40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 299 of 336  Not logged in ELOG logo
ID Date Author Type Category Subject
  1911   Sat Aug 15 18:35:14 2009 ClaraFrogsComputersHow far back is complete data really saved? (or, is the cake a lie?)

I was told that, as of last weekend, we now have the capability to save full data for a month, whereas before it was something like 3 days. However, my attempts to get the data from the accidentally-shorted EW2 channel in the Guralp box have all been epic failures. My other data is okay, despite my not saving it for several days after it was recorded. So, my question is, how long can the data actually be saved, and when did the saving capability change?

  1910   Sat Aug 15 10:36:02 2009 AlanHowToComputersnodus boot procedure

Quote:
The restart procedures for the various processes running on nodus are explained here:

http://lhocds.ligo-wa.caltech.edu:8000/40m/Computer_Restart_Procedures#nodus

Please go through those steps when you reboot nodus, or notice it rebooted then elog it.
I did these this time.


fb40m was also rebooted. I restarted the ssh-agent for backup of minute-trend and /cvs/cds.
  1909   Sat Aug 15 05:08:55 2009 YoichiUpdateLockingFriday night locking
Summary: DD hand off fails for DRFPMI.

Tonight, I did a lot of house keeping work.

(1) I noticed that the reference cavity (RC) was locked to TEM10.
This was probably the reason why we had to increase the FSS common gain.
I re-locked the RC to TEM00. Now the common gain value is back to the original.

(2) The MC WFS did not engage. I found that c1dcuepics had the /cvs/cds mounting problem.
I rebooted it. Then MC WFS started working.

(3) After checking that the MC WFS QPDs are centered for direct reflection (the MZ half fringe method),
I locked the MC and tweaked the mirror alignment (mainly MC3) to offload the WFS feedback signals.
Now the MC locks to TEM00 robustly.

(4) Since the MC mirror alignment is touchy recently, I did not like the idea of mis-aligning MC2
when you do the LSC PD offset adjustment. So I modified the LSCoffset script so that it will close
the PSL shutter instead of mis-aligning MC2.

(5) I changed the PD11_Q criteria for success in the alignment scripts because PD11_Q is now lower
than before due to the lower laser power.

(6) Since today's bootfest, some epics values were not properly restored. Some of the PD gains were
unmatched between I and Q. I corrected these with the help of conlog.

(7) By checking the open loop TFs, I found that the short DOFs have significantly lower UGFs than before,
probably due to the lower laser power. I increased the gains of MICH, PRCL and SRCL by a factor of 2 for
the full configuration.
For the DRM configuration the changes I made were:

PRC -0.15 -> -0.3
SRC 0.2 -> 0.6
MICH 0.5 -> 0.5

(8) I locked the DRFPMI with arm offsets, then adjusted the demodulation phases of PD6,PD7,PD8 and PD9 (DD PDs)
to minimize the offsets in the error signal, while locked with the single demodulation signals.

Change log:
PD6_PHASE 201 -> 270
PD7_PHASE 120 -> 105
PD8_PHASE 131 -> 145
PD9_PHASE -45 -> -65


(9) I ran senseDRM to get the sensing Matrix for the short DOFs using DD signals in DRM configuration.

(10) Still the DD hand off fails for DRFPMI. It succeeds for DRM.
  1908   Fri Aug 14 23:45:14 2009 ChrisUpdateGeneralLong Range Readout

The EUCLID-style Michelson readout is on the SP table now and is aligned.  See image below.  I took several power spectra with the plotter attached to the HP3563 (not sure if there's another way to get the data out) and I'm still waiting to calibrate (since dP/dL isn't constant as it isn't locked, this is taking a bit longer).  When put into XY mode on the oscilliscope (plotting Voltage at PD2 on the x and Voltage at PD3 on the y), a Lissajous figure as in the first plot below.  It's offset and elliptical due to imperfections (noise, dc offset, etc) but can ideally be used to calculate the L_ target mirror movement.  By rotating the first quarter wave plate by ~80.5deg counter-clockwise (fast axis was originally at Pi/8, now at 103deg), I was able to turn the Lissajous figure from an ellipse into a more circular shape, which would ideally allow for us to use a circular approximation (much simpler) in our displacement calculations.

Attachment 1: Table_Setup.png
Table_Setup.png
Attachment 2: Ellipse.jpg
Ellipse.jpg
Attachment 3: Circle.jpg
Circle.jpg
  1907   Fri Aug 14 18:33:02 2009 ClaraUpdate Record of Accelerometer and Seismometer Movements

Rather than make a new elog post every time I move something, I'm going to just keep updating this Google spreadsheet, which ought to republish every time I change it. It's already got everything I've done for the past week-ish. The spreadsheet can be accessed here, as a website, or here, as a pdf. I will still post something nightly so that you don't have to search for this post, but I wanted to be able to provide more-or-less real-time information on where things are without carpet-bombing the elog.

  1906   Fri Aug 14 15:32:50 2009 YoichiHowToComputersnodus boot procedure
The restart procedures for the various processes running on nodus are explained here:

http://lhocds.ligo-wa.caltech.edu:8000/40m/Computer_Restart_Procedures#nodus

Please go through those steps when you reboot nodus, or notice it rebooted then elog it.
I did these this time.
  1905   Fri Aug 14 15:29:43 2009 JenneUpdateComputersc1susvme2 was unmounted from /cvs/cds

When I came in earlier today, I noticed that c1susvme2 was red on the DAQ screens.  Since the vme computers always seem to be happier as a set, I hit the physical reset buttons on sosvme, susvme1 and susvme2.  I then did the telnet or ssh in as appropriate for each computer in turn.  sosvme and susvme1 came back just fine. However, I couldn't cd to /cvs/cds/caltech/target/c1susvme2 while ssh-ed in to susvme2.  I could cd to /cvs/cds, and then did an ls, and it came back totally blank.  There was nothing at all in the folder. 

Yoichi showed me how to do 'df' to figure out what filesystems are mounted, and it looked as though the filesystem was mounted.  But then Yoichi tried to unmount the filesystem, and it claimed that it wasn't mounted at all.  We then remounted the filesystem, and things were good again.  I was able to continue the regular restart procedure, and the computer is back up again.

Recap: c1susvme2 mysteriously got unmounted from /cvs/cds!  But it's back, and the computers are all good again.

  1904   Fri Aug 14 15:20:42 2009 josephbSummaryComputersLinux1 now has 1.5 TB raid drive

Quote:

Quote:

nodus was rebooted by Alex at Fri Aug 14 13:53. I launched elogd.

cd /export/elog/elog-2.7.5/
./elogd -p 8080 -c /export/elog/elog-2.7.5/elogd.cfg -D

 It looks like Alex also rebooted all of the control room computers.  Or something.  The alarm handler and strip tool aren't running.....after I fix susvme2 (which was down when I got in earlier today), I'll figure out how to restart those.

 Alex switched the mount point for /cvs/cds on Linux1 to the 1.5 TB RAID array after he finished copying the data from old drives.  This required a reboot of linux1, with all the resulting /cvs/cds mount points on the other computers becoming stale.  Easiest way to fix that he found was to do a reboot of all the control room machines.  In addition, a reboot fest should probably happen in the near futuer for all the front end machines since they will also have stale mount points as well from linux1.

The 1.5 TB RAID array mount is now mounted on /home of linux1, which was the old mount point of the ~300 GB drive.  The old drive is now at /oldhome on linux1.

 

  1903   Fri Aug 14 14:33:51 2009 JenneSummaryComputersnodus rebooted

Quote:

nodus was rebooted by Alex at Fri Aug 14 13:53. I launched elogd.

cd /export/elog/elog-2.7.5/
./elogd -p 8080 -c /export/elog/elog-2.7.5/elogd.cfg -D

 It looks like Alex also rebooted all of the control room computers.  Or something.  The alarm handler and strip tool aren't running.....after I fix susvme2 (which was down when I got in earlier today), I'll figure out how to restart those.

  1902   Fri Aug 14 14:19:25 2009 KojiSummaryComputersnodus rebooted

nodus was rebooted by Alex at Fri Aug 14 13:53. I launched elogd.

cd /export/elog/elog-2.7.5/
./elogd -p 8080 -c /export/elog/elog-2.7.5/elogd.cfg -D

  1901   Fri Aug 14 10:39:50 2009 josephbConfigurationComputersRaid update to Framebuilder (specs)

The RAID array servicing the Frame builder was finally switched over to JetStor Sata 16 Bay raid array. Each bay contains a 1 TB drive.  The raid is configured such that 13 TB is available, and the rest is used for fault protection.

The old Fibrenetix FX-606-U4, a 5 bay raid array which only had 1.5 TB space, has been moved over to linux1 and will be used to store /cvs/cds/.

This upgrade provides an increase in look up times from 3-4 days for all channels out to about 30 days.  Final copying of old data occured on August 5th, 2009, and was switched over on that date.

  1900   Fri Aug 14 02:57:46 2009 ClaraUpdatePEMRedo of the Huddle Test

I put all three seismometers and all six accelerometers together in the foam box with peanuts. Three of the accelerometers are facing in the x-direction and three are in the y-direction. Both Guralps are aligned on the NS axis and the Ranger is pointing vertically.

**EDIT: The accelerometers are in the x and z directions, not x and y. Sorry, I was sleepy when I wrote this.**

One of the accelerometers was refusing to show anything, and after a few hours of checking connections and swapping cables, I discovered that someone had unplugged the cable from the ADC. A quick glance in the dataviewer shows that the channel has been unplugged since about 3 in the afternoon on August 8th (Saturday). So... obviously all the accelerometer measurements made with that channel since then did not actually get recorded. Yay.

Anyway, as of 2:45, everything is working and taking data. Clearly we're not getting a full night's worth... hopefully that's okay.

  1899   Thu Aug 13 22:53:48 2009 YoichiConfigurationPSLFSS nominal common gain changed, MC WFS centered

Koji, Yoichi

We found that the FSS PC feedback easily goes crazy (saturated).
It was because the common gain was too low. Probably the recent decrease of the
laser power is responsible for this.
We increased the nominal value of the common gain from 12 to 16.5.
The value was chosen just to make the PC path quiet. We should check
the FSS UGF later.
 
The MC WFS QPDs seemed off centered. So we unlocked the MC and lowered
the input power by the usual MZ half fringe technique.
Actually, the direct reflection beam was not much off the center. In anyway, we adjusted
the beam to the exact center of the QPDs.
The MC now locks fine.

 

  1898   Thu Aug 13 11:20:43 2009 janoschHowToPEMthree-channel self-noise estimation

There are two new Matlab files on the svn in /mDV/extra/C1. 'mycsd.m' is to calculate the cross-spectral density between two channels, 'csd_40T_40T_SS1.m' calls this function with the available seismic channels and derives a self-noise spectrum for the vertical axis using all three seismometers. The method requires that there are no correlations between two instruments only which is a bad idealization for certain frequencies if you have seismometers of totally different types.

'mycsd.m' uses the high-gain, low-resolution Nuttall window (built-in Matlab function 'nuttallwin.m'). High-gain windows are used for broad-band spectra like seismic spectra, but it should be exchanged by another window if you plan to look at small-bandwidth features like peaks.

Since the three-channel analysis does not require knowledge of response functions, it could be used to evaluate the performance of the adaptive filter. For example, if three channels responding to the same signal are available, then the ratio of any two csds corresponds to one of the relative transfer functions. You can then compare this function with the result produced by the adaptive filter.

  1897   Thu Aug 13 09:22:06 2009 ranaUpdatePEMranger

Rana, Jan, Jenne

We noticed that the Ranger data was all bogus at low frequencies. So we checked it and found that the proper procedure had not been used when changing it from horizontal to vertical last week. So the huddle test data from the weekend is not valid for the ranger; we will have to repeat it sometime.

So we used the manual, and extended the hanger rod on top of the Ranger to free the mass. It now has good response and coherence with the Guralps down to 0.1 Hz. See attached plot soon.

 

  1896   Thu Aug 13 02:17:56 2009 JenneUpdateIOOMode Cleaner Alignment

When Rob and I were getting started on locking for the evening, Mode Cleaner lost lock a few times, but every time it lost lock, it took forever to reaquire, and was pretty insistent on locking in the TEM10 mode.  I proposed that the alignment might be sketchy.  I've been fiddling with the MC alignment sliders for the last hour and a half or so, but I think I'm not 100% in tune with the 3 mirror parameter space.  The mode cleaner now locks, but I'm not in love with its' alignment.  The WFS are definitely catywhompus.  Before doing hardware things like recentering the WFS, I'm going to wait until tomorrow to consult with an alignment expert.

In case this is helpful for tomorrow, before I touched any of the sliders:

Optic, Pitch, Yaw

MC1, 3.1459, -0.7200

MC3, -0.8168, -3.0700

MC2, 3.6360, -1.0576

 

Now that mode cleaner locks, although not in a great alignment:

MC1, 3.1089, -0.7320

MC3, -0.7508, -3.0770

MC2, 3.6610, -1.0786

 

If I knew how to kill my script to unlock the mode cleaner, I would.  But I sourced it, and Rob didn't know earlier this evening how to kill something which is started with 'source' since it doesn't seem to get a process number like when you './'  to run a script. So the Mode Cleaner will probably be unlocked in the morning, and it may be persnickity to get it relocked, especially if the tree people are doing tree things with giant trucks again in the morning.

  1895   Thu Aug 13 00:11:43 2009 JenneUpdateIOOMode Cleaner Unlock

So that I can collect a bit of free-swinging Mode Cleaner data, I started a script to wait 14400 seconds (4 hours), then unlock the mode cleaner.  It should unlock the MC around 4am.  As soon as someone gets in in the morning, you can relock it.  I should have plenty of data by then.

  1894   Wed Aug 12 23:45:03 2009 ChrisUpdateGeneralLong range michelson

Today I set up the EUCLID long range michelson design on the SP table; It's the same as the setup posted earlier, but without the pickoff (at PD1), which can be added later, and a few other minor changes (moved lenses, mirrors, PDs - nothing major).  I hooked up the two PD's to the oscilliscope and got a readout that pointed to more power hitting PD2 than PD3.

Attachment 1: Actual_Sensor.png
Actual_Sensor.png
  1893   Wed Aug 12 15:02:33 2009 AlbertoConfigurationComputerselog restarted

In the last hour or so the elog crashed. I  have restarted it.

  1892   Wed Aug 12 13:35:03 2009 josephb, AlexConfigurationComputersTested old Framebuilder 1.5 TB raid array on Linux1

Yesterday, Alex attached the old frame builder 1.5 TB raid array to linux1, and tested to make sure it would work on linux1.

This morning he tried to start a copy of the current /cvs/cds structure, however realized at the rate it was going it would take it roughly 5 hours, so he stopped.

Currently, it is planned to perform this copy on this coming Friday morning.

  1891   Wed Aug 12 12:08:16 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I measured the magnitude of modulation as a function of frequency using the optical spectrum analyzer and an oscilloscope while generating signals using a Marconi signal generator; the results are shown in the attached plot and are compared to the expected modulation given the measured transfer function of the circuit and the nominal modulation index of the EOM used (13 mrad/V). Using the oscilloscope, I found the resonant peaks to be at 11.11 MHz, 29.57 MHz, and 54.70 MHz. There are several different colors on the plot; this is because I had to take the data in several different segments and had to switch to measuring a different sideband partway through the measurment. I also separately found the modulation at each resonant peak for each sideband. The magnitude of modulation was measured  by finding the ratio between the magnitude of the carrier and sideband powers using an oscilloscope, and calculating the magnitude of modulation from this. This method was also used to quantify the dependence of modulation magnitude on input power at each resonant peak; these results are also attached. These same results can also be plotted as modulation magnitude as a function of voltage into the resonant circuit; this is also attached (I'm not sure which is more useful).

In order to produce these results (get the measurements in mrad/V) it was necessary to measure the gain of the amplifier. I used the signal generator to input signals of varying power and measured the output signal voltage using the oscilloscope; I then repeated this process at each resonant frequency. From this I was able to calculate the gain of the amplifier to be 28.1 dB at 11.11 MHz, 27.4 dB at 29.57 MHz, and 25.7 dB at 54.70 MHz. These values are in the same ballpark as the values in the Mini Circuits data sheet (all values are ~25-28 MHz).

Attachment 1: Modulation.png
Modulation.png
Attachment 2: Linearity.png
Linearity.png
Attachment 3: Linearity_V.png
Linearity_V.png
  1890   Wed Aug 12 10:35:17 2009 jenneSummaryComputersNodus rebooted / SVN down

Quote:

Looks like someone rebooted nodus at ~3 PM today but did not elog it. Also the SVN is not running. Why?

 The Nodus business was me....my bad.  Nodus and the elog were both having a bad day (we couldn't ssh into nodus from op440m (which doesn't depend on the names server)), so I called Alex, and he fixed things, although I think that all he did was reboot.  I then restarted the elog per the instructions on the wiki.

 

  1889   Wed Aug 12 02:00:32 2009 robUpdateLockingreport

Spent a lot of time aligning tonight.  The BS is not staying put--sometimes after a lock loss it gets badly mis-aligned. 

DD handoff is working, after putting beam on REFL diodes and running senseDRM script.

  1888   Tue Aug 11 23:55:04 2009 rana, richSummaryOMCQuantum Efficiency and Dark Current measurements of eLIGO Photodiodes

Rich Abbott, Rana

Summary: We found that the 3mm InGaAs photodiodes from eGTRAN which are being used for the DC Readout in eLIGO are bad. The QE is ~50%. We will have to replace them ASAP.

Valera and Nic Smith have pointed out out a factor of ~2 discrepancy between the estimated power transmission to the dark port in H1 and L1. So we decided to measure the QE of the accused diodes.

 The data of the QE and dark current are attached here.

We used a 1064 nm CrystaLaser (which does not have a very stable power output). We attenuated the light with an ND1.0 for all measurements.

The photocurrent is estimated by reading out the voltage across one leg of the differential drive of the DC PD preamp. The photocurrent goes across a 100 Ohm resistor and then through 2 gain of  1 stages to get to this testpoint, so the overall transimpedance gain is 100 Ohms for this measurement.

By far, the Ophir power meter is the biggest source of error. Its absolute calibration is only 5% and the variation across the sensor face is ~5%. There are some hot and not hot spots on the face which can make even more variation, but we tried to avoid these.

We also inserted the power meter very close to the time when we read the voltage, so that the photocurrent and power estimates are made within 10 seconds of each other. This should reduce the error from the laser's power fluctuations.

All diodes still had the glass case on. We measured the reflected power to be ~5-7% of the incident power. This reflected power is NOT accounted for in these estimates.

 

Punch line: The eGTRAN diodes that we currently use are definitely bad. The JDSU and EG&G 2mm diodes have a better QE. We should immediately purchase 3 mm versions and get them cut and measured to be ready for the Sep. 1 commissioning surge.

Attachment 1: IMG_0135.png
IMG_0135.png
  1887   Tue Aug 11 23:17:21 2009 ranaSummaryComputersNodus rebooted / SVN down

Looks like someone rebooted nodus at ~3 PM today but did not elog it. Also the SVN is not running. Why?

  1886   Tue Aug 11 14:15:28 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I was able to observe the three sets of modulation sidebands created by the EOM + triply resonant circuit yesterday. Quantitative results will be posted later.

  1885   Tue Aug 11 02:15:20 2009 ClaraUpdatePEMGuralp breakout box circuit diagram

While writing my progress report, I redrew the Guralp breakout box circuit diagram with all the changes marked. Since only one hard copy exists, I thought it might be useful to post my drawing up in case it is needed for any reason. The two drawings are the same - the second has just been broken into two parts to make it easier to fit on a normal 8.5 x 11 or A4 sheet of paper. The gains for each opamp have not been marked, but they could very easily be added in if necessary. The black resistances and capacitances are the originals. All changes have been indicated in blue.

Guralp_circuit_whole.png

Guralp_circuit_broken.png

  1884   Tue Aug 11 01:21:55 2009 robUpdatePSLMZ needs some attention

the servo needs some work. 

 

2 day trend

 

Attachment 1: badMZservo.png
badMZservo.png
  1883   Mon Aug 10 20:49:13 2009 Alberto, RanaUpdatePSLPMC Mode Matching Lenses Tuning

Rana, Alberto

This afternoon we tried to improve the mode matching of the beam to the PMC. To do that we tuned the positions of the two lenses on the PSL table that come before the PMC.

We moved the first lens back an forth the without noticing any improvement on the PMC transmitted and reflected power. Then we moved the first backwards by about one cm (the order is set according to how the beam propagates). That made the things worse so we moved also the second lens in the same direction so that the distance in between the two didn't change significantly. After that, and some more adjustments on the steering mirrors all we could gain was about 0.2V on the PMC transmission.

We suspect that after the problems with the laser chiller of two months ago, the beam size changed and so the mode matching optics is not adequate anymore.

We have to replace the mode matching lenses with other ones.

 

  1882   Mon Aug 10 18:12:25 2009 JenneUpdatePEM2nd set of Guralp channels plugged into ADCU

Quote:

The second set of Guralp channels is now plugged into the PEM ADCU, into channels which are confirmed to be working.  (Method: 1Vpp sine wave into channel, check with DataViewer).

 

Direction, Channel Name, .ini chnum, BNC plug # on ADCU

Vertical: C1:PEM-SEIS_GUR_VERT, 15023, #24

N/S (should be Y when the seismometer is put in place): C1:PEM-TEMP_2, 15001, #2

E/W (should be X when the seismometer is put in place): C1:PEM-TEMP_3, 15002, #3

 

There is IFO work going on, so I don't want to rename the channels / restart fb40m until a little later, so I'll just use the old TEMP channel names for now. 

 

There is something totally wrong with the E/W channel.  I can look at all 3 channels on a 'scope (while it's on battery, so the op-amps in the breakout box aren't grounded), and VERT and NS look fine, and when I jump around ("seismic testing"), they show spikes.  But the EW channel's signal on the 'scope is way smaller, and it doesn't show anything when I jump. 

 

I might use the handheld Guralp tester breakout box to check the seismometer.  Also, a suspicion I have is that whoever put the box back in on Friday night after our final noise measurements left the inputs shorted for this one channel.  It's the 3rd channel in the set, so it would be most likely to be stuck shorted...  Investigations will ensue.

 All the channels are now good, and all the names are back to making sense. 

The problem with EW2 was in fact that the alligator clip used to short the inputs during the noise test Friday night was left in the box.  Not great, but now it's taken care of, and we have recorded data of the noise of the breakout box, so we can include that in our plots to see if we're at the limit of how good we can do at subtracting noise.

 

The channels are now named thusly:

C1:PEM-SEIS_GUR_VERT  (BNC input #24, .ini channel #15023)

C1:PEM-SEIS_GUR_EW     (BNC input #3, .ini channel #15002)

C1:PEM-SEIS_GUR_NS      (BNC input #2, .ini channel #15001)

C1:PEM-SEIS_MC1_X         (BNC input #11, .ini channel #15010)

C1:PEM-SEIS_MC1_Y        (BNC input #12, .ini channel #15011)

C1:PEM-SEIS_MC1_Z       (BNC input #10, .ini channel #15009)

C1:PEM-SEIS_MC2_Y (Ranger, which for the Huddle Test is oriented VERTICALLY)   (BNC input #4, .ini channel #15003)

 

Now we wait.....and tomorrow extract the noise of each of the seismometers from this!

 

 

  1881   Mon Aug 10 17:49:10 2009 peteUpdateComputersRCG work - plans

Pete, Koji

 

We discussed a preliminary game plan for this project.  The thing I really want to see is an ETMX RCG controller hooked into the existing frontend via reflective memory, and the 40 m behaving normally with this hybrid system, and my list is geared toward this.  I suspect the list may cause controversy.

+ copy the MDC filters into SAM, and make sure everything looks good there with DTT and SR785.

+ get interface / wiring boards from Wilson House, to go between megatron and the analog ETMX system

+ test tying the ETMX pendulum and bare-bones SAM together (use existing watchdogs, and "bare-bones" needs defining)

+ work some reflective memory magic and create the hybrid frontend

 

In parallel with the above, the following should also happen:

+ MEDM screen design

+ add non-linear bits to the ETMX MDP/MDC model system

+ make game plan for the rest of the RCG frontend

  1879   Mon Aug 10 17:36:32 2009 peteUpdateComputersRCG work. PIT, YAW, POS in MDP/MDC system

I've added the PIT and YAW dofs to the MDC and MDP systems.  The pendula frequencies in MDP are 0.8, 0.5, 0.6 Hz for POS, PIT, and YAW respectively.  The three dofs are linear and uncoupled, and stable, but there is no modeled noise in the system (yet) and some gains may need bumping up in the presence of noise.  The MDC filters are identical for each dof (3:0.0 and Cheby). The PIT and YAW transfer functions look pretty much like the one Rana recently took of POS, but of course with the different pendulum frequencies.  I've attached one for YAW.

Attachment 1: mdcmdpyaw.jpg
mdcmdpyaw.jpg
  1878   Mon Aug 10 17:27:47 2009 robConfigurationLSCTRX, TRY gain

 

These are the settings which determine the transmon (eg, TRX) amplitude, and which are updated by the matchTransMon scripts.

For the X arm

 

op440m:AutoDither>tdsread C1:LSC-TRX_GAIN C1:LSC-LA_PARAM_FLT_01 C1:LSC-LA_PARAM_FLT_00
0.0023
0.155
119.775

 

For the Y arm

op440m:AutoDither>tdsread C1:LSC-TRY_GAIN C1:LSC-LA_PARAM_FLT_04 C1:LSC-LA_PARAM_FLT_03
0.00237196
-0.116
19.9809


  1877   Mon Aug 10 16:41:31 2009 AlbertoConfigurationPSLPMC Visibility

Alberto, Rana

lately we've been trying to better understand what's preventing the arm power to get high again. Last week I tuned the MZ and the PMC but we didn't gain much, if nothing at all.
Yesterday I measured the transmissivity, the reflectivity and the visibility of the PMC.
 
From the voltages at the PMC-REFL PD when the PMC was locked and when it was out of lock I estimated the cavity visibility:
V_locked = 0.42V
V_unlocked = 1.64V -> V = (V_unlocked - V_locked) / V_unlocked = 75%

With the high power meter I measured the reflected power when the PMC was unlocked and used that to obtain the calibration of the PMC-REFL PD: 1.12V/W.

Since the locked-cavity reflected power can't be directly measured with a power meter (since that would use the cavity control signal), I estimated the reflected power by the calibration of the PMC-REFL PD. Then I measured the input and the transmitted power with a high-power meter.
Result:

P_in = 1.98W ; P_trans = 1.28W ; P_refl = 0.45W

From that I estimated that the losses account to 13% of the input power.

I checked both the new and the old elogs to see if such a measurement had ever been done but it doesn't seems so. I don't know if such a value for the visibility is "normal". It seems a little low. For instance, as a comparison, the MC visibility, is equal to a few percents.

Also Rana measured the transmitted power after locking the PMC on the TEM20-02: the photodiode on the MEDM screen read 0.325V. That means that a lot of power is going to that mode.

That makes us think that we're dealing with a mode matching problem with the PMC.

  1876   Mon Aug 10 16:37:27 2009 robUpdatePSLMZ alignment touched

I aligned the MZ.  The reflection went from .86 to .374

  1875   Mon Aug 10 15:56:12 2009 robSummaryPSLMZ bad redux

Quote:

I think the MZ pzt is broken/failing.  I'm not sure how else to explain this behavior.

 

The first bit of the time series is a triangle wave into the DC offset (output) field, over approximately the whole range (0-250V).   You can see the fringe visbility is quite small.  The triangle wave is stopped, and I then maxed out the offset slider to get to the "high" power point from the triangle wave sweep. Then for a little while with the PZT is held still, and the power still increases.  The MZ is then locked, and you can see the PZT voltage stay about the same but the power continues to rise over the next ~10 minutes or so.

 

 

 

This plot answers the previous question, and raises a new one--what the heck is MZTRANSPD?  I'd guess the pins are unconnected--it's just floating, and somehow picking up the MZ_PZT signal.

 

 

Attachment 1: badMZtrans.png
badMZtrans.png
  1874   Mon Aug 10 15:24:17 2009 robSummaryPSLMZ bad

I think the MZ pzt is broken/failing.  I'm not sure how else to explain this behavior.

The first bit of the time series is a triangle wave into the DC offset (output) field, over approximately the whole range (0-250V).   You can see the fringe visbility is quite small.  The triangle wave is stopped, and I then maxed out the offset slider to get to the "high" power point from the triangle wave sweep. Then for a little while with the PZT is held still, and the power still increases.  The MZ is then locked, and you can see the PZT voltage stay about the same but the power continues to rise over the next ~10 minutes or so.

Attachment 1: brokenMZpzt.png
brokenMZpzt.png
  1873   Mon Aug 10 15:21:15 2009 JenneUpdatePSLNon-Elogged Beam dump on the PSL table - BadBadBad

Quote:

Big thumbs down to whoever put a beam dump on the PSL table in front of the PMC yesterday afternoon without noting it in the elog

The offending beam dump has been removed, and the PMC relocked.

 Maybe it was Russell Crowe

  1872   Mon Aug 10 14:58:01 2009 JenneUpdatePEM2nd set of Guralp channels plugged into ADCU

The second set of Guralp channels is now plugged into the PEM ADCU, into channels which are confirmed to be working.  (Method: 1Vpp sine wave into channel, check with DataViewer).

 

Direction, Channel Name, .ini chnum, BNC plug # on ADCU

Vertical: C1:PEM-SEIS_GUR_VERT, 15023, #24

N/S (should be Y when the seismometer is put in place): C1:PEM-TEMP_2, 15001, #2

E/W (should be X when the seismometer is put in place): C1:PEM-TEMP_3, 15002, #3

 

There is IFO work going on, so I don't want to rename the channels / restart fb40m until a little later, so I'll just use the old TEMP channel names for now. 

 

There is something totally wrong with the E/W channel.  I can look at all 3 channels on a 'scope (while it's on battery, so the op-amps in the breakout box aren't grounded), and VERT and NS look fine, and when I jump around ("seismic testing"), they show spikes.  But the EW channel's signal on the 'scope is way smaller, and it doesn't show anything when I jump. 

 

I might use the handheld Guralp tester breakout box to check the seismometer.  Also, a suspicion I have is that whoever put the box back in on Friday night after our final noise measurements left the inputs shorted for this one channel.  It's the 3rd channel in the set, so it would be most likely to be stuck shorted...  Investigations will ensue.

  1871   Mon Aug 10 11:33:58 2009 JenneUpdatePSLNon-Elogged Beam dump on the PSL table - BadBadBad

Big thumbs down to whoever put a beam dump on the PSL table in front of the PMC yesterday afternoon without noting it in the elog

The offending beam dump has been removed, and the PMC relocked.

Attachment 1: commodusthumbsdown.jpg
commodusthumbsdown.jpg
  1870   Sun Aug 9 16:32:18 2009 ranaUpdateComputersRCG work. MDC MDP open loop transfer function

This is very nice. We have, for the first time, a real time plant with which we can test our changes of the control system. From my understanding, we have a control system with the usual POS/PIT/YAW matrices and filter banks. The outputs go to a separate real-time system which is running something similar and where we have loaded the pendulum TF as a filter. Cross-couplings, AA & AI filters, and saturations to come later.

The attached plot is just the same as what Peter posted earlier, but with more resolution. I drove at the input to the SUSPOS filter bank and measured the open loop with the loop closed. The loop wants an overall gain of -0.003 or so to be stable.

Attachment 1: a.png
a.png
  1869   Sat Aug 8 17:23:29 2009 ranaUpdatePEMoffensive 2 Hz sine wave removed

Friday, we were seeing a 2 Hz harmonic series in all of the PEM channels. Today I found that some bad person had put in a 4V (!) signal into one of the channels with a signal generator. The generator was also sneakily stuck way back inside the DCU rack. NO SECRET SIGNAL INJECTIONS!

Since the ADC has a 2Vpk range, this was saturating and putting in harmonics in all the adjacent channels. I disconnected it and turned off the function generator.

  1868   Sat Aug 8 17:19:07 2009 ranaUpdatePEMTwo Guralps plugged in, prepped for huddle test

 I found that several of the cables are unlabeled so I'm not sure what's plugged in. In the end, I found that the TEMP_2, _3, & _44 channels were working and so I plugged in anything that looked seismic into there.

TEMP_2 is now apparently the X channel of the 2nd Guralp. If someone can figure out which cable belongs to the Y channel, please plug it into TEMP_3 and then we can fix the channel names.

I also removed (gently) all of the accelerometers from MC2's chamber. This didn't break the lock, but I intentionally broke it to make sure it reacquired fine. It did and the MC TRANS QPD showed no significant shift afterwards.

Attachment 1: Untitled.png
Untitled.png
  1867   Sat Aug 8 15:08:14 2009 ranaConfigurationPSLSMOO settings updated in psl.db and SVN updated

I have added/modified SMOO settings to all of the records in psl.db appropriately. Changes checked in to SVN.

As a reminder, you should check in to the SVN all changes you make to any of the .db files or any of the .ini files in chans.

  1866   Fri Aug 7 20:43:35 2009 Clara, Jenne, Rana, JanUpdatePEMTwo Guralps plugged in, prepped for huddle test

Both Guralps and the Ranger have been placed in our nice new insulated foam box, complete with packing peanuts, in the corner between the x and y arms. The Guralp breakout box has been reinstalled and everything is plugged in in prepartion for the huddle test. However, we're having some issues with ADC channels, which will be worked out tomorrow (hopefully) so that data can be collected over the weekend.

Currently, one Guralp is plugged into the three SEIS-MC1 channels. We made new channels for the second Guralp (GUR-EW, GUR-NS, and GUR-VERT), but had issues with those. So, EW and NS have been plugged into PEM_AUDIO-MIC1 and MIC2 for the time being.

Attachment 1: Untitled.png
Untitled.png
  1865   Fri Aug 7 19:55:08 2009 steveSummaryVACopening V1 when PTP1 is broken

The swapped in 307 convectron gauge controller  is very likely to have the  RS232 connection  wired differently from the old one.

PRP gauge has now the same error message as the PTP1:  "no comm"  I would look at RS232 wiring of the PRP gauge on the broken

controller and adapt the swapped in one to communicate. The PRP was reading 620 Torr before the swap.

  1864   Fri Aug 7 19:34:40 2009 steveSummaryVACUPS failed

The Maglev is running on single phase 220V and that voltage  was not interrupted. TP1 was running undisturbed with V1 and V4 closed.

It is independent of the UPS 120V.

  1863   Fri Aug 7 18:06:24 2009 robOmnistructureVACopening V1 when PTP1 is broken

We've had a devil of a time getting V1 to open, due to the Interlock code. 

 

The short story is that if C1:Vac-PTP1_pressure > 1.0, the interlock code won't let you push the button to open V1 (but it won't close V1). 

 

PTP1 is broken, so the interlock was frustrating us.   It's been broken for a while, but this hasn't bitten us till now.

 

We tried swapping out the controller for PTP1 with one of Bob's from the Bake lab, but it didn't work. 

 

It said "NO COMM" in the C1:Vac-PTP1_status, so I figured it wouldn't update if we just used tdswrite to change C1:Vac-PTP1_pressure to 0.0.  This actually worked, and V1 is now open.  This is a temporary fix.

  1862   Fri Aug 7 17:51:50 2009 ZachUpdateCamerasCMOS vs. CCD

The images that I just posted were taken with the CMOS camera.  We switched from the CCD to the CMOS because the CCD was exhibiting much higher blooming effects.  Unlike the CCD, there is a slight background structure if you look carefully in the amplitude image, but I can correct for this consistent background by taking a uniformly exposed image by placing a convex lens in front of the CMOS.  I will then divide each frame taken of the laser wavefront by the background image. 

  1861   Fri Aug 7 17:46:21 2009 ZachUpdateCamerasThe phase camera is sort of working

Shown below are the plots of the amplitude and phase of the Mephisto laser light modulated with a chopper as a square wave at about 1 kHz.  The color bar for the phase should run from -pi to pi, and it does when I don't accidently comment out the color bar function.  Anyway, the phase is consistently pi/4 or pi/4 plus or minus pi.  Usually all three of these phases occur within the same image, as shown below.  Also, the amplitude is a factor of two or so higher than it should be where this phase jump occurs.  I think these problems are associated with the nature of the square wave.  However, there is a software bug that appears to be independent of the input data: there is a rounding error that causes the amplitude to jump to infinity at certain points.  This happened for only a dozen or so pixels so I deleted them from the amplitude plot shown below.  I am currently working on a more robust code that will use the Newton-Raphson method for nonlinear systems of equations. 

Attachment 1: ampAv.png
ampAv.png
Attachment 2: phaseAv.png
phaseAv.png
ELOG V3.1.3-