40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 308 of 341  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  13617   Wed Feb 7 16:09:06 2018 SteveUpdateSUSETMX -15V dc corrected

The ETMX  Sorrenson power supply -15V was running at -13.9V

  13731   Thu Apr 5 13:46:42 2018 gautamUpdateSUSbig earthquake

Seems like there was a 5.3 magnitude EQ ~10km from us (though I didn't feel it). All watchdogs were tripped so our mirrors definitely felt it. ITMX is stuck (but all the other optics are damping fine). I tried the usual jiggling of DC bias voltage but ITMX still seems stuck. Probably a good sign that the magnet hasn't come off, but not ideal that I can't shake it free..

edit: after a bit more vigorous shaking, ITMX was freed. I had to move the bias slider by +/-10,000 cts, whereas initially I was trying +/-2000 cts. There is a tendency for the optic to get stuck again once it has been freed (while the optic's free swinging motion damps out), so I had to keep an eye out and as soon as the optic was freed, I re-engaged the damping servos to damp out the optic motion quickly.

Attachment 1: EQ_April52018.png
EQ_April52018.png
  13747   Wed Apr 11 10:47:26 2018 SteveUpdateSUSsatellite amps labeled

Satellite amplifiers labeled with date. Old labels left on.

Attachment 1: DSC00912.JPG
DSC00912.JPG
  13815   Fri May 4 18:59:39 2018 gautamUpdateSUSStack measurement ongoing

[SV,KA,RXA,GV]

The stack weight measurement is going on at EX. ETMX watchdog is shutdown. Area is off limits over the weekend until the test is finished.


Not related to this work, but the dog clamps used on the EX table have to be re-positioned such that the clamping force is better distributed. The 2" beam splitter mount used to pick off a portion of the EX NPRO beam to the fiber has to be rotated. Also, there was a M6.9 EQ in Hawaii while we were doing this work it seems..

  13821   Mon May 7 15:27:28 2018 gautamUpdateSUSStack measurement expectation

[steve,gautam]

We tried to estimate what the load cell measurement should yield. Here is the weight breakdown (fudge factor for Al table is to try and account for tapped holes):

Element

Diameter [m]

Height [m]

Density [kg/m^3]

Mass [kg]

Number or fudge factor

Dim in inches

Table 1.22 0.08 2700.00 240.07 0.85 Dia=48", thickness=3"
Stack leg 0.36 0.13 8000.00 100.85 9 Dia=14", thickness=5"
Base plate 1.37 0.05 8000.00 600.18 1 Dia=60",thickness=2"
Base rods 0.10 1.83 8000.00 118.55 2 Dia=4", length=6ft
Stuff on table       100.00    
Blue beams       100.00    
             
Total [kg]       2149.01    
Total [lbs]       4835.28  

 

  • Steve pointed out that there is some material removed from the stack legs for stability (hollows into which the viton springs fit). These countersinks have dimensions of diameter=2", height=1.75". So if we assume each leg has 10% less mass, the total weight becomes ~4600lbs.
  • I think we will need to use one more load cell (i.e. total 4) for this measurement (we have more load cells, just need to setup one more controller).
  • Steve is looking into acquiring some low profile jacks to deal with the fact that we only have limited travel range on the overall stack height because of the bellows.
  • A useful document, from which we pulled some numbers (which also look reasonable using estimated dimensions and density calculations): P952005
Attachment 1: 40m_TMstack.JPG
40m_TMstack.JPG
  13860   Thu May 17 18:05:01 2018 gautamUpdateSUSSR785 near 1X5

I'm working near 1X5 and there is an SR785 adjacent to the electronics rack with some cabling running along the floor. I plan to continue in the evening so please leave the setup as is.

During the course of this work, I noticed the +15V Sorensen in 1X6 has 6.8 A of current draw, while Steve's February2018 label says the current draw is 8.6A. Is this just a typo?

Steve: It was most likely my mistake. Tag is corrected to 6.8A


I'm still in the process of electronics characterization, so the SR785 is still hooked up. MC3 coil driver signal is broken out to measure the output voltage going to the coil (via Gainx100 SR560 Preamp), but MC is locked.

Attachment 1: B55CE985-B703-4282-B716-3144957C7372.jpeg
B55CE985-B703-4282-B716-3144957C7372.jpeg
  13861   Fri May 18 07:41:01 2018 steveUpdateSUSclipping ITMX oplev

The ITMX oplev still clipping

Quote:

The ITMX oplev beam is clipping. It will be corected with locked arm

 

 

  13862   Fri May 18 09:13:41 2018 PoojaUpdateSUSColored GigE image

To obtain a colored version with good contrast of the grayscale image of scattering of light by dust particles on the surface of test mass, got using GigE camera. The original and colored images are attached here.

 

Attachment 1: Image__2017-11-14__08-25-13_100k100g1V_colored.png
Image__2017-11-14__08-25-13_100k100g1V_colored.png
Attachment 2: Image__2017-11-14__08-25-13_100k100g1V.tiff
  13901   Thu May 31 10:19:42 2018 gautamUpdateSUSMC3 glitchy

Seems like as a result of my recent poking around at 1X6, MC3 is more glitchy than usual (I've noticed that the IMC lock duty cycle seems degraded since Tuesday). I'll try the usual cable squishing voodo.

gautam 8.15pm: Glitches persisted despite my usual cable squishing. I've left PSL shutter closed and MC watchdog shutdown to see if the glitches persist. I'll restore the MC a little later in the eve.

Attachment 1: MC3_glitchy.png
MC3_glitchy.png
  13988   Tue Jun 19 23:27:27 2018 gautamUpdateSUSETMX coil driver work in AM tomorrow

Per discussion today eve, barring objections, I will do the following tomorrow morning:

  1. Remove ETMX coil driver board from 1X9
    • Change series resistances on the fast path to 2x4k in parallel. One will be snipped off once we are happy we can still lock.
    • Remove AD797s, potentiometers.
    • Thick film-->thin film for important components.
  2. Remove ETMX de-whitening board from 1X9
    • Remove x3 analog gain.
    • Thick film-->thin film for important components.
  13992   Thu Jun 21 00:14:01 2018 gautamUpdateSUSETMX coil driver out

I finished the re-soldering work today, and have measured the coil driver noise pre-Mods and post-Mods. Analysis tomorrow. I am holding off on re-installing the board tonight as it is likely we will have to tune all the loops to make them work with the reduced range. So ETMX will remain de-commissioned until tomorrow.

  13993   Thu Jun 21 03:13:37 2018 gautamUpdateSUSETMX coil driver noise

I decided to take a quick look at the data. Changes made to the ETMX coil driver board:

  1. Fast path series resistances: 400 ohm ---> 2.25 kOhm (= 2x 4.5 kohm in parallel). Measured (with DMM) resistance in all 5 paths varied by less than 3 ohms (~0.2%).
  2. All thick film resistors in signal (fast and bias) paths changed to thin film.
  3. AD797 ---> Op27 for monitor output.
  4. Above-mentioned mon output (30Hz HPF-ed) routed to FP LEMO mon via 100ohm for diagnostic purposes.
  5. 4x Trim-pots in analog path removed. 

I also took the chance to check the integrity of the LM6321 ICs. In the past, a large DC offset on the output pin of these has been indicative of a faulty IC. But I checked all the ICs with a DMM, and saw no anomalies.

Measurement condition was that (i) the Fast input was terminated to ground via 50ohm, (ii) the Bias input was shorted to ground. SR785 was used with G=100 Busby preamp (in which Steve installed new batteries today, for someone had left it on for who knows how long) for making the measurement. The voltage measurement was made at the D-Sub connector on the front panel which would be connected to the Sat. Box, with the coil driver not connected to anything downstream.

Summary of results:

[Attachment #1] - Noise measurement out to 800 Hz. The noise only seems to agree with the LISO model above 300 Hz. Not sure if the low-frequency excess is real or a measurement artefact. Tomorrow, I plan to make an LPF pomona box to filter out the HF pickup and see if the low-frequency characteristics change at all. Need to think about what this corner freq. needs to be. In any case, such a device is probably required to do measurements inside the VEA.

[Attachment #2] - Noise measurement for full SR785 span. The 19.5 kHz harmonics are visible. I have a theory about the origin of these, need to do a couple of more tests to confirm and will make a separate log.

[Attachment #3] - zip of LISO file used for modeling coil driver. I don't have the ASCII art in this, so need to double check to make sure I haven't connected some wrong nodes, but I think it's correct.

Measurements seem to be consistent with LISO model predictions.

*Note: Curves labelled "LISO model ..." are really quad sum of liso pred + busby box noise.

My main finding tonight is: With the increased series resistance (400 ohm ---> 2.25 kohm), LISO modeling tells me that even though the series resistance (Johnson noise) used to dominate the voltage noise at the output to the OSEM, the voltage noise of the LT1125 in the bias path now dominates. Since we are planning to re-design the entire bias path anyways, I am not too worried about this for the moment.

I will upload more details + photos + data + schematic + LISO model breakdown tomorrow to a DCC page


gautam noon 21 June 2018: I was looking at the wrong LISO breakdown curves. So the input stage Op27 voltage noise used to dominate. Now the Bias path LT1125 voltage noise dominates. None of the conclusions are affected... I've uploaded the corrected plots and LISO file here now. 

Attachment 1: ETMXsticthced.pdf
ETMXsticthced.pdf
Attachment 2: ETMXFullSpan.pdf
ETMXFullSpan.pdf
Attachment 3: ETMXCoilDriver.fil.zip
  13999   Thu Jun 21 18:25:57 2018 gautamUpdateSUSETMX coil driver re-installed

Initial tests look promising. Local damping works and I even locked the X arm using POX, although I did it in a fake way by simply inserting a x5.625 (=2.25 kohm / 400 ohm) gain in the coil driver filter banks. I will now tune the individual loop gains to account for the reduced actuation range.


Now I have changed the loop gains for local damping loops, Oplev loops, and POX locking loop to account for the reduced actuation range. The dither alignment servo (X arm ASS) has not been re-commissioned yet...

  14004   Fri Jun 22 08:50:33 2018 SteveUpdateSUSITMY_UL sensor

We may lost the UL magnet or LED

Attachment 1: ITMY_UL.png
ITMY_UL.png
  14009   Fri Jun 22 18:30:21 2018 gautamUpdateSUSITMY_UL sensor

I think if the magnet fell off, we would see high DC signal, and not 0 as we do now. I suspect satellite box or PD readout board/cabling. I am looking into this, tester box is connected to ITMY sat. box for now. I will restore the suspension later in the evening.

Suspension has now been restored. With combination of multimeter, octopus cable and tester box, the problem is consistent with being in the readout board in 1X5/1X6 or the cable routing the signals there from the sat. box.

  • Tester box hooked up to sat box ---> UL coil still shows 0 in CDS.
  • Tester box hooked up to sat box ---> Mon D-sub on sat box shows expected voltages on DMM. So tester box LEDs are being powered and seem to work.
  • Sat box re-connected to test mass ---> Mon D-sub on sat box shows expected voltages on DMM. So OSEM LEDs are being powered and seem to work.
  • Sat box remains connected to TM ---> Front panel LEMO monitor points on readout board shows 0 for UL channel, other channels are okay.
Quote:

We may lost the UL magnet or LED

 

  14012   Sun Jun 24 20:02:07 2018 gautamUpdateSUSSome notes about coil driver noise

Summary:

For a series resistance of 4.5 kohm, we are suffering from the noise-gain amplified voltage noise of the Op27 (2*3.2nV/rtHz), and the Johnson noise of the two 1 kohm input and feedback resistances. As a result, the current noise is ~2.7 pA/rtHz, instead of the 1.9 pA/rtHz we expect from just the Johnson noise of the series resistance. For the present EX coil driver configuration of 2.25 kohm, the Op27 voltage noise is actually the dominant noise source. Since we are modeling small amounts (<1dB) of measurable squeezing, such factors are important I think. 

Details:

[Attachment #1] --- Sketch of the fast signal path in the coil driver board, with resistors labelled as in the following LISO model plots. Note that as long as the resistance of the coil itself << the series resistance of the coil driver fast and slow paths, we can just add their individual current noise contributions, hence why I have chosen to model only this section of the overall network.

[Attachment #2] --- Noise breakdown per LISO model with top 5 noises for choice of Rseries = 2.25 kohm. The Johnson noise contributions of Rin and Rf exactly overlap, making the color of the resulting line a bit confusing, due to the unfortunate order of the matplotlib default color cycler. I don't want to make a custom plot, so I am leaving it like this.

[Attachment #3] --- Noise breakdown per LISO model with top 5 noises for choice of Rseries = 4.5 kohm. Same comments about color of trace representing Johnson noise of Rin and Rf. 

Possible mitigation strategies:

  1. Use an OpAmp with lower voltage noise. I will look up some candidates. LT1028/LT1128? LISO library warns of a 400 kHz noise peak though...
  2. Use lower Rin and Rf. The values of these are set by the current driving capability of the immediately preceeding stage, which is the output OpAmp of the De-Whitening board, which I believe is a TLE2027. These can source/sink 50 mA according to the datasheet . So for +/-10V, we could go to 400 ohm Ri and Rf, source/sink a maximum of 25mA, and reduce the Johnson noise contribution by 40%.

Other comments/remarks:

I've chosen to ignore the noise contribution of the high current buffer IC that is inside the feedback loop. Actually, it may be interesting to compare the noise measurements (on the electronics bench) of the circuit as drawn in Attachment #1, without and with the high current buffer, to see if there is any difference.

This study also informs about what level of electronics noise is tolerable from the De-Whitening stage (aim for ~factor of 5 below the Rseries Johnson noise).

Finally, in doing this model, I understand that the observation the voltage noise of the coil driver apparently decreased after increasing the series resistance, as reported in my previous elog. This is due to the network formed by the fast and slow paths (during the measurement, the series resistance in the slow path makes a voltage divider to ground), and is consistent with LISO modeling. If we really want to measure the noise of the fast path alone, we will have to isolate it by removing the series resistance of the slow bias path.


Comment about LISO breakdown plots: for the OpAmp noises, the index "0" corresponds to the Voltage noise, "1" and "2" correspond to the current noise from the "+" and "-" inputs of the OpAmp respectively. In future plots, I'll re-parse these...


Quote:

I will upload more details + photos + data + schematic + LISO model breakdown tomorrow to a DCC page

 

Attachment 1: CoilDriverSchematic.pdf
CoilDriverSchematic.pdf
Attachment 2: D010001_2k_fastOnly_2.25k.pdf
D010001_2k_fastOnly_2.25k.pdf
Attachment 3: D010001_4k_fastOnly_4.5k.pdf
D010001_4k_fastOnly_4.5k.pdf
  14019   Tue Jun 26 16:28:00 2018 gautamUpdateSUSCoil driver protoboard characterization

I wanted to investigate my coil driver noise measurement technique under more controlled circumstances, so I spent yesterday setting up various configurations on a breadboard in the control room. The overall topology was as sketched in Attachment #1 of the previous elog, except for #4 below. Summary of configurations tried (series resistance was 4.5k ohm in all cases):

  1. Op 27 with 1kohm input and feedback resistors.
  2. LT1128 with 1kohm input and feedback resistors.
  3. LT1128 with 400 ohm input and feedback resistors.
  4. LT1128 with 400 ohm input and feedback resistors, and also the current buffer IC LM6321 implemented.

Attachments:

Attachment #1: Picture of the breadboard setup.

Attachment #2: Noise measurements (input shorted to ground) with 1 Hz linewidth from DC to 4 kHz.

Attachment #3: Noise measurements for full SR785 span. 

Attachment #4: Apparent coupling due to PSRR.

Attachment #5: Comparison of low frequency noise with and without the LM6321 part of the fast DAC path implemented.

All SR785 measurements were made with input range fixed at -42dBVpk, input AC coupled and "Floating", with a Hanning window. 

Conclusions:

  • I get much better agreement between LISO and measurement at a few hundred Hz and below with this proto setup. So it would seem like the excess noise I measure at ~200 Hz in the Eurocrate card version of the coil driver could be real and not simply a measurement artefact.
  • I am puzzled about the 10 Hz comb in all these measurements:
    • I have seen this a few times before - e.g. elog13655.
    • It is not due to the infamous GPIB issue - the lines persist even though I disconnect both power adaptor and GPIB prologix box from the SR785.
    • It does not seem to be correlated with the position of the analyzer w.r.t. the DC power supply (Tektronix PS280) used to power the circuit (I moved the SR785 around 1m away from the supply).
    • It persists with either of the two LN preamp boxes available. 
    • It persists with either "Float" or "Ground" input setting on the SR785.
    • All this pointed to some other form of coupling - perhaps conductive EMI.
    • The only clue I have is the apparent difference between the level of the coupling for Op27 and LT1128 - it is significantly lower for the latter compared to the former. 
    • I ruled out position on the breadboard: simply interchanging the Op27 and LT1128 positions on the breadboard, I saw higher 10 Hz harmonics for the Op27 compared to the LT1128. In fact, the coupling was higher for the DIP Op27 compared to an SOIC one I attached to the breadboard via an SOIC to DIP adapter (both were Op27-Gs, with spec'ed PSRR of 120 dB typ).
    • To test the hypothesis, I compared the noise for the Op27 config, on the one hand with regulated (via D1000217) DC supply, and on the other, directly powered by the Tektronix supply. The latter configuration shows much higher coupling.
    • I did have 0.1uF decoupling capacitors (I guess I should've used ceramic and not tantala) near the OpAmp power pins, and in fact, removing them had no effect on the level of this coupling 
    • As a quick check, I measured the spectrum of the DC power used to run the breadboard - it is supplied via D1000217. I used an RC network to block out the DC, but the measurement doesn't suggest a level of noise in the supply that could explain these peaks.
    • The regulators are LM2941 and LM2991. They specify something like 0.03% of the output voltage as AC RMS, though I am not sure over what range of frequencies this is integrated over.
    • But perhaps the effect is more subtle, some kind of downconversion of higher frequency noise, but isn't the decoupling cap supposed to protect against this?
  • The 19.5 kHz harmonics seem to originate from the CRT display of the SR785 (SVGA).
    • The manual doesn't specify the refresh rate, but from a bit of googling, it seems like this is a plausible number.
    • The coupling seems to be radiative. The box housing the Busby preamp provides ~60dB attentuation of this signal, and the amplitude of the peaks is directly correlated to where I position the Busby box relative to the CRT screen.
    • This problem can be avoided by placing the DUT and preamp sufficiently far from the SR785.

Punchlines:

  1. The actual coildriver used, D010001, doesn't have a regulated power supply, it just draws the +/- 15V directly from Sorensens. I don't think this is good for low noise. 
  2. The LM6321 part of the circuit doesn't add any excess noise to the circuit, consistent with it being inside the unity gain feedback loop. In any case, with 4.5 kohm series resistance with the coil driver, we would be driving <2.5 mA of current, so perhaps we don't even need this?
Attachment 1: IMG_7060.JPG
IMG_7060.JPG
Attachment 2: ETMXstitchced.pdf
ETMXstitchced.pdf
Attachment 3: ETMXfullSpan.pdf
ETMXfullSpan.pdf
Attachment 4: PSRR.pdf
PSRR.pdf
  14032   Thu Jun 28 16:48:27 2018 gautamUpdateSUSSOS cage towers

For the upcoming vent, we'd like to rotate the SOS towers to correct for the large YAW bias voltages used for DC alignment of the ITMs and ETMs. We could then use a larger series resistance in the DC bias path, and hence, reduce the actuation noise on the TMs. 

Today, I used the calibrated Oplev error signals to estimate what angular correction is needed. I disabled the Oplev loops, and drove a ~0.1 Hz sine wave to the EPICS channel for the DC yaw bias. Then I looked at the peak-to-peak Oplev error signal, which should be in urad, and calibrated the slider counts to urad of yaw alignment, since I know the pk-to-pk counts of the sine wave I was driving. With this calibration, I know how much DC Yaw actuation (in mrad) is being supplied by the DC bias. I also know the directions the ETMs need to be rotated, I want to double check the ITMs because of the multiple steering mirrors in vacuum for the Oplev path. I will post a marked up diagram later. 

Steve is going to come up with a strategy to realize this rotation - we would like to rotate the tower through an axis passing through the CoM of the suspended optic in the vertical direction. I want to test out whatever approach we come up with on the spare cage before touching the actual towers.

Here are the numbers. I've not posted any error analysis, but the way I'm thinking about it, we'd do some in air locking so that we have the cavity axis as a reference and we'd use some fine alignment adjust (with the DC bias voltages at 0) until we are happy with the DC alignment. Then hopefully things change by so little during the pumpdown that we only need small corrections with the bias voltages.

SoS tower DC bias correction
Optic

EPICS excitation

[V pk-pk]

Oplev error signal readback

[urad pk-pk]

Calibration [mrad/V] Current DC bias voltage [V] Required correction [mrad]
ETMX 0.06 110 1.83 -5.5305 -10.14
ITMX 0.02 180 9 -1.4500 -13.05
ITMY 0.02 120 6 -0.3546 -2.13
ETMY 0.06 118 1.97 0.5532 1.09

Some remarks:

  1. Why the apparent difference between ITMs and ETMs? I think it's because the bias path resistors are 400 ohms on the ETMs, but 100 ohms on the ITMs
  2. If we want the series resistance for the bias path to be 10 kohm, we'd only have ~800 urad actuation (for +10V DC), so this would be an ambitious level of accuracy. 
  14034   Mon Jul 2 09:01:11 2018 SteveUpdateSUSITMY_UL sensor

This bad connection is coming back

Quote:

We may lost the UL magnet or LED

 

Attachment 1: ITMY_ULcripingback.png
ITMY_ULcripingback.png
  14038   Thu Jul 5 10:15:30 2018 gautamUpdateSUSPRM watchdog tripped

PRM watchdog was tripped around 7:15am PT today morning. I restored it.

Attachment 1: PRM_watchdogTrip.png
PRM_watchdogTrip.png
  14075   Tue Jul 17 01:07:40 2018 gautamUpdateSUSETMY EQ stops

For the heater setup on EY table, I EQ-stopped ETMY. Only the face EQ stops (3 on HR face, 2 on AR face) were engaged. The EY Oplev HeNe was also shutdown during this procedure. 

  14090   Fri Jul 20 07:43:54 2018 SteveSummarySUSETMY

 

 

Attachment 1: ETMY_leveling.png
ETMY_leveling.png
Attachment 2: ETMY.png
ETMY.png
  14108   Fri Jul 27 10:48:57 2018 SteveUpdateSUSBS oplev window

Yesterday I inspected this BS oplev viewport. The heavy connector tube was shorting to table so It was moved back towards the chamber. The connection is air tight with kapton tape temporarly.

 The beam paths are well centered. The viewport is dusty on the inside.

The motivation was to improve the oplev noise.

Attachment 1: BSOw_.jpg
BSOw_.jpg
Attachment 2: dustInsideBSO.jpg
dustInsideBSO.jpg
  14115   Mon Jul 30 11:05:44 2018 gautamUpdateSUSIFO SUS wonky

When I came in this morning:

  • PMC was unlocked.
  • Seis BLRMS were off scale.
  • ITMX OSEM LEDs were dark on the CRT monitor even though Sat Box was plugged in.

Checking status of slow machines, it looked like c1sus, c1aux, and c1iscaux needed reboots, which I did. Still PMC would not lock. So I did a burtrestore, and then PMC was locked. But there seemed to be waaaaay to much motion of MCREFL, so I checked the suspension. The shadow sensor EPICS channels are reporting ~10,000 cts, while they used to be ~1000cts. No unusual red flags on the CDS side. Everything looked nominal when I briefly came in at 6:30pm PT yesterday, not sure if anything was done with the IFO last night.

Pending further investigation, I'm leaving all watchdogs shutdown and the PSL shutter closed.

A quick look at the Sorensens in 1X6 revealed that the +/- 20V DC power supplies were current overloaded (see Attachment #1). So I set those two units to zero until we figure out what's going on. Possibly something is shorted inside the ITMX satellite box and a fuse is blown somewhere. I'll look into it more once Steve is back.

Attachment 1: IMG_7102.JPG
IMG_7102.JPG
  14117   Mon Jul 30 16:11:54 2018 gautamUpdateSUSTrillium interface box is broken

[koji, steve, gautam]

We debugged this in the following way:

  1. Disconnect all fuses in the terminal blocks coming from the +/- 20 VDC Sorensens.
  2. Check that they are indeed isolated using DMM.
  3. Test blocks of fuses in order to identify where the problem is happening (i.e. plug fuses in, turn up Sorensen voltage knobs, look for current overload). We did things in the following order:
    • MC suspensions
    • BS, PRM and SRM
    • ITMY
    • ITMX
    • Trillium interface box.
  4. Turns out that the Trillium box is the culprit.
  5. Confirmed that the problem is in the trillium interface box and not in the seismometer itself by unplugging all cables leading out of the interface box, and checking that the problem persists when the box is powered on.

So for now, the power cable to the box is disconnected on the back end. We have to pull it out and debug it at some point.

Apart from this, megatron was un-sshable so I had to hard reboot it, and restart the MCautolocker, FSSslowPy and nds2 processes on it. I also restarted the modbusIOC processes for the PSL channels on c1auxex (for which the physical Acromag units sit in 1X5 and hence were affected by our work), mainly so that the FSS_RMTEMP channel worked again. Now, IMC autolocker is working fine, arms are locked (we can recover TRX and TRY~1.0), and everything seems to be back to a nominal state. Phew.

  14118   Mon Jul 30 18:19:03 2018 KojiUpdateSUSTrillium interface box was fixed and reinstalled

The trillium interface box was removed from the rack.

The problem was the incorrect use of an under-spec TVS (Transient Voltage Suppression) diodes (~ semiconductor fuse) for the protection circuit.
The TVS diodes we had had the breakdown voltages lower than the supplied voltages of +/-20V. This over-voltage eventually caused the catastrophic breakdown of one of the diodes.

I don't find any particular reason to have these diodes during the laboratory use of the interface. Therefore, I've removed the TVS diodes and left them unreplaced. The circuit was tested on the bench and returned to the rack. All the cables are hooked up, and now the BRLMs look as usual.


Details

- The board version was found to be D1000749-v2

- There was an obvious sign of burning or thermal history around the components D17 and D14. The solder of the D17 was so brittle that just a finger touch was enough to remove the component.

- These D components are TVS diodes (Transient Voltage Suppression Diodes) manufactured by Littelfuse Inc. It is sort of a surge/overvoltage protector to protect rest of the circuit to be exposed to excess voltage. The specified component for D17/D14 was 5.0SMMDJ20A with reverse standoff voltage (~operating voltage) of 20V and the breakdown voltage of 22.20V(min)~24.50V(max). However, the spec sheet told that the marking of the proper component must be "5BEW" rather than "DEM," which is visible on the component. Some search revealed that the used component was SMDJ15A, which has the breakdown voltage of 16.70V~18.50V. This spec is way too low compared to the supplied voltage of +/-20V.

Attachment 1: P_20180730_173134.jpg
P_20180730_173134.jpg
Attachment 2: P_20180730_180151.jpg
P_20180730_180151.jpg
  14119   Tue Jul 31 08:17:55 2018 SteveUpdateSUSTrillium interface box was fixed,reinstalled & working

 

 

Attachment 1: all_OK.png
all_OK.png
  14129   Fri Aug 3 15:53:25 2018 gautamUpdateSUSLow noise bias path idea

Summary:

The idea we are going with to push the coil driver noise contribution down is to simply increase the series resistance between the coil driver board output and the OSEM coil. But there are two paths, one for fast actuation and one that provides a DC current for global alignment. I think the simplest way to reduce the noise contribution of the latter, while preserving reasonable actuation range, is to implement a precision DC high-voltage source. A candidate that I pulled off an LT application note is shown in Attachment #1.

Requirements:

  • The series resistance in the bias path should be 10 k\Omega, such that the noise from this stage is dominated by the Johnson noise of said resistor, and hence, the current noise contribution is negligible compared to the series resistance in the fast actuation path (4.5 k\Omega).
  • Since we only really need this for the test masses, what actuation range do we want?
    • Currently, ETMY has a series resistance of 400\Omega and has a pitch DC bias voltage of -4 V. 
    • This corresponds to 10 mA of DC current.
    • To drive this current through 10 k\Omega, we need 100 V. 
    • I'm assuming we can manually correct for yaw misalignments such that 10mA of DC current will be sufficient for any sort of corrective alignment.
    • So +/- 120 V DC should be sufficient.
  • The current noise of this stage should be negligible at 100 Hz. 
    • The noise of the transistors and the HV supply should be suppressed by the feedback loop and so shouldn't be a significant contribution (I'll model to confirm).
    • The input noise of the LT1055 is ~20nV/rtHz at 100 Hz, while the Johnson noise of 10 k\Omega is ~13nV/rtHz so maybe the low-passing needs to be tuned, but I think if it comes to it, we can implement a passive RC network at the output to achieve additional filtering.
  • To implement this circuit, we need +/- 125V DC. 
    • At EX and EY, we have a KEPCO HV supply meant to be used for the Green Steering PZTs. 
    • I'm not sure if these can do bipolar outputs, if not, for temporary testing, we can transport the unit at EY to EX.

If all this seems reasonable, I'd like to prototype this circuit and test it with ETMX, which already has the high series resistance for the fast path. So I will ask Steve to order the OpAmp and transistors.

Attachment 1: LT1055_precOpAmp.pdf
LT1055_precOpAmp.pdf
  14130   Fri Aug 3 16:27:40 2018 ranaUpdateSUSLow noise bias path idea

Bah! Too complex.

  14131   Fri Aug 3 18:54:58 2018 gautamUpdateSUSGlitchy MC1

The wall StripTool indicated that the IMC wasn't too happy when I came in today. Specifically:

  • MC1 watchdog was tripped.
  • Even in the tripped state, MC REFL spot on the camera showed spot motion that was too large to be explained as normal seismic driven motion (i.e. with local damping supposedly disabled).
  • Strange excursions were observed in the MC1 shadow sensor signal levels as well, see Attachment #1 - negative values don't make any sense for this readout.

The last time this happened, it was due to the Sorensens not spitting out the correct voltages. This time, there were no indications on the Sorensens that anything was funky. So I just disabled the MCautolocker and figured I'd debug later in the evening.

However, around 5pm, the shadow sensor values looked nominal again, and when I re-enabled the local damping, the MC REFL spot suggested that the local damping was working just fine. I re-enabled the MCautolocker, MC re-locked almost immediately. To re-iterate, I did nothing to the electronics inside the VEA. Anyways, this enabled us to work on the X arm ASS (next elog).

Attachment 1: MC1_sensorAnomaly.png
MC1_sensorAnomaly.png
  14134   Sun Aug 5 13:45:00 2018 gautamUpdateSUSETMX tripped

Independent from the problems the vertex machine has been having (I think, unless it's something happening over the shared memory network), I noticed on Friday that the ETMX watchdog was tripped. Today, once again, the ETMX watchdog was tripped. There is no evidence of any abnormal seismic activity around that time, and anyways, none of the other watchdogs tripped. Attachment #1 shows that this happened ~838am PT today morning. Attachment #2 shows the 2k sensor data around the time of the trip. If the latter is to be believed, there was a big impulse in the UL shadow sensor signal which may have triggered the trip. I'll squish cables and see if that helps - Steve and I did work at the EX electronics rack (1X9) on Friday but this problem precedes our working there...

Attachment 1: ETMX_tripped.png
ETMX_tripped.png
Attachment 2: ETMX_tripped_zoom.png
ETMX_tripped_zoom.png
  14135   Sun Aug 5 15:43:50 2018 gautamUpdateSUSAnother low noise bias path idea

OK, how about this:

  • Attachment #1 shows the proposed schematic.
    • It consists of a second order section with Gain x10 to map the +/-10V DC range of the DAC to +/- 100V DC such that we preserve roughly the same amount of DC actuation range.
    • Corner frequency of the SOS is set to ~0.7 Hz. In hindsight, maybe this is more aggressive than necessary, we can tune this.
    • DC gain is 20 dB (typo in the text where I say the DC gain is x15, though we could go with this option as well I think if we want a larger series resistance).
    • A first order passive low-pass stage is added to filter out the voltage noise of the PA91, which dominates the output voltage noise (next bullet).
  • Attachment #2 shows the transfer function from input to output
    • The two traces compare having just a single SOS filtering stage vs the current topology of having two SOS stages.
    • The passive output RC network is necessary in either case to filter the voltage noise of the PA91 OpAmp.
    • For the DAC noise, I just assumed a flat noise level of 5 \mu V / \sqrt{\mathrm{Hz}}, I don't actually know what this is for the Acromag DACs.
  • Attachments #3 shows a breakdown of the top 5 noise contributions.
    • The PA91 datasheet doesn't give current noise information so I just assumed 1 fA / \sqrt{\mathrm{Hz}}, which was what was used for the PA85 in the existing opamp.lib file.
    • The voltage noise is modelled as 4.5 \sqrt{1+\frac{80}{f}} nV / \sqrt{\mathrm{Hz}}, which seems to line up okay with the plot on Pg4 of the datasheet.
    • So the model suggests we will be dominated by the voltage noise of the PA91.
  • Attachment #4 translates the noise into current noise seen by the actuator.
    • I add the Johnson noise contribution of the series resistance for this path, which is assumed to be 10 k \Omega.
    • For comparison, I add the filtered DAC noise contribution, and Johnson noise of the proposed series resistance in the fast path.
    • For the bias path, we are dominated by the Johnson noise of the series resistor from ~60 Hz upwards.
    • It's not quite fair to say that the Johnson noise of the resistance in the fast path dominates, the quadrature sum of fast and bais paths will be ~1.2 times of the former alone. 
    • Bottom line: we will be in the regime of total current noise of ~2.2 pA/rtHz, where I think Kevin's modeling suggests we can see some squeezing.

The question still remains of how to combine the fast and bias paths in this proposed scheme. I think the following approach works for prototyping at least:

  • Remove the series resistance on the existing coil driver boards' bias path, hence isolating this from the coil.
  • Route the DB15 output connector from the coil driver board (which is now just the fast actuation signals) into a sub-sattelite box housing the bias path electronics.
  • Sum the two signals as it is done now, by simply having a conductor (PCB trace) merge the two paths after their respective series resistances.

In the longer term, perhaps the Satellite Box revamp can accommodate a bias voltage summation connector.

Quote:

Bah! Too complex.


I have neglected many practical concerns. Some things that come to mind:

  1. Is it necessary to protect the upstream DAC from some potential failure of the PA91 in which the high voltage appears at the input?
  2. What is the correct OpAmp for this purpose? This chart on Apex's page suggests that PA15, PA85, PA91 and PA98 are all comparable in terms of drive capability, and the spec sheets don't suggest any dramatic differences. Some LIGO circuits use PA85, some use PA90, but I can't find any that use PA91. Perhaps Rana/Koji can comment about this.
  3. What kind of protection is necessary for the PA91 power?
  4. What is the correct way to do heat management? Presumably we need heatsinks, and in fact, there is a variant of the packaging style that has "formed" legs, which from what I can figure out, allow the heat sink plane on the PA91 to be parallel to the PCB surface. But I think the heat-sink wisdom suggests vertical fins are the most efficient (not sure if this holds if the PCB is inside a box though). What about the PCB itself? Are some kind of special traces needed?
  5. Can we use the current-limiting resistor feature on the PA91? The datasheet seems to advice against it for G>10 configurations, which is what we need, although our requirement is only at DC so I don't know if that table is applicable to this circuit.
  6. Are 3W resistors sufficient? I think we require only 10mA maximum current to preserve the current actuation range, so 100 V * 10mA = 1W, so 3W leaves some safety margin.
  7. All capacitors should be rated for 500 V per the datasheet.  
Attachment 1: HV_Bias_schematic.pdf
HV_Bias_schematic.pdf
Attachment 2: TF.pdf
TF.pdf
Attachment 3: bias.pdf
bias.pdf
Attachment 4: HVbias_currentNoise.pdf
HVbias_currentNoise.pdf
  14147   Wed Aug 8 23:06:59 2018 gautamUpdateSUSAnother low noise bias path idea

Today while Rich Abbott was here, Koji and I had a brief discussion with him about the HV amplifier idea for the coil driver bias path. He gave us some useful tips, perhaps most useful being a topology that he used and tested for an aLIGO ITM ESD driver which we can adapt to our application. It uses a PA95 high voltage amplifier which differs from the PA91 mainly in the output voltage range (up to 900V for the former, "only" 400V for the former. He agrees with the overall design idea of 

  • Having a LN opamp with the HV amp inside the feedback loop for better voltage noise at low frequencies.
  • Having a passive RC network at the output of the HV amp to filter out noise at high frequencies.

He also gave some useful suggestions like 

  • Using the front panel of the box that as a heatsink for the HV amps.
  • Testing the stability of the nested opamp loop by "pinging" the output of the opamp with some pulses from a function generator and monitoring the response to this perturbation on a scope.

I am going to work on making a prototype version of this box for 5 channels that we can test with ETMX. I have been told that the coupling from side coil to longitudinal motion is of the order of 1/30, in which case maybe we only need 4 channels.

  14150   Thu Aug 9 12:40:14 2018 gautamUpdateSUSETMX trip follow-up

A brief follow-up on this since we discussed this at the meeting yesterday: the attached DV screenshot shows the full 2k data for a period of 2 seconds starting just before the watchdog tripped. It is clear that the timescale of the glitch in the UL channel is much faster (~50 ms) compared to the (presumably mechanical) timescale seen in the other channels of ~250 ms, with the step also being much smaller (a few counts as opposed to the few thousand counts seen in the UL channel, and I guess 1 OSEM count ~ 1 um). All this supports the hypothesis that the problem is electrical and not mechanical (i.e. I think we can rule out the Acromag sending a glitchy signal to the coil and kicking the optic). The watchdog itself gets tripped because the tripping condition is the RMS of the shadow sensor outputs, which presumably exceeds the set threshold when UL glitches by a few thousand counts.

Attachment 1: ETMXglitch.png
ETMXglitch.png
  14156   Mon Aug 13 09:56:23 2018 SteveUpdateSUSETMX trip follow-up

Here is an other big one

Quote:

A brief follow-up on this since we discussed this at the meeting yesterday: the attached DV screenshot shows the full 2k data for a period of 2 seconds starting just before the watchdog tripped. It is clear that the timescale of the glitch in the UL channel is much faster (~50 ms) compared to the (presumably mechanical) timescale seen in the other channels of ~250 ms, with the step also being much smaller (a few counts as opposed to the few thousand counts seen in the UL channel, and I guess 1 OSEM count ~ 1 um). All this supports the hypothesis that the problem is electrical and not mechanical (i.e. I think we can rule out the Acromag sending a glitchy signal to the coil and kicking the optic). The watchdog itself gets tripped because the tripping condition is the RMS of the shadow sensor outputs, which presumably exceeds the set threshold when UL glitches by a few thousand counts.

 

Attachment 1: ETMXglitch.png
ETMXglitch.png
Attachment 2: ETMXgltch.png
ETMXgltch.png
  14165   Wed Aug 15 19:18:07 2018 gautamUpdateSUSAnother low noise bias path idea

I took another pass at this. Here is what I have now:

Attachment #1: Composite amplifier design to suppress voltage noise of PA91 at low frequencies.

Attachment #2: Transfer function from input to output.

Attachment #3: Top 5 voltage noise contributions for this topology.

Attachment #4: Current noises for this topology, comparison to current noise from fast path and slow DAC noise.

Attachment #5: LISO file for this topology.

Looks like this will do the job. I'm going to run this by Rich and get his input on whether this will work (this design has a few differences from Rich's design), and also on how to best protect from HV incidents.

Attachment 1: HV_Bias.pdf
HV_Bias.pdf
Attachment 2: HVamp_TF.pdf
HVamp_TF.pdf
Attachment 3: HVamp_noises.pdf
HVamp_noises.pdf
Attachment 4: currentNoises.pdf
currentNoises.pdf
Attachment 5: HVamp.fil.zip
  14169   Thu Aug 16 23:06:50 2018 gautamUpdateSUSAnother low noise bias path idea

I had a very fruitful discussion with Rich about this circuit today. He agreed with the overall architecture, but made the following suggestions (Attachment #1 shows the circuit with these suggestions incorporated):

  1. Use an Op27 instead of LT1128, as it is a more friendly part especially in these composite amplifier topologies. I confirmed that this doesn't affect the output voltage noise at 100 Hz, we will still limited by Johnson noise of the 15kohm series resistor.
  2. Take care of voltage distribution in the HV feedback path
    • I overlooked the fact that the passive filtering stage means that the DC current we can drive in the configuration I posted earlier is 150V / 25kohm = 6mA, whereas we'd like to be able to drive at least 10 mA, and probably want the ability to do 12 mA to leave some headroom.
    • At the same time, the feedback resistance shouldn't be too small such that the PA91 has to drive a significant current in the feedback path (we'd like to save that for the coil).
    • Changing the supply voltage of the PA91 from 150 V to 320 V, and changing the gain to x30 instead of x15 (by changing the feedback resistor from 14kohm to 29kohm), we can still drive 12 mA through the 25 kohms of series resistance. This will require getting new HV power supplies, as the KEPCO ones we have cannot handle these numbers.
    • The current limiting resistor is chosen to be 25ohms such that the PA91 is limited to ~26 mA. Of this, 300V / 30kohm ~ 10 mA will flow in the feedback path, which means under normal operation, 12 mA can safely flow through the coils.
    • Rich recommended using metal film resistors in the high voltage feedback path. However, these have a power rating, and also a voltage rating. By using 6x 5kohm resistors, the max power dissipated in each resistor is 50^2 / 5000 ~ 0.5 W, so we can get 0.6 W (or 1W?)  rated resistors which should do the job. I think the S102K or S104K series will do the job.
  3. Add a voltage monitoring capability.
    • This is implemented via a resistive voltage divider at the output of the PA91.
    • We can use an amplifier stage with whitening if necessary, but I think simply reading off the voltage across the terminating resistor in the ladder will be sufficient since this circuit will only have DC authority.
  4. Make a Spice model instead of LISO, to simulate transient effects.
    • I've made the model, investigating transients now.
  5. High voltage precautions:
    • When doing PCB layout, ensure the HV points have more than the default clearance. Rich recommends 100 mils.
    • Use a dual-diode (Schottky) as input protection for the Op27 (not yet implemented in Spice model).
    • Use a TVS diode for the moniotring circuit (not yet implemented in Spice model).
    • Make sure resistors and capacitors that see high voltage are rated with some safety margin.
  6. Consider using the PA95 (which Rich has tested and approves of) instead of the PA91. Does anyone have any opinions on this?

If all this sounds okay, I'd like to start making the PCB layout (with 5 such channels) so we can get a couple of trial boards and try this out in a couple of weeks. Per the current threat matrix and noises calculated, coil driver noise is still projected to be the main technical noise contribution in the 40m PonderSqueeze NB (more on this in a separate elog).

Quote:

Looks like this will do the job. I'm going to run this by Rich and get his input on whether this will work (this design has a few differences from Rich's design), and also on how to best protect from HV incidents.

Attachment 1: HVamp_schem.PDF
HVamp_schem.PDF
Attachment 2: Hvamp.zip
  14178   Thu Aug 23 08:24:38 2018 SteveUpdateSUSETMX trip follow-up

Glitch, small amplitude, 350 counts  &  no trip.

Quote:

Here is an other big one

Quote:

A brief follow-up on this since we discussed this at the meeting yesterday: the attached DV screenshot shows the full 2k data for a period of 2 seconds starting just before the watchdog tripped. It is clear that the timescale of the glitch in the UL channel is much faster (~50 ms) compared to the (presumably mechanical) timescale seen in the other channels of ~250 ms, with the step also being much smaller (a few counts as opposed to the few thousand counts seen in the UL channel, and I guess 1 OSEM count ~ 1 um). All this supports the hypothesis that the problem is electrical and not mechanical (i.e. I think we can rule out the Acromag sending a glitchy signal to the coil and kicking the optic). The watchdog itself gets tripped because the tripping condition is the RMS of the shadow sensor outputs, which presumably exceeds the set threshold when UL glitches by a few thousand counts.

 

 

Attachment 1: ETMX-UL_glitch.png
ETMX-UL_glitch.png
Attachment 2: PEM_4d.png
PEM_4d.png
  14184   Fri Aug 24 14:58:30 2018 SteveUpdateSUSETMX trips again

The second big glich trips ETMX sus. There were small earth quakes around the glitches. It's damping recovered.

Quote:

Glitch, small amplitude, 350 counts  &  no trip.

Quote:

Here is an other big one

Quote:

A brief follow-up on this since we discussed this at the meeting yesterday: the attached DV screenshot shows the full 2k data for a period of 2 seconds starting just before the watchdog tripped. It is clear that the timescale of the glitch in the UL channel is much faster (~50 ms) compared to the (presumably mechanical) timescale seen in the other channels of ~250 ms, with the step also being much smaller (a few counts as opposed to the few thousand counts seen in the UL channel, and I guess 1 OSEM count ~ 1 um). All this supports the hypothesis that the problem is electrical and not mechanical (i.e. I think we can rule out the Acromag sending a glitchy signal to the coil and kicking the optic). The watchdog itself gets tripped because the tripping condition is the RMS of the shadow sensor outputs, which presumably exceeds the set threshold when UL glitches by a few thousand counts.

 

 

 

Attachment 1: glitches.png
glitches.png
  14188   Wed Aug 29 09:20:27 2018 SteveUpdateSUSlocal 4.4M earth quake

All suspension tripped. Their damping restored. The MC is locked.

ITMX-UL & side magnets are stuck.

 

Attachment 1: 4.4_La_Verne.png
4.4_La_Verne.png
Attachment 2: 3.4_&_4.4M_EQ.png
3.4_&_4.4M_EQ.png
  14190   Wed Aug 29 11:46:27 2018 JonUpdateSUSlocal 4.4M earth quake

I freed ITMX and coarsely realigned the IFO using the OPLEVs. All the alignments were a bit off from overnight.

The IFO is still only able to lock in MICH mode currently, which was the situation before the earthquake. This morning I additionally tried restoring the burt state of the four machines that had been rebooted in the last week (c1iscaux, c1aux, c1psl, c1lsc) but that did not solve it.

Quote:

All suspension tripped. Their damping restored. The MC is locked.

ITMX-UL & side magnets are stuck.

 

 

  14201   Thu Sep 20 08:17:14 2018 SteveUpdateSUSlocal 3.4M earth quake

M3.4 Colton shake did not trip sus.

 

Attachment 1: local_3.4M.png
local_3.4M.png
  14223   Mon Oct 1 22:20:42 2018 gautamUpdateSUSPrototyping HV Bias Circuit

Summary:

I've been plugging away at Altium prototyping the high-voltage bias idea, this is meant to be a progress update.

Details:

I need to get footprints for some of the more uncommon parts (e.g. PA95) from Rich before actually laying this out on a PCB, but in the meantime, I'd like feedback on (but not restricted to) the following:

  1. The top-level diagram: this is meant to show how all this fits into the coil driver electronics chain.
    • The way I'm imagining it now, this (2U) chassis will perform the summing of the fast coil driver output to the slow bias signal using some Dsub connectors (existing slow path series resistance would simply be removed). 
    • The overall output connector (DB15) will go to the breakout board which sums in the bias voltage for the OSEM PDs and then to the satellite box.
    • The obvious flaw in summing in the two paths using a piece of conducting PCB track is that if the coil itself gets disconnected (e.g. we disconnect cable at the vacuum flange), then the full HV appears at TP3 (see pg2 of schematic). This gets divided down by the ratio of the series resistance in the fast path to slow path, but there is still the possibility of damaging the fast-path electronics. I don't know of an elegant design to protect against this.
  2. Ground loops: I asked Johannes about the Acromag DACs, and apparently they are single ended. Hopefully, because the Sorensens power Acromags, and also the eurocrates, we won't have any problems with ground loops between this unit and the fast path.
  3. High-voltage precautons: I think I've taken the necessary precautions in protecting against HV damage to the components / interfaced electronics using dual-diodes and TVSs, but someone more knowledgable should check this. Furthermore, I wonder if a Molex connector is the best way to bring in the +/- HV supply onto the board. I'd have liked to use an SHV connector but can't find a comaptible board-mountable connector.
  4.  Choice of HV OpAmp: I've chosen to stick with the PA95, but I think the PA91 has the same footprint so this shouldn't be a big deal.
  5.  Power regulation: I've adapted the power regulation scheme Rich used in D1600122 - note that the HV supply voltage doesn't undergo any regulation on the board, though there are decoupling caps close to the power pins of the PA95. Since the PA95 is inside a feedback loop, the PSRR should not be an issue, but I'll confirm with LTspice model anyways just in case.
  6. Cost: 
    • ​​Each of the metal film resistors that Rich recommended costs ~$15.
    • The voltage rating on these demand that we have 6 per channel, and if this works well, we need to make this board for 4 optics.
    • The PA95 is ~$150 each, and presumably the high voltage handling resistors and capacitors won't be cheap.
    • Steve will update about his HV supply investigations (on a secure platform, NOT the elog), but it looks like even switching supplies cost north of $1200.
    • However, as I will detail in a separate elog, my modeling suggests that among the various technical noises I've modeled so far, coil driver noise is still the largest contribution which actually seems to exceed the unsqueezed shot noise of ~ 8e-19 m/rtHz for 1W input power and PRG 40 with 20ppm RT arm losses, by a smidge (~9e-19 m/rtHz, once we take into account the fast and slow path noises, and the fact that we are not exactly Johnson noise limited).

I also don't have a good idea of what the PCB layer structure (2 layers? 3 layers? or more?) should be for this kind of circuit, I'll try and get some input from Rich.

*Updated with current noise (Attachment #2) at the output for this topology of series resistance of 25 kohm in this path. Modeling was done (in LTspice) with a noiseless 25kohm resistor, and then I included the Johnson noise contribution of the 25k in quadrature. For this choice, we are below 1pA/rtHz from this path in the band we care about. I've also tried to estimate (Attachment #3) the contribution due to (assumed flat in ASD) ripple in the HV power supply (i.e. voltage rails of the PA95) to the output current noise, seems totally negligible for any reasonable power supply spec I've seen, switching or linear.

Attachment 1: CoilDriverBias.pdf
CoilDriverBias.pdf CoilDriverBias.pdf CoilDriverBias.pdf
Attachment 2: currentNoise.pdf
currentNoise.pdf
Attachment 3: PSRR.pdf
PSRR.pdf
  14261   Thu Oct 18 00:27:37 2018 KojiUpdateSUSSUS PD Whitening board inspection

[Gautam, Koji]

As a part of the preparation for the replacement of c1susaux with Acromag, I made inspection of the coil-osem transfer function measurements for the vertex SUSs.

The TFs showed typical f^-2 with the whitening on except for ITMY UL (Attachment 1). Gautam told me that this is a known issue for ~5 years.
We made a thorough inspection/replacement of the components and identified the mechanism of the problem.
It turned out that the inputs to MAX333s are as listed below.

  Whitening ON Whitening OFF
UL ~12V ~8.6V
LL 0V 15V
UR 0V 15V
LR 0V 15V
SD 0V 15V

The switching voltage for UL is obviously incorrect. We thought this comes from the broken BIO board and thus swapped the corresponding board. But the issue remained. There are 4 BIO boards in total on c1sus, so maybe we have replaced a wrong board?

Initially, we thought that the BIO can't drive the pull-up resistor of 5KOhm from 15V to 0V (=3mA of current). So I have replaced the pull-up resistor to be 30KOhm. But this did not help. These 30Ks are left on the board.
 

Attachment 1: 43.png
43.png
  14319   Mon Nov 26 17:16:27 2018 gautamUpdateSUSEY chamber work

[steve, rana, gautam]

  • PSL and EY 1064nm laser (physical) shutters on the head were closed so that we and sundance crew could work without laser safety goggles. EY oplev laser was also turned off.
  • Cylindrical heater setup removed:
    • heater wiring meant the heater itself couldn't be easily removed from the chamber
    • two lenses and Al foil cylinder removed from chamber, now placed on the mini-cleanroom table.
  • Parabolic heater is untouched for now. We can re-insert it once the test mass is back in, so that we can be better informed about the clipping situation.
  • ETMY removed from chamber.
    • EQ stops were engaged.
    • Pictures were taken
    • OSEMs were removed from cage, placed in foil holders.
    • Cage clamps were removed after checking that marker clamps were in place.
    • Optic was moved first to NW corner of table, then out of the vacuum onto the mini-cleanroom desk Chub and I had setup last week.
    • Hoepfully there isn't an earthquake. EY has been marked as off-limits to avoid accidental bumping / catasrophic wire/magnet/optic breaking.
    • We sealed up the mini cleanroom with tape. F.C. cleaning tomorrow or at another opportune moment.
    • Light door was put back on for the evening.

Rana pointed out that the OSEM cabling, because of lack of a plastic shielding, is grounded directly to the table on which it is resting. A glass baking dish at the base of the seismic stack prevents electrical shorting to the chamber. However, there are some LEMO/BNC cables as well on the east side of the stack, whose BNC ends are just lying on the base of the stack. We should use this opportunity to think about whether anything needs to be done / what the influence of this kind of grounding is (if any) on actuator noise.

Steve also pointed out that we should replace the rubber pads which the vacuum chamber is resting on (Attachment #1, not from this vent, but just to indicate what's what). These serve the purpose of relieving small amounts of strain the chamber may experience relative to the beam tube, thus helping preserve the vacuum joints b/w chamber and tube. But after (~20?) years of being under compression, Steve thinks that the rubber no longer has any elasticity, and so should be replaced.

Attachment 1: IMG_5251.JPG
IMG_5251.JPG
  14399   Tue Jan 15 10:52:38 2019 gautamUpdateSUSEY door opened

[chub, bob, gautam]

We took the heavy door off the EY chamber at ~930am.

Chamber work:

  • ETMY suspension cage was returned to its nominal position.
  • Unused hardware from the annular heater setup was removed.
  • The unused heater had its leads snipped close to the heater crimp point, and the exposed part of the bare wires was covered with Kapton tape (we should remove the source leads as well in air to avoid any accidental shorting)

Waiting for the table to level off now. Plan for later today / tomorrow is as follows:

  1. Lock the Y arm, recover good cavity alignment.
  2. Position parabolic heater such that clipping issue is resolved.
  3. Move optic to edge of table for FC cleaning
  4. Clean optic
  5. Return suspension cage to nominal position.
  14401   Tue Jan 15 15:49:47 2019 gautamUpdateSUSEY door opened

While restoring OSEMs on ETMY, I noticed that the open voltages for the UR and LL OSEMs had significantly (>30%) changed from their values from ~2 years ago. The fact that it only occurred in 2 coils seemed to rule out gradual wear and tear, so I looked up the trends from Nov 25 - Nov 28 (Sundance visited on Nov 26 which is when we removed the cage). Not surprisingly, these are the exact two OSEMs that show a decrease in sensor voltage when the OSEMs were pulled out. I suspect that when I placed them in their little Al foil boats, I shorted out some contacts on the rear (this is reminiscent of the problem we had on PRM in 2016). I hope the problem is with the current buffer IC in the satellite box and not the physical diode, I'll test with the tester box and evaluate the problem further.


Chamber work by Chub and gautam:

  1. Table leveling was checked with a clean spirit level
    • Leveling was substantially off in two orthogonal directions, along the beam axis as well as perpendicular to it.
    • We moved almost all the weights available on the table.
    • Managed to get the leveling correct to within 1 tick on the level.
    • We are not too worried about this for now, the final leveling will be after heater repositioning, ETMY cleaning etc.
  2. ETMY OSEM re-insertion
    • OSEMs were re-inserted till their mean voltage was ~ half the open values.
    • Local damping seems to work just fine.
Attachment 1: EY_OSEMs.png
EY_OSEMs.png
  14403   Wed Jan 16 16:25:25 2019 gautamUpdateSUSYarm locked

[chub, gautam]

Summary:

Y arm was locked at low power in air.

Details:

  1. ITMY chamber door was removed at ~10am with Bob's help.
  2. ETMY table leveling was found to have drifted significantly (3 ticks on the spirit level, while it was more or less level yesterday, should look up the calib of the spirit level into mrad). Chub moved some weights around on the table, we will check the leveling again tomorrow.
  3. IMC was locked.
  4. TT2 and brass alignemnt tool was used to center beam on ETMY.
  5. TT1 and brass alignment tool was used to center beam on ITMY. We had to do a c1susaux reboot to be able to move ITMY. Usual precautions were taken to avoid ITMX getting stuck.
  6. ETMY was used to make return beam from the ETM overlap with the in-going beam near ITMY, using a holey IR card.
  7. At this point, I was confident we would see IR flashes so I decided to do the fine alignment in the control room.

We are operating with 1/10th the input power we normally have, so we expect the IR transmission of the Y arm to max out at 1 when well aligned. However, it is hovering around 0.05 right now, and the dominant source of instability is the angular motion of ETMY due to the Oplev loop being non-functional. I am hesitant to do in-chamber work without an extra pair of eyes/hands around, so I'll defer that for tomorrow morning when Chub gets in. With the cavity axis well defined, I plan to align the green beam to this axis, and use the two to confirm that we are well clear of the Parabola.

* Paola, our vertex laptop, and indeed, most of the laptops inside the VEA, are not ideal to work on this kind of alignmment procedure, it would be good to set up some workstations on which we can easily interact with multiple MEDM screens,

Attachment 1: Yarm_locked.png
Yarm_locked.png
  14407   Fri Jan 18 21:34:18 2019 gautamUpdateSUSUnused optic on EY table

Does anyone know what the purpose of the indicated optic in Attachment #1 is? Can we remove it? It will allow a little more space around the elliptical reflector...

Attachment 1: IMG_5408.JPG
IMG_5408.JPG
  14408   Sat Jan 19 05:07:45 2019 KojiUpdateSUSUnused optic on EY table

I don't think it was used. It is not on the diagram too. You can remove it.

ELOG V3.1.3-