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libjpeg.so.62
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libjpeg.so.62.0.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libtiff.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libtiff.so.3
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/libtiff.so.3.7.3
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/bin/plugins/imageformats/libqtiff.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libXMLLoader_gcc40_v2_1.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxalan-c.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxalan-c.so.110
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxalan-c.so.110.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxalanMsg.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxalanMsg.so.110
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxalanMsg.so.110.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxerces-c.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxerces-c.so.27
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxerces-c.so.27.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxerces-depdom.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxerces-depdom.so.27
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApi/Generic/libxerces-depdom.so.27.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/GenApiPreProcessor
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/libGCBase_gcc40_v2_1.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/libGenApi_gcc40_v2_1.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/libLog_gcc40_v2_1.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/libMathParser_gcc40_v2_1.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/genicam/bin/Linux64_x64/liblog4cpp_gcc40_v2_1.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libgxapi-2.3.3.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libgxapi.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libpylonbase-2.3.3.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libpylonbase.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libpylongigesupp-2.3.3.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libpylongigesupp.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libpylonutility-2.3.3.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libpylonutility.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxalan-c.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxalan-c.so.110
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxalan-c.so.110.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxalanMsg.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxalanMsg.so.110
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxalanMsg.so.110.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxerces-c.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxerces-c.so.27
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxerces-c.so.27.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxerces-depdom.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxerces-depdom.so.27
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/libxerces-depdom.so.27.0
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/pylon/tl/pyloncamemu-2.3.3.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/pylon/tl/pyloncamemu.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/pylon/tl/pylongige-2.3.3.so
E: pylon: arch-independent-package-contains-binary-or-object opt/pylon/lib64/pylon/tl/pylongige.so

  12956   Fri Apr 28 18:01:56 2017 rebeccaUpdateCamerasAttempting to Load Camera Client

Using /ligo/apps/linux-x86-64/camera/bin/camera_client.py -c  /opt/rtcds/caltech/c1/scripts/GigE/SnapPy/L1-CAM-MC1.ini, the Python script was able to run without error but didn't show any video feed from the camera in GStreamer. Problem might be in the configuration of the camera in the .ini file.
 

  12989   Fri May 12 18:45:04 2017 rebeccaUpdateCamerasMC2 Pics with Olympus

Raw and JPG formats of the pictures are saved on the Mac in the control room and at this link:

https://drive.google.com/open?id=0B9WDJpPRYby1c2xXRHhfOExXNFU 

The camera was mounted using the JOBE arm wrapped around a small heavy piece of metal. The lights were kept on, the camera was zoomed in as closely as possible (so the light would take up most of the frame), F number of 8 was used, and shutter speeds from 1/2 to 1/100 seconds were used. 

The pictures still look a bit blurry, probably because looking back at the details of the image, the focal length was 86.34m (as short of a focal length would be ideal, and Olympus is capable of going down to 1m).

Next steps include looking at the saturation in the pictures and setting up a more stable mount. 

  7854   Tue Dec 18 16:44:00 2012 rijuUpdate Photodiode transimpedance

Today I measured the dark current of the PDA10CF. The output of the PD was connected to the A channel of the network analyzer, when there was no light falling on it. The response is collected using GPIB.

I will upload the result shortly.

  14880   Mon Sep 16 11:55:58 2019 rikaUpdateIOOWFS loop measurements

[rika, aaron]

We aligned optics of WFS as it was. Now auto-locker is working to lock MC.

But it still doesn't lock. We notice that the c1lsc machine doesn't work. So we run rebootCILSC.sh.

 

Now we reset the hardware!

 

17:11

After reset, auto locking didn't work well. Gautum and Aaron reboot slow c1ioo. Then it works, and Gautam returned the MC to a good alignment.

We found the beam is not in the center of the QPD, we (turned off the MC autolocker and MC loop, then) realigned to make beam to get in to the QPD center. Afterwards we start auto locking.

With the WFS on, the maximum MC transmission we observe is 14,700 counts; after the transmission level stabilizes (MC_TRANS pit and yaw brought to 0), the MC transmission is only 14,200 counts. Perhaps the MC_TRANS QPD offsets need adjustment. We relieve the WFS servo of its DC offsets. This is the configuration we'll use for WFS loop measurements this week.

  14888   Tue Sep 17 10:47:44 2019 rikaUpdateIOOWFS loop measurements

[aaron, rika]

Once stop the auto-locker and realigned to make beam to get into QPD again.

After we lock MC, we took TFs from suspension MC1/2/3 PIT/YAW to WFS1/2 PIT/YAW. 

----- 

Diagnotics test tools

range: 7 Hz to 50 Hz

 avarage=61

Column 0: WFS2_PIT   1: WFS2_YAW   2:WFS1_PIT   3: WFS1_YAW   4: TRANCE_PIT   5:TRANCE_YAW 

-----

I'm wondering weather the MC1data I saved is correct, becouse I found the channel was changed when I exported MC2 data. So I took MC1 data again.

 

We got all data for TFs already.  Each data is devided to real part and imaginary part. Then we are arranging the datas to obtain TFs. 

TF of MC2 is attachiment 1. So tomorrow, I make other TF.

Quote:

[rika, aaron]

We aligned optics of WFS as it was. Now auto-locker is working to lock MC.

But it still doesn't lock. We notice that the c1lsc machine doesn't work. So we run rebootCILSC.sh.

 

Now we reset the hardware!

 

17:11

After reset, auto locking didn't work well. Gautum and Aaron reboot slow c1ioo. Then it works, and Gautam returned the MC to a good alignment.

We found the beam is not in the center of the QPD, we (turned off the MC autolocker and MC loop, then) realigned to make beam to get in to the QPD center. Afterwards we start auto locking.

With the WFS on, the maximum MC transmission we observe is 14,700 counts; after the transmission level stabilizes (MC_TRANS pit and yaw brought to 0), the MC transmission is only 14,200 counts. Perhaps the MC_TRANS QPD offsets need adjustment. We relieve the WFS servo of its DC offsets. This is the configuration we'll use for WFS loop measurements this week.

 

  14896   Wed Sep 18 14:45:52 2019 rikaUpdateIOOWFS loop measurements

[aaron, rika]

Gettng TFs

In the data we got yesterday, we can see some filter's effect. 

But it is not good coherence above 10Hz, so we mesured again. And this time we save the data as xml file.

And also we chaned the frequency regions broader to watch corner frequency of suspension.

-----

 Diagnotics test tools

 range: 0.1 Hz to 100 Hz

 points: 120 

 Amplitude: 1000

----

but at low frequency, the mode maching cavity was unloked cause of too much shaking.

So, we saw single frequency TF, and searched the good amplitude.

 

First, I tried to get TF @0.1~1 Hz .

-----

0.1 to 1 Hz

points: 61 (I think it's too much becous it takes about an hour)

amplitude: 5

-----

The TFs and coherence of MC1/PIT to each QPD is below. [above window: coherence, below: TF]

During the mesurement, something happened @0.2-0.3Hz so I stopped it.

We found the coherence of WFS1P and WFS2Y is not good, but others are good.

we guess that it could come from alignment which made Q chainging to small.

 

Finaly, I also got the  .xml data of MC1P 1 Hz to 10 Hz. In this time,

-----

1 to 10 Hz

points: 41 

amplitude: 90

-----

 

Making matrics

Now we took single frequency 6 TFs (MC1/2/3 PIT/YAW) @7Hz (Because this frequency has good coherence in all channel).

Aaron wrote the script using dtt to making matrics. 

 

 

Quote:

[aaron, rika]

Once stop the auto-locker and realigned to make beam to get into QPD again.

After we lock MC, we took TFs from suspension MC1/2/3 PIT/YAW to WFS1/2 PIT/YAW. 

----- 

Diagnotics test tools

range: 7 Hz to 50 Hz

 avarage=61

Column 0: WFS2_PIT   1: WFS2_YAW   2:WFS1_PIT   3: WFS1_YAW   4: TRANCE_PIT   5:TRANCE_YAW 

-----

I'm wondering weather the MC1data I saved is correct, becouse I found the channel was changed when I exported MC2 data. So I took MC1 data again.

 

We got all data for TFs already.  Each data is devided to real part and imaginary part. Then we are arranging the datas to obtain TFs. 

TF of MC2 is attachiment 1. So tomorrow, I make other TF.

Quote:

[rika, aaron]

We aligned optics of WFS as it was. Now auto-locker is working to lock MC.

But it still doesn't lock. We notice that the c1lsc machine doesn't work. So we run rebootCILSC.sh.

 

Now we reset the hardware!

 

17:11

After reset, auto locking didn't work well. Gautum and Aaron reboot slow c1ioo. Then it works, and Gautam returned the MC to a good alignment.

We found the beam is not in the center of the QPD, we (turned off the MC autolocker and MC loop, then) realigned to make beam to get in to the QPD center. Afterwards we start auto locking.

With the WFS on, the maximum MC transmission we observe is 14,700 counts; after the transmission level stabilizes (MC_TRANS pit and yaw brought to 0), the MC transmission is only 14,200 counts. Perhaps the MC_TRANS QPD offsets need adjustment. We relieve the WFS servo of its DC offsets. This is the configuration we'll use for WFS loop measurements this week.

 

 

  15   Thu Oct 25 22:02:58 2007 robRoutinePSLHEPAs maxed
In light of the SoCal fires, I turned the PSL HEPAs up to 100%.
  40   Wed Oct 31 15:22:59 2007 robConfigurationIOOMode Cleaner transfer function
I measured the transfer function of the input mode cleaner using a PDA255 and the ISS. First I put the PD in front of the ISS out-of-loop monitor diode and used an SR785 to measure the swept sine transfer function from the Analog IN port of the ISS to the intensity at the PD. Then I moved the PD to detect the light leaking out from behind MC2, using ND filters to get the same DC voltage, and measured the same transfer function. Dividing these two transfer functions should take out the response of the ISS and the PD, and leave just the transfer function of the MC. A plot of the data, along with a single-pole fit, are attached.

The fit is pretty good for a single pole at 3.79 kHz. There's a little wiggle around 9kHz due to ISS weirdness (as Tobin has not been giving it the attention it requires), but this shouldn't affect this result too much. Using the known MC length of 27.0955m, and assuming that MC1 and MC3 have a power transmissivity of 2000ppm and MC2 is perfectly reflecting, the total round trip loss should be about 300ppm. The fitted finesse is 1460.
  67   Tue Nov 6 10:42:01 2007 robConfigurationIOOmode cleaner locked
Increased the power exiting the PSL by turning the half-wave plate after the MOPA, opened the PSL shutter, and aligned the mode cleaner to the input beam. It wasn't that hard to find the beam with the aperture open all the way on the MC2 camera. The transmitted power is now 2.9 arbitrary units, while the input power is 1.2 arbitrary units. Not sure yet if that's an increase or decrease in efficiency, since no one posted numbers before the vent. Also turned on the input-steering PZTs and saw a REFL beam on the camera.
  69   Tue Nov 6 15:36:03 2007 robUpdateLSCXARM locked
Easily, after resetting the PSL Uniblitz shutters. There's no entry from David or Andrey about the recovery from last week's power outage, in which they could have indicated where the procedure was lacking/obscure. Tsk, tsk.
ELOG V3.1.3-