40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 292 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  4976   Fri Jul 15 16:14:00 2011 steveUpdateSUSBS oplev error signal spectra
  4983   Mon Jul 18 15:51:04 2011 steveUpdateSUSETMY spectra of oplev error signal
  4987   Tue Jul 19 09:19:14 2011 steveUpdateSUSPRM damping restored

The PRM watchdogs were tripped. The side was kicked up to 180mV Damping was restored.

  5000   Wed Jul 20 12:05:08 2011 NicoleSummarySUSWeekly Summary

Since last week Wednesday, I have since found a Pomona Electronics box (thanks to Jenne)

to use for my photosensor head circuit (to house the LED and 2 photodiodes). Suresh has

shown me how to use the 9-pin Dsub connector punch, and I have punched a hole in this box

to attach the Dsub connector. 

 

Since this past entry regarding my mechanical design for the photosensor head (Photosensor Head Lessons),

I have modified the design to use a Teflon sheet instead of a copper PCB and I have moved the LED

and photodiodes closer together, upon the suggestions of Jamie and Koji.  The distance between

components is now 0.112" instead of the initial 0.28".  Last night, I cut the PCB board for the LED

and photodiodes and I drilled holes onto the PCB board and Teflon sheet so that the two may be

mounted to the metal plate face of the Pomona box.  I still need to cut the viewer hole for and

drill screws into the face plate.

P7200054.JPG

I have also been attempting to debug my photosensor circuit (box and LED/photodiode combination).

Since this last entry (Painful Votlage Regulator and Circuit Lessons), Suresh has helped me to get the parts

that I need from the Downs Electronics lab (15 wire ribbon cable, two 9 pin D-sub connectors M,

one 15 pin D-sub connector M, one 16 pin IDC connector). Upon the suggestion of Jamie, I have

also made additional safety changes to the circuit by fixing some of the soldering connections

so that all connections are done with wires (I had a few immediate lines connected with solder).

I believe the the photosensor circuit box is finally ready for testing. I may just need some help

attaching the IDC connector to the ribbon cable. After this, I would like to resume SAFELY

testing my circuit.

 P7200055.JPG

I have also been exploring SimMechanics. Unfortunately, I haven't been able to run the

inverted pendulum model by Sekiguchi Takanori. Everytime I attempt to run it, it says

there is an error and it shuts down Matlab. In the meanwhile, I have been watching

SimMechanics demos and trying to understand how to build a model. I'm thinking that

maybe once I figure out how SimMechanics works, I can use the image of his model

(I can see the model but it will not run) to construct a similar one that will hopefully work.

 

I have also been attempting to figure out the circuitry for the pre-assembled

accelerometer (made with the LIS3106AL chip).  I have been trying to use a multi-meter

to figure out what the components are (beyond the accelerometer chip, which I have

printed out the datasheet for), but have been unsuccessful at that. I have figured out

that the small 5 pin chip says LAMR and is a voltage regulator. I am hoping that if I can

find the data sheet for this voltage regulator, I can figure out the circuitry. Unfortunately,

I cannot find any datasheets for a LAMR voltage regulator. There is one by LAMAR, but

the ones I have seen are all much larger. Does anyone know what the miniature voltage

regulator below is called and if "LAMR" is short for "LAMAR"?

 

P7200056.JPG

 

  5001   Wed Jul 20 14:42:34 2011 steveUpdateSUSoplev gains today

C1:SUS-ETMX_OLPIT_GAIN set to 1.0     OLYAW 1.0

                ETMY                                     -0.2                   -0.2

                ITMY                                        2.0                    -2.0

                ITMX                                        0.5                     0.5

                  BS                                          0.4                    -0.4

                PRM                                         0.5                    -0.7

                SRM                                         1.0                     1.0

Earlier today Rana and I made power spectra of ETMY_OPLEV_ERROR signals with servo on and off.

It was indicating that the servo is not doing anything. These gain values were not set since IFO rebuilt.

Valera's entries were searched also. He did not do such thing. Rana may know where it is in the elog if it happened.

  5003   Wed Jul 20 18:44:54 2011 KojiSummarySUSWeekly Summary

Find Frank and ask him about those components.

  5004   Wed Jul 20 19:24:12 2011 ranaUpdateSUSoplev gains today

I guess Valera forgot to elog it. Steve, please email him and get the info.

I started to check out the OL servos today so that our whole interferometer is not too floppy.

  • The ETMX OPLEV DAQ channels were not in the list. Jamie ran the activateDQ.py script and it came back. Right now, we have no diagnostics to know if people have run this or not so the frames will have missing data now and again depending on how forgetful the rebooters are. Perhaps we can get activateDQ put into the make file???
  • I turned ON all of the offset buttons on the OL1, etc. filter banks. This allows for the dark offsets to be set for the OL quadrants. With these buttons off it doesn't make any sense.
  • I noticed that there are white (INVALID) fields all over the OPTLEV_SERVO screens. This is just because the new SUS models have not captured all of the functionality of the old system. Needs fixing.

Untitled.png

Some of these OL spectra are not like the others...

 a.png

  5005   Wed Jul 20 19:48:03 2011 JamieUpdateSUSRe: oplev gains today

 

 We have been modifying models that need to have their channels renamed to run activateDQ when Joe's post_build_script to is run. 

The trick is to integrate things to get the post_build_script running after every model build (getting it hooked in to the make file somehow).  We're working on it.

 I've added the following epics channels to sus_single_control model using the epicsOutput part:

  • OL_SUM
  • OL_PITCH
  • OL_YAW

These channels are now all available.  I'm not exactly sure how to ensure that they're being trended.  I'll check that tomorrow.

  5007   Wed Jul 20 20:44:56 2011 JamieUpdateSUSAll sus models rebuilt and restarted

There were a couple of recent improvements to the sus_single_control model that had not been propagated to all of the suspension controllers.

Rebuilt and restarted c1mcs, c1sus, c1scx, and c1scy.  Everything seems to be working fine after restart.

  5010   Thu Jul 21 09:04:59 2011 valera, steveUpdateSUSoplev gains were not optimized

 

Hi Steve,

 
I did change the ETMY optical lever configuration: http://131.215.115.52:8080/40m/4795
And I left it in that state per Jamie's request.
 
I was going to work on the servo tuning but found that the whitening was not working at that time.
What I was going to do is to measure the open loop gain to make sure the servo is stable, then 
measure the noise and minimize the rms motion by tuning the gain and the filter transfer function.
 
I plan to come to the 40m lab on August 22 for two weeks.
 
Valera.
  5011   Thu Jul 21 10:08:30 2011 steveUpdateSUSsus sensor summary

OSEM voltages to be corrected at upcoming vent: threshold ~ 0.7-1.2V, ( at 22 out of 50 )

ITMX_UL, UR, LL, LR, SD

ITMY_UL

ETMX_UL, UR, LL, LR, SD

ETMY_UL

SRM_UL, UR, LL

MC2_UR_SD

BS_UR, SD

MC3_UL, LR, LL

 

  5014   Thu Jul 21 16:06:35 2011 steveUpdateSUSoplev gains today checked by conlog

 Present values agree with conlog records. It can be concluded that there were no big changes made. There are some 0.1-0.2 gain  and one polarity changes during the periods of Valera's visits.

 

  5019   Fri Jul 22 15:39:55 2011 haixingUpdateSUSmatching the magnets

Yi Xie and Haixing,

We used the Gauss meter to measure the strength distribution of bought magnets, which follows a nice Gaussian distribution.
We pick out four pairs--four fixed magnets and four for the levitated plate that are matched in strength. The force difference is
anticipated to be within 0.2%, and we are going to measure the force as a function of distance to further confirm this.

In the coming week, we will measure various transfer functions in the path from the sensors to the coils (the actuator). The obtained
parameters will be put into our model to determine the control scheme. The model is currently written in mathematica which can
analyze the stability from open-loop transfer function.

  5025   Mon Jul 25 00:35:44 2011 ranaUpdateSUSsomething wrong with ETMY LR sensor

a.png

Looks like either the LR OSEM is totally mis adjusted in its holder or the whitening eletronics are broken.

Also looks like the ETMY is just not damped at 1 Hz? How can this be?

I look at the SUS_SUMMARY screen which apparently only Steve and I look at:

bad.png

Looks like the suspensions have factor of 10-100 different gains. Why?

**  The ETMY just doesn't behave correctly when I bias it. Both pitch and yaw seem to make it do yaw. I leave this for Jamie to debug in the morning.

***  Also, the BIAS buttons are still broken - the HOPR/LOPR limits ought to be 5000 and the default slider increment be 100. Also the YAW button readback doesn't correctly show the state of the BIAS.

****  And.....we have also lost the DAQ channels that used to be associated with the _IN1 of the SUSPOS/PIT/YAW filter modules. Please put them back; our templates don't work without them.

  5029   Mon Jul 25 11:46:28 2011 steveUpdateSUSETMY sus problem hunt

[Kiwamu / Steve]

We checked some electronics noise on the ETMY shadow sensor system.

Noise from the WF, AA board and ADC are below the shadow sensor spectra on ETMY.

It means something funny is going on in the upstream side (including the satelight box and shadow sensors)

OR the coil drivers side are going crazy ??

 

As Rana pointed out in his entry (#5025), the spectra of the shadow sensors on ETMY were quite bad below 3 Hz. The floor are higher than that of ETMX by factor of 10 or so.

To check if the noise comes from some of the electronics, we disconnected D15-sub from pd to whitening in.

The spectra with/without shadow sensors are attached below.

The curves in brown and green are the ones taken when the shadow sensors were disconnected from the WF board.

So these two curves represent the summed noise of the WF, AA and ADC.

This tells us to look toward the OSEM.

 

  5032   Mon Jul 25 17:16:02 2011 JamieUpdateSUSNow acquiring SUSXXX_IN1_DQ channels

> And.....we have also lost the DAQ channels that used to be associated with the _IN1 of the SUSPOS/PIT/YAW filter modules. Please put them back; our templates don't work without them.

I have (re?)added the SUS{POS,PIT,YAW,SIDE}_IN1_DQ channels.  I did this by modifying the activateDQ.py script to always turn them on [0].  They should now always be activated after the activateDQ script is run.

[0] This script now lives in the cds_user_apps repo at cds/c1/scripts/activateDQ.py

 

  5037   Tue Jul 26 11:38:45 2011 steveUpdateSUSETMY bias checked

 

 I test drove ETMY biases.

PITCH  worked well in slow and fast modes. Slow drive was from the IFO alignment screen C1:SUS-ETMY_PIT_COM and

the fast one from C1:SUS-ETMY_ASCPIT_OFFSET

YAW did not.  It was always diagonal. It was  specially bad with the fast drive. I compared them with ETMX. ETMX yaw is diagonal a little bit too.

The OPLEV return spots on the qpd ETMX and ETMY are big 5-6 mm diameter. The ETMY spot has weird geometry to qpd.

  5044   Wed Jul 27 12:19:19 2011 NicoleSummarySUSWeekly Summary

Since last week, I've been working on building the photosensor head and have been making adjustments to my photosensor circuit box.

Changes to photosensor circuit (for box):

1) Last week, I was reading in the two signals from the two heads through a single input. Now there are two separate inputs for the two separate photosensors

2)During one of my many voltage regulator replacements, I apparently used a 7915 voltage regulator instead of a 7805 (thanks, Koji, for pointing that out! I never would have caught that mistake X___X)

3)I was powering my 5V voltage regulator with 10V...Now I'm using 15 V (now I only need 1 power supply and 3 voltage input plugs)

I have also began assembling my first photosensor head. Here is what I have so far:

sensorhead.JPG

 

Here is what needs to be done still for the photosensor head

I need to find four Teflon washers and nuts to rigidly attach the isolated PCB (PCB, Teflon sheet combination) to the box. I already have the plastic screws in (I want to use plastic and Teflon for electrical isolation purposes, so as to not short my circuit).

I need to attach the sheath of my signal cable to the box of the photosensor head for noise reduction (plan: drill screw into photosensor head box to wrap sheath wires around)

I need to attach the D-sub to the other end of my signal cable so that it can connect to the circuit box. So far, I only have the D-sub to connect the cable to my photosensor head

Yesterday, Suresh helped to walk me through the photosensor box circuit so that I now understand what voltages to expect for my circuit box trouble-shooting. After this lesson, we figured out that the problem with my photosensor box was that the two op-amps were saturated (so I fixed the feedback!). After replacing the resistor, I got the LED to light up! I still had problems reading the voltage signals from the photodiodes. I was reading 13.5V from the op amp output, but Koji explained to me that this meant that I was too close to saturation (the photodiodes were perhaps producing too much photocurrent, bringing the output close to saturation). I switched the 150 K resistor in the feedback loop to a 3.4K resistor and have thus successfully gotten displacement-dependent voltage outputs (i.e. the voltage output fluctuates as I move my hand closer and farther from the photosensor head). 

Now that I have a successful circuit to power and read outputs from one photosensor, I can begin working on the other half of the circuit to power the other photosensor! 

sensorcircuit.JPG

  5055   Thu Jul 28 16:26:42 2011 steveUpdateSUSITMX, ITMY & ETMY OSEM gains adjusted

 

OSEM damping gains were adjusted by observing  real time dataviewer to get Q of 5

OSEMs were kicked up one by one with 200 counts  ~1sec. The error signal was optimized to get 1/2 of exitation amplitude at the 5th sinusoid wave.

C1: SUS-ITMX_SUSPOS_N1 gain   111      ->        65,             PIT        7.2      ->    8,           YAW        12      ->     6,          SIDE     280

                  ITMY                                      277       ->     120,                        19.2     ->     7,                             24     ->     19,                        420    ->      470

                  ETMY                                       10        ->       32,                          20      ->     3,                             20     ->     10,                          50

                  ETMX                                       22        ->      25,                             3,                                                3,                                              -170  

ETMX having problems:  1, YAW can not be excited

                                             2, SIDE has no error signal in dataviewer. Sensing voltage on MEDM screen 0.142V

 

                      

 

  5056   Thu Jul 28 17:04:04 2011 NicoleUpdateSUSPhotosensor Head Calibration Curve

Here is the calibration curve (displacement versus voltage output) for the photosensor head that I made with the S5971 photodiodes and L9337 LEDs. This was made using a regular mirror. The linear region appears to be between 0.4 and 0.75cm. I will need to arrange the photosensor head so it measures displacements in the linear region of this plot. This plot was made using a 287 ohm resistor.

187K_resistor.jpg

  5061   Fri Jul 29 16:04:51 2011 steveUpdateSUSETMX, PRM & SRM OSEM gains set

Jamei fixed the computer. Now I had a healthier ETMX with SIDE signal that allowed me to set gains to get Q of 5

The Y arm restore locked the arm at TRY -out 2.4V,    the X arm still did not lock or align to lock. It has some fringes.

ETMX  POS gain   22  -> 17,              PIT  3  ->  1,                    YAW  3,                     SIDE     -170    ->    -110

PRM                        50  ->  30,                     1,                                       2,                                       50

SRM                        55  ->  20,                    2.4  ->  1.5,                      4.8  ->  2,                          140   ->    100

Now all SUS OSEM gains are set

  5082   Mon Aug 1 16:06:05 2011 steveUpdateSUSoplevs are centered

Kiwamu, Koji and Steve,

Arm aligned separatly and oplev qpds were centered  including BS. Than we realigned manually DRM and centered their qpds.

ALL SUS oplevs were centered to resonating cavities.

  5091   Tue Aug 2 11:02:52 2011 JenneUpdateSUSPRM Watchdog tripped

I found PRM watchdog tripped.  It's all better now.

  5098   Tue Aug 2 23:02:48 2011 NicoleUpdateSUSFixed Accelerometer


 

The EM shaker was broken (the input terminals (banana inputs) had snapped off. To fix this, I have mounted two banana input mounting posts to a metal mount that Steve attached to the shaker.

shakerposts.jpgclipstoamplifier.jpg

However, because bananas do not provide a secure connection (they easily fall out), I have made special wires to connect the banana inputs of the shaker to the mounted banana inputs of the amplifier I am using (along with the sine generating function of the HP 3563A signal analyzer). Upon Koji's suggestion, I have made C-shaped clips to attach to the banana post mounts. These clips are made from insulated ring terminals.

 newclips.jpg

Today I tested the  shaker and it works! WOOT! I currently have the shaker attached to the horizontal sliding platform (without the TT suspension on it).

Using a 750mHz signal from the HP 3563A with an amplitude of 500 mV amplified to 0.75V, I have gotten the shaker to displace the platform (without the TT suspension on it) 1 mm.

  5099   Tue Aug 2 23:14:21 2011 NicoleUpdateSUSCorrected Screw Alignment in TT Suspension Base

The TT suspension base was not able to be securely mounted to the optical table (i.e. mounted with 4 screws)

because the spacing between the screw holes in the base did not have the correct spacing for mounting on a table with a 1 inch pitch.

newholes.jpg

We have carefully removed the suspension from the problematic base. PLEASE BE VERY CAREFUL AROUND THE TABLE NEXT TO THE MC-2 CHAMBER! THE TT SUSPENSION IS RESTING THERE WITHOUT THE BASE! I will reattach it to the base tomorrow morning when I am less tired and more careful!

We measured the base to be about 4.882" x 3.774". The screw hole spacing is about 3.775" and 2.710" respectively. I have changed the diameter of the screw holes from 0.26" to 0.315" and have been able to successfully mount the suspension to the 1 inch pitch table next to the MC-2 chamber.

 

mountedmirrorflash.jpg

Now that the TT suspension can be mounted, I am going to be aligning a 670nm LED laser and balancing the mirror on the TT tomorrow morning. I will be using a beam blocker but please still be careful.

  5107   Wed Aug 3 12:27:01 2011 NicoleSummarySUSWeekly Summary

This week I have determined the linear region for my photosensor. I have determined the linear region to be -14.32 V/cm in the region 0.4cm 0.75 cm.

In order to obtain this voltage plot, I used a 287K resistor to set the max voltage output for the photodiodes. This calibration was obtained using a small rectangular standing mirror (not the TT testing mirror that Steve has ordered for me).

calibrationplot.jpg

I have also been working on the second half of the photosensor circuit (to power the LED and read out voltages for the second photosensor head). I have assembled the constant-current section of the circuit and need to do the voltage-output section of the circuit. I also need to finish assembling the second photosensor head and cables.

 

I submitted my Second Progress Report on Tuesday.

 

I have attached the mirror to the TT suspension. We are using 0.006 diameter tungsten wire to suspend the mirror. I am currently working on balancing the mirror.

 

This morning, I realized that the current set-up of the horizontal shaker does not allow for the TT to be securely mounted. I was going to change the drill holes in the horizontal slider base (1 inch pitch). Jamie has suggested that it is better to make a pair of holes in the base larger. The circled holes are the ones that will be expanded to a 0.26" diameter so that I can mount the mirror securely to the horizontal slider base. There is a concern that a bit of the TT suspension base will hang over the edge of the horizontal sliding plate. We are not sure if this will cause problems with shaking the mirror evenly. Suggestions/advice are appreciated.

newholestobe.JPG

  5108   Wed Aug 3 12:37:57 2011 KojiSummarySUSWeekly Summary

I vote for making an adapter plate between the sliding plate and the bottom base.

Quote:

This morning, I realized that the current set-up of the horizontal shaker does not allow for the TT to be securely mounted. I was going to change the drill holes in the horizontal slider base (1 inch pitch). Jamie has suggested that it is better to make a pair of holes in the base larger. The circled holes are the ones that will be expanded to a 0.26" diameter so that I can mount the mirror securely to the horizontal slider base. There is a concern that a bit of the TT suspension base will hang over the edge of the horizontal sliding plate. We are not sure if this will cause problems with shaking the mirror evenly. Suggestions/advice are appreciated.

 

  5109   Wed Aug 3 14:20:49 2011 steveUpdateSUSITMX and PRM damping restored

ITMX watchdog tripped around 5 Torr  and the PRM around 450 Torr of this vent. They were restored than.

We are at 580 Torr now.

  5116   Thu Aug 4 08:25:51 2011 steveUpdateSUSsus at atm

ITMX and PRM moved alot.  BS and   ITMY just a little based on oplev reference.

  5118   Thu Aug 4 11:18:12 2011 ranaUpdateSUSsus at atm

Remember that the Oplevs are not good references because of the temperature sensitivity. The week long trend shows lots of 24 hour fluctuations.

  5119   Thu Aug 4 20:05:23 2011 NicoleUpdateSUSNew Horizontal Sliding Base Mount for TT suspension testing

In order to more-securely mount the TT supsion to the horizontal sliding base, I have made a sub-mounting plate (upon Koji's suggestion) to go in between the horizontal sliding base and the TT suspension base. I made many mistakes in this once-pristine aluminum board. I learned that using a ruler is not good enough for determining where to make holes. Upon Koji's suggestion, I have completed the mounting plate by first making a full-scale diagram on Solid Works, printing it out, and then using the diagram to determine where to make my punch holes. Thank you also to Manuel for helping me drill and to Suresh for teaching me how to use the taps!

topplateview.jpgplatform.jpg

I have been able to successfully mount the plate to the horizontal sliding platform. The TT suspension base is mounted to the front of the mounting plate (there are counter-sink screws at the front connecting the platform to the slider so that the screw heads do not obstruct the TT base). I have been able to successfully mount the TT suspension base to the mounting plate. I have also reattached the TT suspension frame to its original base (the one that I modified so that the TT could be mounted to a 1 inch pitch surface). Currently, the TT suspension is mounted to the optical table I have been working on (next to the MC-2 chamber). I am working on balancing the mirror. I am going to balance the mirror using a 670nm LED laser.

Below is a picture of the laser and the laser block I am using. After I took this photo, I have mounted the laser and the block to the optical table next to the MC-2 chamber.

 

lasersetup.jpg

I have already leveled the laser and I will plan to work on balancing the mirror tomorrow morning (my hands were shaking a lot this afternoon/evening, so I think it would be best to wait until the morning when I will be more careful). I am now going to work on the second half of my photosensor circuit box and second sensor head.

 

Please do not touch the 670nm laser on the optical table next to the MC-2 chamber! It has been leveled. Please also be careful around the optical table, since the TT suspension is mounted to the table!

  5123   Fri Aug 5 13:51:51 2011 steveUpdateSUScross coupling

We need a plan how to minimize cross coupling in the OSEMs now

  5125   Fri Aug 5 15:11:24 2011 kiwamuUpdateSUSRe: cross coupling

There is a page on the 40m wiki explaining the procedure.

  http://blue.ligo-wa.caltech.edu:8000/40m/OSEM_adjustment_proceedure

 

Additionally there are several old elogs about the cross-coupling minimization, which can be useful for us:

[1] "SUS ranking from measured data", iLog by Osamy (Aug.22 2005)

[2] "TF from position to sensors for ETMX ", iLog by Osamu (Aug.25 2005)

[3] "Further OSEM tweaking", iLog by Rana (Oct.3 2006)

Quote from #5123

We need a plan how to minimize cross coupling in the OSEMs now

 

  5138   Mon Aug 8 12:08:05 2011 ranaUpdateSUSsus at atm

Untitled.png

A plot showing that the daily variation in the OLs is sometimes almost as much as the full scale readout (-1 to +1).

  5141   Mon Aug 8 15:20:49 2011 kiwamuUpdateSUSinspection on ETMY (round 1)

Since ETMY have been showing some strange behaviors we deeply inspect the ETMY suspension.

Here is a brief review of the ETMY suspension and a brief status update of the inspection so far.

The inspection is still ongoing.

 

(Review : How wrong ?)

First of all, let us summarize what were the observed phenomena on the ETMY suspension :

   1. unknown low frequency noise covering frequency range from 0.1 to 3 Hz in all of four face sensors (#5025, #5029).

   2. LR sensor showed a very broad bounce peak at ~ 17 Hz (#5025).

   3. The sign of some of the sensors are flipped.

   4. The control gains had to be higher than those of ETMX by 10-100 (#5025).

 

(Status update : Noise spectra)

Currently the ETMY suspension is sitting on the north side of the table for the inspection.

We took dark noise of the OSEMs when the OSEMs were taken off from the tower and put on the table.

The plot below is an example of the LR sensor spectra. Note that the whitening filters have been always ON.

Screen_shot_2011-08-08_at_15.08.23.png

The black curve is the dark noise when the sensor was off from the tower.

The blue curve is the free swinging spectrum newly taken today.

The red curve is the free swinging spectrum (damped spectrum ?) on 25th of July, this was still in vacuum.

 

The dark noise is below the free swinging spectrum from 0.2 - 30 Hz, which looks reasonable

The most interesting thing is that the free swinging spectrum became better in low frequency (below 3 Hz)

from the one measured in vacuum.

It needs more investigation to answer the reason why it happened.

Note that before we moved the tower to the current position, we looked at the OSEM-magnets relations, and found nothing was touching.

 

  5145   Mon Aug 8 22:12:58 2011 NicoleSummarySUSDaily Summary

Today I balanced the mirror, finished putting together the second photosensor, and finished my photosensor circuit box! 

Upon Jamie's suggestion, I have used a translation stage to obtain calibration data points (voltage outputs relative to displacement) for the new photosensor and for the first photosensor.

I will plot these tomorrow morning (too hungry now > < )

 

Here is a photo of the inside of my circuit box! It is finally done! It is now enclosed in a nice aluminum casing ^ ^

 

frontview.jpg

  5146   Tue Aug 9 01:35:45 2011 SureshUpdateSUSETMX Side Sensor slow channel down for a long time

The slow signal from the side sensor on ETMX was last seen in action sometime in May 2010!  And then the frame builder has no data for a while on this channel.  After that the channel shows some bistability starting Sept 2010 but has not been working.  The fast channel of this sensor  (C1:SUS-ETMX_SDSEN_OUTPUT) does work so the sensor is working.  Probably is a loose contact... needs to be fixed.

ETMX-SDSEN_trend1.png         ETMX_SDSEN_trend2.png

 

  5147   Tue Aug 9 02:03:16 2011 kiwamuSummarySUSsummary of today's work on ETMY

[Rana / Jenne / Kiwamu]

The ETMY suspension tower is currently sitting on the north side of the table for some inspections.

The adjustment of the OSEMs is ongoing.

 

(What we did)

  + Taken out two oplev mirrors, Jamie's windmill and a lemo patch panel.

  + Put some pieces of metal as makers for the original place

  + Put some makers on the distance of  dLY = -25.49 cm = -10.04 inch from the original place (see the 40m wiki).

     The minus sign means it will move away from the vertex.

  + Brought the ETMY suspension tower to the north side to do some inspections

  + Did some inspections by taking the noise spectra (#5141)

  + Adjusted the OSEM range and brought the magnets on the center of the OSEM holders by rotating and translating the OSEMs

  + During the work we found the proper PIT and YAW gains were about -5, which are the opposite sign from what they used to be.

  + Trying to minimize the cross couplings

JD: There is still some funny business going on, like perhaps the LR magnet isn't quite in the OSEM beam.  We leave the optic free swinging, and will continue to investigate in the morning.

  5150   Tue Aug 9 02:44:32 2011 SureshUpdateSUSETMX free swinging data

I switched off damping to the ETMX and used a reduced version of freeswing-all.csh script (called freeswing-ETMX.csh) to set it swinging.    After about an hour I used the saved template ETMX/2008.08.06.xml to obtain the following plot.

 ETMX_freeswing.png

 

There is something defintely wrong with the side sensor.  It might be the electronics as it also has this problem with it slow channel readings (my previous elog today).

 

 

  5153   Tue Aug 9 11:33:33 2011 kiwamuUpdateSUSRe: ETMX free swinging data

I believe that the 17 Hz broad structure on SIDE is just because of a bad rotational angle of the SIDE OSEM.

The same structure had been observed on the EMTY_UR, and the structure became narrower after we repositioned/rotated the OSEM yesterday.

My guess is that the SIDE OSEM is now in a place where the OSEM is quite sensitive to the bounce mode

and creating the broad structure due to a bi-linear coupling between the bounce mode and low frequency signals.

Quote from #5150

There is something defintely wrong with the side sensor.  It might be the electronics as it also has this problem with it slow channel readings (my previous elog today). 

  5154   Tue Aug 9 13:34:40 2011 NicoleSummarySUSNew Calibration Plots for Photosensors

Here are the new calibration plots for my photosensors. These calibrations were done using a translation stage.

The linear region for the first photosensor appears to be between 15.2mm and 30 mm

ps1.jpg

The linear region for the second photosensor appears to be between 12.7mm and 22.9mm

ps2.jpg

The slope for both is -0.32 V/mm  (more precisely, -0.3201 V/mm for PS 1 and -0.3195 V/mm for PS 2)

 

  5160   Tue Aug 9 19:53:56 2011 NicoleSummarySUSWeekly Summary

This week, I have finished assembling everything I need to begin shaking. I built an intermediary mounting stage to mount the TT suspension base to the horizontal sliding platform, finished assembling the second photodiode, finished assembling the photosensor circuit box, and calibrated the two photosensors. Today I built a platform/stage to mount the photodiodes so that they are located close enough to the mirror/suspension that they can operate in the linear range.  Below is an image of the set-up.

entiresetup.jpg

The amplifer that Koji fixed is acting a bit strange again...It is sometimes shutting off (Apparently, it can only manage to do short runs ~ 1minute? That should be enough time?).

The set-up is ready to begin taking measurements.

  5161   Wed Aug 10 00:11:39 2011 jamieUpdateSUScheck of input diagnolization of ETMX after OSEM tweaking

Suresh and I tweaked the OSEM angles in ETMX yesterday.  Last night the ETMs were left free swinging, and today I ran Rana's peakFit scripts on ETMX to check the input diagnolization:

ETMX.png

It's well inverted, but the matrix elements are not great:

       pit       yaw       pos       side      butt
UL    0.3466    0.4685    1.6092    0.3107    1.0428
UR    0.2630   -1.5315    1.7894   -0.0706   -1.1859
LR   -1.7370   -1.5681    0.3908   -0.0964    0.9392
LL   -1.6534    0.4319    0.2106    0.2849   -0.8320
SD    1.0834   -2.6676   -0.9920    1.0000   -0.1101

The magnets are all pretty well centered in the OSEMS, and we worked at rotating the OSEMS such that the bounce mode was minimized.

Rana and Koji are working on ETMY now.  Maybe they'll come up with a better procedure.

  5163   Wed Aug 10 01:40:40 2011 KojiUpdateSUSETMY exploration

[Rana Koji Jenne Jamie]

- The situation of the ETMY suspension is improved.
- The damping servos except for Pitch are now functional.
- We intentionally turned off the damping servos for the matrix measurements.


- Opened the light door of the ETMY chamber.

- We set up the CDS SUS lockin:

        Excite UL/UR/LL/LR equally [by setting the output matrix (1, 1, 1, 1, 0)] at 3.12Hz with 2000 cnts
        Put the OSEM PD outputs into lockin one by one. For the image rejection, 0.1Hz 4th order LPF has been used though we like to use a faster settling LPF.

- Found only UL was responding to the excitation. After fitzing with the cables and connectors, it was found that the DAC card was loose from the bus.
  By pushing the card the responses have been back. [Note we had the reboot of c1iscey almost at the same time.]

- Checked the response in the I channel of the lockin.
        UL -8ish / UR +7ish / LR +5ish / LL +2ish

- Tweaked LL sensor to get better response ==> in vain. Decided to move the lower OSEM plate for the better positioning of the LR/LL.
- Got reasonable (+5ish) response for LL.

- Confirmed that the POS/YAW/SIDE damping works with positive gains. PITCH did not work with the negative gain (but that could be a good sign.)

- Let the suspension freely swinging for a while (~30min). Checked the side/pos separation. They are not perfect but seemed diagonalizable.

- Closed the light door.

- Jenne will make a better kick/free-swing test later.

  5164   Wed Aug 10 02:29:38 2011 JenneUpdateSUSETMY exploration

Quote:

- Jenne will make a better kick/free-swing test later.

 02:27am, ran the new freeswinging-ifo.csh script.  It's just a copy of freeswinging-all.csh, but it doesn't include the MC mirrors, since Suresh and Kiwamu are still working.  

Now we have copies of the script for -all, -mc, -ifo to cover the various sections of the suspended interferometer.

  5166   Wed Aug 10 07:59:33 2011 steveUpdateSUSthis is too dam nice

Quote:

Suresh and I tweaked the OSEM angles in ETMX yesterday.  Last night the ETMs were left free swinging, and today I ran Rana's peakFit scripts on ETMX to check the input diagnolization:

ETMX.png

It's well inverted, but the matrix elements are not great:

       pit       yaw       pos       side      butt
UL    0.3466    0.4685    1.6092    0.3107    1.0428
UR    0.2630   -1.5315    1.7894   -0.0706   -1.1859
LR   -1.7370   -1.5681    0.3908   -0.0964    0.9392
LL   -1.6534    0.4319    0.2106    0.2849   -0.8320
SD    1.0834   -2.6676   -0.9920    1.0000   -0.1101

The magnets are all pretty well centered in the OSEMS, and we worked at rotating the OSEMS such that the bounce mode was minimized.

Rana and Koji are working on ETMY now.  Maybe they'll come up with a better procedure.

 

  5169   Wed Aug 10 12:32:09 2011 NicoleSummarySUSWeekly Summary Update

Last night, I attached a metal plate to the Vout faceplate of my photosensor circuit box because the BNC connection terminals were loose. This was Jamie's suggestion to establish a more secure connection (I had originally drilled holes for the BNCs that were much too large).

 

I have also fixed the mechancial set-up of my shaking experiment so that the horizontal sliding platform does not interfere with the photodiode mounting stage. Koji pointed out last night that in the full range of motion, the photodiode mounting stage interferes with the movement of the sliding platform when the platform is at its full range.

 

I have began shaking. I am getting a problem, as my voltage outputs are just appearing a high-frequency noise.

  5176   Wed Aug 10 15:39:33 2011 jamieUpdateSUScurrent SUS input diagonalization overview

Below is the overview of all the core IFO suspension input diagonalizatidons.

Summary: ITMY, PRM, BS are really bad (in that order) and are our top priorities.

UPDATE:

I had originally put the condition number of the calculated input matrix (M) in the last column.  However, after some discussion we decided that this is not in fact what we want to look at.  The condition number of a matrix is unity if the matrix is completely diagonal.  However, even our ideal input matrix is not diagonal, so the "best" condition number for the input matrix is unclear.

What instead we do know is that the matrix, B, that describes the difference between the calculated input matrix, M, and the ideal input matrix, M0: should be diagonal (identity, in fact):

M = M0 B

B should be diagonal (identity, in fact), and it's condition number should ideally be 1.  So now we calculate B-1, since it can be calculated from the pre-inverted input matrix:

B-1 = M-1 * M0

From that we calculate cond(B) == cond(B-1).

cond(B) is our new measure of the "badness" of the OSEMS.

new summary: ITMY, PRM, BS are really bad (in that order) and are our top priorities.

 

TM    INPUT MATRIX (M)
 cond(M) cond(B)
 PRM PRM.png        pit     yaw     pos     side    butt
UL   -2.000  -2.000  -2.000  -0.345   2.097 
UR   -0.375  -0.227  -0.312  -0.060   0.247 
LR    1.060   1.075   0.971   0.143  -0.984 
LL   -0.565  -0.698  -0.717  -0.141   0.672 
SD    1.513   1.485   1.498   1.000  -1.590
 75.569 106.756
 SRM SRM.png  

      pit     yaw     pos     side    butt
UL    0.791   1.060   1.114  -0.133   1.026 
UR    1.022  -0.940   1.052  -0.061  -1.027 
LR   -0.978  -0.987   0.886  -0.031   0.903 
LL   -1.209   1.013   0.948  -0.103  -1.043 
SD    0.286   0.105   1.249   1.000   0.030

 2.6501 3.90776
 BS  BS.png  

      pit     yaw     pos     side    butt
UL    1.420   0.818  -0.069   0.352   1.038 
UR    0.276  -1.182   1.931  -0.217  -0.905 
LR   -1.724  -0.274   1.940  -0.254   0.862 
LL   -0.580   1.726  -0.060   0.315  -1.194 
SD    0.560   0.171  -3.535   1.000   0.075 

9.8152 7.28516
ITMX ITMX.png       pit     yaw     pos     side    butt
UL    0.437   1.015   1.050  -0.065   0.714 
UR    0.827  -0.985   1.129  -0.221  -0.957 
LR   -1.173  -1.205   0.950  -0.281   1.245 
LL   -1.563   0.795   0.871  -0.125  -1.084 
SD   -0.581  -0.851   2.573   1.000  -0.171 
 4.08172 4.69811
 ITMY  ITMY.png  

      pit     yaw     pos     side    butt
UL    0.905  -0.884  -0.873   0.197   0.891 
UR   -1.095   1.088   1.127  -0.252  -1.115 
LR   -0.012  -0.028   0.002   0.001   0.030 
LL    1.988  -2.000  -1.998   0.451   1.964 
SD    4.542  -4.608  -4.621   1.000   4.517 

 801.453 774.901
 ETMX  ETMX.png        pit     yaw     pos     side    butt
UL    0.344   0.475   1.601   0.314   1.043 
UR    0.283  -1.525   1.786  -0.071  -1.181 
LR   -1.717  -1.569   0.399  -0.102   0.938 
LL   -1.656   0.431   0.214   0.283  -0.837 
SD    0.995  -2.632  -0.999   1.000  -0.110 
 4.26181 4.33518
 ETMY  ETMY.png        pit     yaw     pos     side    butt
UL   -0.212   1.272   1.401  -0.127   0.941 
UR    0.835  -0.728   1.534  -0.101  -1.054 
LR   -0.953  -1.183   0.599  -0.066   0.827 
LL   -2.000   0.817   0.466  -0.092  -1.177 
SD   -0.172   0.438   2.238   1.000  -0.008 
 4.04847 4.33725

 

  5177   Wed Aug 10 18:25:45 2011 JenneUpdateSUSETMY mini-update

[Jenne, Jamie]

ETMY is now in its new nominal position, according to the rails that Kiwamu put in the other day.  OSEM voltages are all centered, and the magnets looked pretty well centered in the OSEM bores.  We're taking data for some free swinging spectra, to check the decoupling. 

Next up: Align Y-green to the arm, then move on to fixing the other optics that Jamie pointed out.

  5178   Wed Aug 10 19:18:26 2011 NicoleSummarySUSFixed Reflective Photosensors; Recalibrated Photosensor 2

Thanks to Koji's help, the second photosensor, which was not working, has been fixed. I have re-calibrated the photosensor after fixing a problem with the circuit.  I have determined the new linear region to lie between 7.6 mm and 19.8mm. The slope defining the linear region is -0.26 V/mm (no longer the same as the first photosensor, which is -0.32 V/mm).

 

Here is the calibration plot.

ps2.jpg

ELOG V3.1.3-