40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 305 of 339  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  11664   Sun Oct 4 14:28:03 2015 jamieUpdateDAQmore failed attempts at getting new fb working

I tried to look at fb1 again today, but still haven't made any progress.

The one thing I did notice, though, is that every hour on the hour the fb1 daqd process dies in an identical manor to how the fb daqd dies, with these:

[Sun Oct  4 12:02:56 2015] main profiler warning: 0 empty blocks in the buffer

errors right as/after it tries to write out the minute trend frames.

This makes me think that this new hardware isn't actually going to fix the problem we've been seeing with the fb daqd, even if we do get daqd "working" on fb1 as well as it's currently working on fb.

  5279   Mon Aug 22 21:32:10 2011 kiwamuUpdateGeneralmore in-vac work : AS clipping fixed and OSEM/oplev adjustment

[Keiko / Jenne / Jamie / Kiwamu]

 We did the following things today :

  + fixed the AS clipping issue

  + realigned all the oplevs

  + checked and adjusted the all OSEM DC values, including PRM, SRM, BS, ITMs, ETMs, MC1 and MC3

 

Since we touched the OSEMs the alignment has changed somewhat.

Right now Jenne, Suresh and I are working on the "confirmation alignment".

Once we find the alignment is still good (steerable by the PZTs and the DC coil bias), tomorrow we will do the drag&wipe and door closing.

Quote from #5275

We need to check/fix the AS beam clipping and once it's done we will readjust the OSEM mid range and the oplevs.

 

  5284   Tue Aug 23 06:49:24 2011 AnamariaUpdateGeneralmore in-vac work : AS clipping fixed and OSEM/oplev adjustment

Where was the AS clipping?! Ah, the suspense...

Quote:

  + fixed the AS clipping issue

 

Quote from #5275

We need to check/fix the AS beam clipping and once it's done we will readjust the OSEM mid range and the oplevs.

 

 

 

  4389   Wed Mar 9 04:46:13 2011 kiwamuUpdateGreen Lockingmore intensity noise measurement

 

Here is a diagram for our intensity noise coupling measurement.

intensity_setup.png

 

The below is a plot for the intensity noise on the DCPD. (I forgot to take a spectra of the PD dark noise)

For some reason, the RIN spectrum becomes sometimes noisier and sometimes quieter. Note that after 10 pm it's been in the quiet state for most of the time.

An interesting thing is that the structure below 3 Hz looks like excited by motion of the MC when it's in the louder state.

IntensityNoise.png

Quote: from #4383

A photo diode and an AOM driver have been newly setup on the PSL table to measure the intensity noise coupling to the beat note signal.

We tried taking a transfer function from the PD to the beat, but the SNR wasn't sufficient on the PD. So we didn't get reasonable data.

  1082   Fri Oct 24 11:09:08 2008 steveUpdateSAFETYmore lexan plates under cameras
The MC2, MC3&1 and BSC-SUS cameras were repositioned somewhat in the
process of placing lexan disks under neat them.
MC1&3 will have to be readjusted.

Now all horizontal viewports are protected.
  1728   Thu Jul 9 19:05:32 2009 ClaraUpdatePEMmore mic position changes; mics not picking up high frequencies

Bonnie has been strung up on bungees in the PSL so that her position/orientation can be adjusted however we like. She is now hanging pretty low over the table, rather than being attached to the hanging equipment shelf thing. Butch Cassidy has been hung over the AS table.

Moving Bonnie increased the coherence for the PMC_ERR_F signal, but not the MC_L. Butch Cassidy doesn't have much coherence with either.

I noticed that the coherence would drop off very sharply just after 10 kHz - there would be no further spikes or anything of the sort. I used my computer to play a swept sine wave (sweeping from 20Hz to 10kHz) next to Butch Cassidy to see if the same drop-off occurred in the microphone signal itself. Sure enough, the power spectrum showed a sharp drop around 10kHz. Thinking that the issue was that the voltage dividers had too high impedance, I remade one of them with two 280 Ohm and one 10 Ohm resistor, but that didn't make any difference. So, I'm not sure what's happening exactly. I didn't redo the other voltage divider, so Bonnie is currently not operating.

 

Attachment 1: DSC_0569.JPG
DSC_0569.JPG
Attachment 2: DSC_0570.JPG
DSC_0570.JPG
Attachment 3: bonnie_psl_hi_mcl12.pdf
bonnie_psl_hi_mcl12.pdf
Attachment 4: bonnie_psl_hi_errf12.pdf
bonnie_psl_hi_errf12.pdf
Attachment 5: bc_as_table.pdf
bc_as_table.pdf
Attachment 6: powerspec.pdf
powerspec.pdf
  1729   Thu Jul 9 19:24:50 2009 ranaUpdatePEMmore mic position changes; mics not picking up high frequencies
Might be the insidious 850 Hz AA filters in the black AA box which precedes the ADC.

Dan Busby fixed up the PSL/IOO chassis. WE might need to do the same for the PEM stuff.
  2040   Fri Oct 2 02:55:07 2009 robUpdateLockingmore progress

More progress with locking tonight, with initial acquisition and power ramps working.  The final handoff to RF CARM still needs work.

I found the wireless router was unplugged from the network--just plugging in the cable solved the problem.  For some reason that RJ45 connector doesn't actually latch, so the cable is prone to slipping out of the jack.

 

  2047   Sat Oct 3 14:53:24 2009 robUpdateLockingmore progress

Late last night after the ETMY settled down from the quake I made some more progress in locking, with the handoff to RF CARM succeeding once.  The final reduction of the CARM offset to zero didn't work, however.

  12095   Thu Apr 28 00:41:08 2016 gautamUpdateendtable upgrademore progress - Transmon PD installed

The IR Transmon system is almost completely laid out, only the QPD remains to be installed. Some notes:

  1. The "problem" with excessive green power reflected from the harmonic separator has been resolved. It is just very sensitive to the angle of incidence. In the present configuration, there is ~10uW of green power reflected from either side, which shouldn't be too worrisome. But this light needs to be dumped. Given the tiny amount, I think a black glass + sticky tape solution is best suited, given the space constraints. This does not reach the Transmon PDs because there is a filter in the path that is transmissive to IR only. 
  2. I aligned the transmitted beam onto the Thorlabs PD, and reconnected the signal BNC cable (the existing cable wasn't long enough so I had to use a barrel connector and a short extension cable). I then reverted the LSC trigger for the X arm back to TRX DC and also recompiled c1ass to revert to TRX for the dither alignment. At the moment, both arms are stably locked, although the X arm transmission is saturated at ~0.7 after running the dither alignment. I'm not sure if this is just a normalization issue given the new beam path or if there is something else going on. Further investigations tomorrow.
  3. It remains to dump some of the unwanted green light from the addition of the harmonic separator...
  4. We may want to redesign some (or all) of the Transmon path - the lens currently in use seems to have been chosen arbitrarily. Moreover, it is quite stubbornly dirty, there are some markings which persist after repeated first contact cleaning...

I feel like once the above are resolved, the next step would be to PDH lock the green to the arm and see what sort of transmission we get on the PSL table. It may be the polarization or just alignment, but for some reason, the transmitted green light from the X arm is showing up at GTRY now (up to 0.5, which is the level we are used to when the Y arm has green locked!). So a rough plan of action:

  1. Install transmon QPD
  2. PDH lock green to X arm
  3. Fix the window situation - as Steve mentioned in an earlier elog, the F.C. cleaning seems to have worked well, but a little remains stuck on the window (though away from where any laser radiation is incident). This is resolved easily enough if we apply one more layer of F.C., but the bottle-neck right now is we are out of PEEK which is what we use to remove the F.C. once dried. Steve thinks a fresh stock should be here in the next couple of days...
  4. Once 3 is resolved, we can go ahead and install the Oplev.
  5. Which leaves the lst subsystem, coupling to the fiber and a power monitor for the NPRO. I have resolved to do both these using the 1% transmitted beam after the beamsplitter immediately after the NPRO rather than pick off at the harmonic separator after the doubling oven. I need to do the mode-matching calculation for coupling into the fiber and also adjust the collimating lens...
  6. Clean-up: make sure cables are tied down, strain-relieved and hooked up to whatever they are supposed to be hooked up to...
  2673   Mon Mar 15 09:43:47 2010 steveUpdatePEMmore sandblasting today

Do not open IFO vacuum envelope today! They are sandblasting again at CES

  6959   Wed Jul 11 11:18:21 2012 steveUpdatePEMmore seismic noise next week
 
   The fabricators of the big flume in the CES lab have begun testing the sediment feed system which is the noisiest component and plan to test off and on during the day for the next week.
   Please let me know if you detect the noise or have any issues.
 
 
Brian Fuller

phone: 626-395-2465

  6961   Wed Jul 11 13:45:01 2012 JenneUpdatePEMmore seismic noise next week

Quote:
 
   The fabricators of the big flume in the CES lab have begun testing the sediment feed system which is the noisiest component and plan to test off and on during the day for the next week.
   Please let me know if you detect the noise or have any issues.
 
 
Brian Fuller

phone: 626-395-2465

 Masha and Yaakov - this is an excellent opportunity for you guys to test out your triangulation stuff!  Also, it might give a lot of good data times for the learning algorithms.

Maybe you should also put out the 3 accelerometers that Yaakov isn't using (take them off their cube, so they can be placed separately), then you'll have 6 sensors for vertical motion.  Or you can leave the accelerometers as a cube, and have 4 3-axis sensors (3 seismometers + accelerometer set).

  12794   Fri Feb 3 11:03:06 2017 jamieUpdateCDSmore testing fb1; DAQ DOWN DURING TEST

More testing of fb1 today.  DAQ DOWN UNTIL FURTHER NOTICE.

Testing Wednesday did not resolve anything, but Jonathan Hanks is helping.

  10714   Fri Nov 14 08:25:29 2014 SteveUpdateSUSmorning issues

PRM, SRM and the ENDs are kicking up.  Computers are down.  PMC slider is stuck at low voltage.

Attachment 1: morning.png
morning.png
  9726   Fri Mar 14 09:44:34 2014 SteveUpdateLSCmorning lock
Attachment 1: 2hrsMorningLock.png
2hrsMorningLock.png
  13504   Fri Jan 5 17:50:47 2018 ranaConfigurationComputersmotif on nodus

I had to do 'sudo yum install motif' on nodus so that we could get libXm.so.4 so that we could run MEDM. Works now.

  12582   Thu Oct 27 09:38:32 2016 SteveUpdatePEMmouse

We may have a mouse in the lab.  Do not leave any food scrap in trash ! Traps will be set.

 

Attachment 1: mouse.jpg
mouse.jpg
  12605   Tue Nov 8 08:51:59 2016 SteveUpdatePEMmouse hole sealed

This is where the mammal came though. It is reach able from room 108 CES

Quote:

We may have a mouse in the lab.  Do not leave any food scrap in trash ! Traps will be set.

 

 

Attachment 1: CES108rs.jpg
CES108rs.jpg
  3646   Tue Oct 5 09:26:04 2010 steveConfigurationPEMmoved accelerometers

Accelerometers xyz were moved from IOO-south/west  corner to under PSL table. They were turned off for ~20 minutes.

Guralp was also moved eastward about 2 ft. It is not leveled.

This is part of the preparation to remove access connector.

  698   Fri Jul 18 19:30:20 2008 MashaUpdateAuxiliary lockingmoving from 40m
I will be working in the basement of Bridge probably starting next week; I moved the NPRO laser and some of the optics from my mach zehnder setup on the SP table to Bridge. Thanks for your help!
  2182   Thu Nov 5 16:30:56 2009 peteUpdateComputersmoving megatron

 Joe and I moved megatron and its associated IO chassis from 1Y3 to 1Y9, in preparations for RCG tests at ETMY.

  12521   Wed Sep 28 04:27:33 2016 ericqUpdateGeneralmucking about

PMC was terribly misaligned. The PMCR camera seems to have drifted somewhat off target too, but I didn't touch it.

Realigned ITMX for the nth time today.

Finding ALSY beatnote was easy, ALSX eludes me. I did a rough one-point realignment on the X beat PD which is usually enough, but it's probably been long enough that near/far field alignmnet is neccesary. 

ALSY noise is mostly nominal, but there is a large 3Hz peak that is visible in the spot motion, and also modulates the beat amplitude by multiple dBs.

It looked to me that the ETMY oplev spot was moving too much, which led me to measure the oplev OLGs. There is some wierd inter-loop interference going on between OLPIT and OLYAW. With both on (whether OSEM damping is on or off, so input matrix shenanigans can't be to blame) there is a very shallow "notch" at around 4.5Hz, which leads to very little phase at 3Hz, and thus tons of control noise. Turning the OL loop not being measured off makes this dip go away, but the overall phase is still signfinicantly less than we should have. I'm not sure why. I'll just show the PIT plot, but things look pretty much the same for YAW. 


I did some more ETMX tests. Locked arm, raised the servo output limit to 15k, then increased the gain to make the loop unstable. I saw the SUS LSC signals go up to tens of thousands of counts when the unlock happened. I did this a dozen times or so, and every time the ETM settled in the same angular position according to the oplev.

Right now, another hysteresis script is running, misaliging in pitch and yaw. Amplitude 1V in each direction. So far, everything is stable after three on/off cycles.

Attachment 1: alscheck.pdf
alscheck.pdf
Attachment 2: weird_olpit.pdf
weird_olpit.pdf
  12522   Thu Sep 29 09:49:53 2016 ranaUpdateGeneralmucking about

With the WFS and OL, we never have figured out a good way to separate pit and yaw. Need to figure out a reference for up/down and then align everything to it: quad matrix + SUS output matrix

  12527   Sat Oct 1 10:03:28 2016 ericqUpdateGeneralmucking about

Some things I did last night:

I measured the X PDH OLG, and turned the gain down by ~6dB to bring the UGF back to 10kHz, ~50deg phase margin, 10dB gain margin. However, the error signal on the oscilloscope remained pretty ratty. Zooming in, it was dominated by glitches occuring at 120Hz. I went to hook up the SR785 to the control signal monitor to see what the spectrum of these glitches looked like, but weirdly enough connecting the SR785's input made the glitches go away. In fact, with one end of a BNC connector plugged into a floating SR785 input, touching the other end's shield to any of the BNC shields on the uPDH chassis made the glitches go away.

This suggested some ground loop shenanigans to me; everything in the little green PDH shelves is plugged into a power strip which is itself plugged into a power strip at the X end electronics rack, behind all of the sorensens. I tried plugging the power strip into some different places (including over by the chamber where the laser and green refl PD are powered), but nothing made the glitches go away. In fact, it often resulted in being unable to lock the PDH loop for unknown reasons. This remains unsolved.

As Gautam and Johannes observed, the X green beat was puny. By hooking up a fast scope directly to the beat PD output, I was able to fine tune the alignment to get a 80mVpp beat, which I think is substaintially bigger than what we used to have. (Is this plus the PDH gain changed really attributable to arm loss reduction? Hm)

However, the DFD I and Q outputs have intermittent glitches that are big enough to saturate the ADC when the whitening filters are on, even with 0dB whitening gain, which makes it hard to see any real ALS noise above a few tens of Hz or so. Turning off the whitening and cranking up the whitening gain still shows a reasonably elevated spectrum from the glitches. (I left a DTT instance with a spectrum on in on the desktop, but forgot to export...) The glitches are not uniformly spaced at 120Hz as in the PDH error signal. However, the transmitted green power also showed intermittant quick drops. This also remains unsolved for the time being. 

  12529   Tue Oct 4 02:59:48 2016 ericqUpdateGeneralmucking about

[ericq, gautam]

We poked around trying to figure out the X PDH situation. In brief, the glitchiness comes and goes, not sure what causes it. Tried temp servo on/off and flow bench fan on/off. Gautam placed a PD to pick off the pre-doubler AUX X IR light to see if there is some intermittant intensity fluctuation overnight. During non-glitchy times, ALSX noise profile doesn't look too crazy, but some new peak around 80Hz and somewhat elevated noise compared to historical levels above 100Hz. It's all coherent with the PDH control up there though, and still looks like smooth frequency noise...

NB: The IR intensity monitoring PD is temporarily using the high gain Transmon PD ADC channel, and is thus the source of the signal at C1:LSC-TRY_OUT_DQ. If you want to IR lock the X arm, you must change the transmon PD triggering to use the QPD.

Attachment 1: 2016-10-04_ALSXspectra.pdf
2016-10-04_ALSXspectra.pdf
  2294   Wed Nov 18 16:58:36 2009 kiwamuUpdateElectronicsmulti-resonant EOM --- EOM characterization ---

In designing the whole circuit it is better to know the characteristic of the EOM.

I made impedance measurement with the EOM (New Focus model 4064) and I found it has capacitance of 10pF.

This is good agreement with the data sheet which says "5-10pF".

The measured plot is attached below. For comparison there also plotted "open" and "10pF mica".

In the interested band( from 1MHz to 100MHz), EOM looks just a capacitor.

But indeed it has lead inductance of 12nH, resistance of 0.74[Ohm], and parasitic capacitance of 5.5pF.

In some case we have to take account of those parasites in designing.

EOM_impedance.png

 

  2295   Wed Nov 18 22:38:17 2009 KojiUpdateElectronicsmulti-resonant EOM --- EOM characterization ---

How can I get those values from the figure?

Quote:

But indeed it has lead inductance of 12nH, resistance of 0.74[Ohm], and parasitic capacitance of 5.5pF. 

 

  2292   Wed Nov 18 14:55:59 2009 kiwamuUpdateElectronicsmulti-resonant EOM --- circuit design ----

The circuit design of multi-resonant EOM have proceeded.

By using numerical method, I found the some best choice of the parameters (capacitors and inductors).

In fact there are 6 parameters (Lp, L1, L2, Cp, C1, C2) in the circuit to be determined.

whole_circuit.png

In general the less parameter gives the less calculation time with performing the numerical analysis. Of course it looks 6 parameters are little bit large number.

In order to reduce the arbitrary parameters, I put 4 boundary conditions.

Each boundary conditions fixed resonant peaks and valleys; first peak=11MHz, third peak=55MHz, first valley=19MHz, second valley=44MHz.

designed.png

So now the remaining arbitrary parameters successfully get reduced to 2. Only we have to do is optimize the second peak as it to be 29.5MHz.

Then I take C1 and C2 as free parameters seeing how the second peak agree with 29.5MHz by changing the value of the C1 and C2.

mont.png

the red color represents the good agreement with 29.5MHz, in contrast blue contour represents the bad.

 You can see some best choice along the yellow belt. Now what we should do is to examine some of that and to select one of those.

  2263   Fri Nov 13 05:03:09 2009 kiwamuUpdateElectronicsmulti-resonant EOM --- input impedance of LC tank ----

I measured the input impedance of the LC tank circuit with the transformer. The result is attached.

It looks interesting because the input impedance is almost dominated

by the primary coil of the transformer with inductance of 75nH (see attachment 1).

The impedance at the resonance is ~100 [Ohm], I think this number is quite reasonable because I expected that as 93 [Ohm]

 

Note that the input impedance can be derived as follower;

(input impedance) = L1 + Z/n^2.

Where L1 is the inductance of the primary coil, Z is the load in the secondary loop and n is the turn ratio.

 

I think now I am getting ready to enter the next phase \(^o^)/

Attachment 1: input_impedance.png
input_impedance.png
Attachment 2: input_impedance2.png
input_impedance2.png
  2262   Fri Nov 13 03:38:47 2009 kiwamuUpdateElectronicsmulti-resonant EOM --- impedance of LC tank circuit ----

I have measured the impedance of the LC tank circuit which I referred on my last entry.

The configuration of the circuit is exactly the same as that time.

In order to observe the impedance, by using Koji's technique I injected a RF signal into the output of the resonant circuit.

In addition I left the input opened, therefore the measured impedance does not include the effect of the transformer.

 

- - - - - - - - - - - - results

The measured impedance is attached below; "LCtank_impedance.png"

The peak around 50MHz is the main resonance and it has impedance of ~1500 [Ohm], which should go to infinity in the ideal case (no losses).

In fact the impedance looked from the input of the circuit gets reduced by 1/n^2, where "n" is the turn ratio of the transformer.

By putting the n=4, the input impedance of the circuit should be 93 [Ohm]. This is a moderate value we can easily perform impedance-matching by some technique.

I also fitted the data with a standard model of equivalent circuit (see attachment 2).

In the figure.2 red component and red letter represents the design. All the other black stuff are parasites.

But right now I have no idea the fitted value is reasonable or not.

For the next I should check the input impedance again by the direct way; putting the signal into the input.

 

 

 

Attachment 1: LCtank_impedance.png
LCtank_impedance.png
Attachment 2: LCtank_model.png
LCtank_model.png
  346   Thu Feb 28 19:37:41 2008 robConfigurationComputersmultiple cameras running and seisBLRMS

Quote:
1) Mafalda is now connected via an orange Cat5E ethernet cord to the gigabit ethernet switch in rack in the office space. It has been labeled at both ends with "mafalda".

2) Both the GC650M camera (from MIT) and the GC750M are working. I can run the sampleviewer code and get images simultaneously. Unforutnately, the fps on both cameras seems to drop roughly in half (not an exact measurement) when displaying both simultaneously at full resolution.

3)Discovered the Gigabit ethernet card in Mafalda doesn't support jumbo packets (packets of up to 9k bytes), which is what they recommend for optimum speed.

4)However, connecting the cameras through only gigabit switches to Mafalda did seem to increase the data rate anyways, roughly by a factor of 2. (Used to take about 80 seconds to get 1000 frames saved, now takes roughly 40 seconds).

5)Need to determine the bottleneck on the cameras. It may be the ethernet card, although its possible to connect multiple gigabit cards to single computer (depending on the number of PCI slots it has). Given the ethernet cards are cheap ($300 for 20) compared to even a single camera (~$800-1500), it might be worth while outfitting a computer with multiple.


I found the SampleViewer running and displaying images from the two cameras. This kept mafalda's network so busy that the seisBLRMS program fell behind by a half-hour from its nominal delay (so 45 minutes instead of 12), and was probably getting steadily further behind. I killed the SampleViewer display on linux2, and seisBLRMS is catching up.
  6152   Tue Dec 27 22:17:56 2011 kiwamuUpdateLSCmultiple-LOCKIN new screens

Some new screens have been made for the new multiple-LOCKIN system running on the LSC realtime controller.

The medm screens are not so pretty because I didn't spend so long time for it, but it is fine for doing some actual measurements with those new screens.

So the basic works for installing the multiple-LOCKIN are done.

 

 The attached figure is a screen shot of the LOCKIN overview window.

As usual most of the components shown in the screen are clickable and one can go to deeper levels by clicking them. 

Untitled.png

Quote from #6150
The multiple LOCKIN module has been newly added on the LSC realtime model.
I will make some MEDM screens for this multiple-LOCKIN system.

  6150   Mon Dec 26 14:01:45 2011 kiwamuUpdateLSCmultiple-LOCKIN newly added
The multiple LOCKIN module has been newly added on the LSC realtime model.
The purpose is to demodulate ALL the LSC sensors at once while a particular DOF is excited by an oscillator.
So far the model has been successfully compiled and running okay.
I will make some MEDM screens for this multiple-LOCKIN system.
 

(Some details)

The picture below is a screen shot of the LSC real time model, zoomed in the new LOCKIN part.

multiple-lockin.png

The LOCKIN module consists of three big components:

  1. A Master oscillator
    • This shakes a desired DOF through the LSC output matrix and provides each demodulator with sine and cosine local oscillator signals.
    • This part is shown in the upper side of the screen shot.
    • The sine and cosine local oscillator signals appear as red and blue tags respectively in the screen shot.
  2. An input matrix
    • To allow us to select the signals that we want to demodulate.
    • This is shown in the left hand side of the screen shot.
  3. Demodulators
    • These demodulators demodulate the LSC sensor signals by the sine and cosine signals provided from the master oscillator.
    • With the input matrix fully diagonalized, one can demodulate all the LSC signals at once.
    • The number of demodulators is 27, which corresponds to that of available LSC error signals (e.g. AS55_I, AS55_Q, and etc.).
    • This part is shown in the middle of the screen shot.
  7457   Mon Oct 1 16:05:01 2012 jamieUpdateCDSmx stream restart required on all front ends

For some reason the frame builder and mx stream processes on ALL front ends were down.  I restarted the frame builder and all the mx_stream processes and everything seems to be back to normal.  Unclear what caused this.  The CDS guys are aware of the issue with the mx_stream stability and are working on it.

  11103   Thu Mar 5 19:13:17 2015 ranaUpdateCDSmxStream all restart at ~7:10 pm
  6609   Sun May 6 00:11:00 2012 DenUpdateCDSmx_stream

c1sus and c1iscex computers could not connect to framebuilder, I restarted it, did not help. Then I restarted mx_stream daemon on each of the computers and this fixed the problem.

sudo /etc/init.d/mx_stream restart

  9825   Thu Apr 17 17:15:54 2014 jamieUpdateCDSmx_stream not starting on c1ioo

While trying to get dolphin working on c1ioo, the c1ioo mx_stream processes mysteriously stopped working.  The mx_stream process itself just won't start now.  I have no idea why, or what could have happened to cause this change.  I was working on PCIe dolphin stuff, but have since backed out everything that I had done, and still the c1ioo mx_stream process will not start.

mx_stream relies on the open-mx kernel module, but that appears to be fine:

controls@c1ioo ~ 0$ /opt/open-mx/bin/omx_info  
Open-MX version 1.3.901
 build: root@fb:/root/open-mx-1.3.901 Wed Feb 23 11:13:17 PST 2011

Found 1 boards (32 max) supporting 32 endpoints each:
 c1ioo:0 (board #0 name eth1 addr 00:14:4f:40:64:25)
   managed by driver 'e1000'
   attached to numa node 0

Peer table is ready, mapper is 00:30:48:d6:11:17
================================================
  0) 00:14:4f:40:64:25 c1ioo:0
  1) 00:30:48:d6:11:17 c1iscey:0
  2) 00:25:90:0d:75:bb c1sus:0
  3) 00:30:48:be:11:5d c1iscex:0
  4) 00:30:48:bf:69:4f c1lsc:0
controls@c1ioo ~ 0$ 

However, if trying to start mx_stream now fails:

controls@c1ioo ~ 0$ /opt/rtcds/caltech/c1/target/fb/mx_stream -s c1x03 c1ioo c1als -d fb:0
c1x03
mmapped address is 0x7f885f576000
mapped at 0x7f885f576000
send len = 263596
OMX: Failed to find peer index of board 00:00:00:00:00:00 (Peer Not Found in the Table)
mx_connect failed
controls@c1ioo ~ 1$ 

I'm not quite sure how to interpret this error message.  The "00:00:00:00:00:00" has the form of a 48-bit MAC address that would be used for a hardware identifier, ala the second column of the OMC "peer table" above, although of course all zeros is not an actual address.  So there's some disconnect between mx_stream and the actually omx configuration stuff that's running underneath.

Again, I have no idea what happened.  I spoke to Rolf and he's going to try to help sort this out tomorrow.

Attachment 1: c1ioo_no_mx_stream.png
c1ioo_no_mx_stream.png
  9830   Fri Apr 18 14:00:48 2014 rolfUpdateCDSmx_stream not starting on c1ioo

 

 To fix open-mx connection to c1ioo, had to restart the mx mapper on fb machine. Command is /opt/mx/sbin/mx_start_mapper, to be run as root. Once this was done, omx_info on c1ioo computer showed fb:0 in the table and mx_stream started back up on its own. 

  9831   Fri Apr 18 19:05:17 2014 jamieUpdateCDSmx_stream not starting on c1ioo

Quote:

To fix open-mx connection to c1ioo, had to restart the mx mapper on fb machine. Command is /opt/mx/sbin/mx_start_mapper, to be run as root. Once this was done, omx_info on c1ioo computer showed fb:0 in the table and mx_stream started back up on its own. 

Thanks so much Rolf (and Keith)!

  9826   Thu Apr 17 17:22:32 2014 JenneUpdateCDSmx_stream not starting on c1ioo, locking okay

Jamie tells me that the 2 big consequences of this are (a) we are not archiving any data that is collected on the ioo machine, and (b) that we will not have access to test points on the IOO or ALS models.

To make sure that this is not a show-stopper for locking, I have locked the arms using ALS.  The signals seem to still be getting from the ALS model to the LSC model, and I'm able to acquire ALS lock, so we should be able to work tonight.  All of the data that I have been looking at lately has been coming off of the LSC machine, so we should even be okay in terms of look-back for lockloss studies, etc.

 

  6778   Thu Jun 7 03:37:26 2012 yutaUpdateCDSmx_stream restarted on c1lsc, c1ioo

c1lsc and c1ioo computers had FB net statuses all red. So, I restarted mx_stream on each computer.

ssh controls@c1lsc
sudo /etc/init.d/mx_stream restart

  6761   Wed Jun 6 00:37:11 2012 JenneUpdateComputersmx_stream restarted on iscey, sus

Just as Yuta and I were sitting down to look at our beatnote (really the output of the freq discriminator) on Dataviewer, all the FB net boxes on the CDS status screen were white.  I restarted daqd, and most of the computers came back fine.  c1iscey and c1sus still had some red bad boxes.  So I restarted mx_stream on both, and they are now fine.

Somehow, this also fixed whatever I had done to the lsc model yesterday (although I think TRY is still not recorded at this time - not messing with it yet).

  7612   Wed Oct 24 19:55:06 2012 jamieUpdate my assesment of the folding mirror (passive tip-tilt) situation

We removed all the folding mirrors ({P,S}R{2,3}) from the IFO and took them into the bake lab clean room.  The idea was that at the very least we would install the new dichroic mirrors, and then maybe replace the suspension wires with thinner ones.

I went in to spend some quality time with one of the tip-tilts.  I got the oplev setup working to characterize the pointing.

I grabbed tip-tilt SN003, which was at PR2.  When I set it up it  was already pointing down by a couple cm over about a meter, which is worse than what we were seeing when it was installed.  I assume it got jostled during transport to the clean room?

I removed the optic that was in there and tried installing one of the dichroics.  It was essentially not possible to remove the optic without bending the wires by quite a bit (~45 degrees).  I decided to remove the whole suspension system (top clamps and mirror assembly) so that I could lay it flat on the table to swap the optic.

I was able to put in the dichroic without much trouble and get the suspension assembly back on to the frame.  I adjusted the clamp at the mirror mount to get it hanging back vertical again.  I was able to get it more-or-less vertical without too much trouble.

I poked at the mirror mount a bit to see how I could affect the hysteresis.  The answer is quite a bit, and stochastically.  Some times I would man-handle it and it wouldn't move at all.  Sometimes I would poke it just a bit and it would move by something like a radian.

A couple of other things I noted:

  • The eddy current damping blocks are not at all suspended.  The wires are way too think, so they're basically flexures.  They were all pretty cocked, so I repositioned them by just pushing on them so they were all aligned and centered on the mirror mount magnets.
  • The mirror mounts are very clearly purposely made to be light.  All mass that could be milled out has been.  This is very confusing to me, since this is basically the entire problem.  Why were they designed to be so light?  What problem was that supposed to solve?

I also investigated the weights that Steve baked.  These won't work at all.  The gap between the bottom of the mirror mount and the base is too small.  Even the smalled "weights" would hit the base.  So that whole solution is a no-go.

What else can we do?

At this point not much.  We're not going to be able to install more masses without re-engineering things, which is going to take too much time.  We could install thinner wires.  The wires that are being used now are all 0.0036", and we could install 0.0017" wires.  The problem is that we would have to mill down the clamps in order to reuse them, which would be time consuming.

The plan

So at this point I say we just install the dichroics, get them nicely suspended, and then VERY CAREFULLY reinstall them.  We have to be careful we don't jostle them too much when we transport them back to the IFO.  They look like they were too jostled when they were transported to the clean room.

My big question right now is: is the plan to install new dichroics in PR2 and SR2 as well, or just in PR3 and SR3, where the green beams are extracted?  I think the answer is no, we only want to install new dichroics in {P,S}R3.

The future

If we're going to stick with these passive tip-tilts, I think we need to consider machining completely new mirror mounts, that are not designed to be so light.  I think that's basically the only way we're going to solve the hysteresis problem.

I also note that the new active tip-tilts that we're going to use for the IO steering mirrors are going to have all the same problems.  The frame is taller, so the suspensions are longer, but everything else, including the mirror mounts are exactly the same.  I can't see that they're not going to suffer the same issues.  Luckily we'll be able to point them so I guess we won't notice.

  7617   Thu Oct 25 02:10:22 2012 KojiUpdate my assesment of the folding mirror (passive tip-tilt) situation

The thinner wire has a history that it did not improve the hysteresis (ask Jenne). Nevertheless, it's worth to try.

If you flip the clamp upside-down, you can lift the clamping point up. This will make the gravity restoring torque stronger.
(i.e. Equivalent effect to increasing the mass)

Luckily (or unluckily) the clamp has no defined location for the wire as we have no wire fixture.
Therefore the clamp will grab the wire firmly even without milling.

  7618   Thu Oct 25 06:49:49 2012 KojiUpdate my assesment of the folding mirror (passive tip-tilt) situation

Quote:

My big question right now is: is the plan to install new dichroics in PR2 and SR2 as well, or just in PR3 and SR3, where the green beams are extracted?  I think the answer is no, we only want to install new dichroics in {P,S}R3.

 Why not? The new dichroic mirrors have more transmission of 1064nm than G&H. Thus it will give us more POP beam and will help locking.

  7619   Thu Oct 25 08:04:45 2012 SteveUpdateSUSmy assesment of the folding mirror (passive tip-tilt) situation

Quote:

The thinner wire has a history that it did not improve the hysteresis (ask Jenne). Nevertheless, it's worth to try.

If you flip the clamp upside-down, you can lift the clamping point up. This will make the gravity restoring torque stronger.
(i.e. Equivalent effect to increasing the mass)

Luckily (or unluckily) the clamp has no defined location for the wire as we have no wire fixture.
Therefore the clamp will grab the wire firmly even without milling.

 The wire clamps should be taken off at the top and at the mirror holder. They need a mill touch up. It would be nice to have the centering jig from LLO for the 0.0017"

The clamps in this condition are really bad. It can sleep, it is not adjustable.

 

Attachment 1: IMG_1748.JPG
IMG_1748.JPG
  6810   Wed Jun 13 02:11:59 2012 yutaUpdateGreen Lockingmy first modescan (sort of)

I stabilized Y arm length by using only I phase coarse signal from the beat(C1:ALS-BEATY_COARSE_I_ERR).
I sweeped the arm length by injecting 0.05Hz sine wave from C1:ALS_OFFSETTER2_EXC.
Below is the plot of TRY and the error signal(ideally, Y arm length) while the sweep.

modescan20120612_1.png

I couldn't hold the arm length tight, so you can see multiple peaks close to each other.
We need to
  - adjust offsets
  - adjust rotation phase of I-Q mixing
  - adjust servo filters

to hold the length tighter.

Also, I couldn't sweep the Y arm length very much. I need to calibrate, but to do the modescan for many FSRs, we need to
  - introduce automatic phase optimizing system
There were sin/cos function in the CDS_PARTS, so I think we can feedback I_ERR to control rotation phase of I-Q mixing.

  6811   Wed Jun 13 02:24:02 2012 ranaUpdateGreen Lockingmy first modescan (sort of)

 That sounds goofy.

With the delay line technique, you can get a linear signal over 50 MHz with no phase shifting. What is with all this I/Q stuff?

  6812   Wed Jun 13 03:03:38 2012 yutaUpdateGreen Lockingmy first modescan (sort of)

Linear range df of the delay line technique is about df ~ c/(2D). So, the linear range for the fine signal(delay line length D=30m) is about 5 MHz.
Arm cavity FSR = c/(2L) = 3.7 MHz.
So, I think we need phase shifting to do mode scan for more than 2 FSRs by holding the arm length finely with fine servo.
For the coarse (D=1.5m), the linear range is about 100 MHz, so if we can do mode scan using coarse servo, it is OK.

In any case, I think it is nice to have linear signal with fixed slope even if we don't adjust the phase every time.

Quote:

 That sounds goofy.

With the delay line technique, you can get a linear signal over 50 MHz with no phase shifting. What is with all this I/Q stuff?

 

ELOG V3.1.3-