40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 276 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  14580   Fri Apr 26 12:32:35 2019 JonUpdatePSLmodbusPSL service shut down

Gautam and I are removing the prototype Acromag chassis from the 1x4 rack to make room for the new c1susuax hardware. I shut down and disabled the modbusPSL service running on c1auxex, which serves the PSL diagnostic channels hosted by this chassis. The service will need to be restarted and reenabled once the chassis has been reinstalled elsewhere.

  14583   Mon Apr 29 16:25:22 2019 gautamUpdatePSLPSL turned on again

I turned the 2W NPRO back on again at ~4pm local time, dialing the injection current up from 0-2A in ~2 mins. I noticed today that the lasing only started at 1A, whereas just last week, it started lasing at 0.5A. After ~5 minutes of it being on, I measured 950 mW after the 11/55 MHz EOM on the PSL table. The power here was 1.06 W in January, so ~💯  mW lower now. 😮 

I found out today that the way the python FSS SLOW PID loop is scripted, if it runs into an EZCA error (due to the c1psl slow machine being dead), it doesn't handle this gracefully (it just gets stuck). I rebooted the crate for now and the MC autolcoker is running fine again. 

NPRO turned off again at ~8pm local time after Anjali was done with her data taking. I measured the power again, it was still 950mW, so at least the output power isn't degrading over 4 hours by an appreciable amount...

  14593   Fri May 3 12:51:58 2019 gautamUpdatePSLPSL turned on again

Per instructions from Coherent, I made the some changes to the NPRO settings. The value we were operating at is in the column labelled "Operating value", while that in the Innolight test datasheet is in the rightmost column. I changed the Xtal temp and pump current to the values Innolight tested them at (but not the diode temps as they were close and they require a screwdriver to adjust), and turned the laser on again at ~1245pm local time. The acromag channels are recording the diagnostic information.

update 2:30pm - looking at the trend, I saw that D2 TGuard channel was reporting 0V. This wasn't the case before. Suspecting a loose contact, I tightened the DSub connectors at the controller and Acromag box ends. Now it too reports ~10V, which according to the manual signals normal operation. So if one sees an abrupt change in this channel in the long trend since 1245pm, that's me re-seating the connector. According to the manual, an error state would be signalled by a negative voltage at this pin, up to -12V. Also, the Innolight manual says pin 13 of the diagnostics connector is indicating the "Interlock" state, but doesn't say what the "expected" voltage should be. The newer manual Coherent sent me has pin13 listed as "Do not use".

Setting Operating value Value Innolight tested at
Diode 1 temp [C] 20.74 21.98
Diode 2 temp [C] 21.31 23.01
Xtal temp [C] 29.39 25.00
Pump current [A] 2.05

2.10

  14595   Mon May 6 10:51:43 2019 gautamUpdatePSLPSL turned off again

As we have seen in the last few weeks, the laser turned itself off after a few hours of running. So bypassing the lab interlock system / reverting laser crystal temperature to the value from Innolight's test datasheet did not fix the problem.

I do not understand why the "Interlock" and "TGUARD" channels come revert to their values when the laser was lasing a few minutes after the shutoff. Is this just an artefact of the way the diagnostics is set up, or is this telling us something about what is causing the shutoff?

Attachment 1: NPROshutoff.png
NPROshutoff.png
  14597   Wed May 8 19:04:20 2019 ranaUpdatePSLPSL turned on again
  1. Increased PSL HEPA Variac from 30 to 100% to get more airflow.
  2. All of the TEC setpoints seem cold to me, so I increased the laser crystal temperature to 30.6 C
  3. Adjusted the diode TEC setpoints individually to optimize the PMC REFL power (unlocked). DTEC A = 22.09 C, DTEC B = 21.04 C
  4. locked PMC at 1900 PT; let's see how long it lasts.

My hunch is that the TECs are working too hard and can't offload the heat onto the heat sinks. As the diode's degrade, more of the electrical power is converted to heat in the diodes rather than 808 nm photons. So hopefully the increased airflow will help.

I tried to increase the DTEC setpoints, but that seems to detune them too far from the laser absorption band, so that's not very efficient for us. IN any case, if we end up changin the laser temperature, we'll have to adjust the ALS lasers to match, and that will be annoying.

 

The office area was very cold and the HVAC air flow stronger than usual. I changed the setpoint on the thermostat near Steve's desk from 71 to 73F at 1830 today.

  14599   Thu May 9 19:50:04 2019 gautamUpdatePSLPSL turned off again

This time, it stayed on for ~24 hours. I am not going to turn it on again today as the crane inspection is tomorrow and we plan to keep the VEA a laser safe area for speedy crane inspection.

But what is the next step? If these diode temps maximize the power output of the NPRO, then it isn't a good idea to raise the TEC setpoint futher, so should I just turn it on again with the same settings?

I did not turn the HEPA down on the PSL enclosure. I also turned off the NPROs at EX and EY so now all the four 1064nm lasers in the VEA are turned OFF (for crane inspection).

Quote:

locked PMC at 1900 PT; let's see how long it lasts.

My hunch is that the TECs are working too hard and can't offload the heat onto the heat sinks. As the diode's degrade, more of the electrical power is converted to heat in the diodes rather than 808 nm photons. So hopefully the increased airflow will help

 
Attachment 1: Screenshot_from_2019-05-09_19-49-29.png
Screenshot_from_2019-05-09_19-49-29.png
  14600   Thu May 9 22:26:39 2019 JonOmnistructurePSLSecond ADC added to PSL Acromag crate

This evening I added a second ADC module to the prototype Acromag chassis. This chassis can now read out all the PSL diagnostic channels.

I configured the second ADC identically to the first ("ADC0"), and assigned it IP address 192.168.113.122. I confirmed it is visible on the martian network.

There was an existing but unused DB-15 feedthrough which I used for ADC1 channels 1-7. The eighth channel I left unwired, but there are slots available in the neighboring DB-25 feedthough, if that channel is needed in the future. The channel wiring assignments are as follows.

ADC1 Channel DB-15 Feedthrough Pin
0+ 1
0- 9
1+ 2
1- 10
2+ 3
2- 11
3+ 4
3- 12
4+ 5
4- 13
5+ 6
5- 14
6+ 7
6- 15
7+ not connected
7- not connected

I tested all seven of these channels by applying a calibrated voltage source and measuring the response via the Windows Acromag software. All work and are correctly calibrated to better than 0.1%.

Attachment 1: IMG_3291.jpg
IMG_3291.jpg
  14602   Fri May 10 15:18:04 2019 gautamUpdatePSLSome work on/around PSL table
  1. In anticipation of installing the new fan on the PSL, I disconencted the old fan and finally removed the bench power supply from the top shelf.
  2. Moved said bench supply to under the south-west corner of the PSL table.
  3. Installed temporary Acromag crate, now with two ADC cards, under the PSL table and hooked it up to the bench suppy (+15 VDC). Also ran an ethernet cable from 1X3 to the box on over head cable tray and connected it.
  4. Brought other end of 25-pin D-sub cable used to monitor the NPRO diagnostics channels from 1X4/1X5 to the PSL table. Rolled the excess length up and cable tied it, the excess is sitting on top of the PSL enclosure. Key parts of the setup are shown in Attachments #1-3. This is not an ideal setup and is only meant to get us through to the install of the new c1psl/c1ioo Acromag crate.
  5. Edited the modbus config file at /cvs/cds/caltech/target/c1psl2/npro_config.cmd to add Jon's new ADC card to the list.
  6. Edited EPICS database file at /cvs/cds/caltech/target/c1psl2/psl.db to add entries for the C1:PSL-FSS_RMTEMP and C1:PSL-PMC_PMCTRANSPD channels.
  7. Hooked up said channels to the physical ADC inputs via a DB15 cable and breakout board on the PSL table.
    CH0 --- FSS_RMTEMP (Pins 5/18 of the DB25 connector on the interface box to pins 1/9 of the Acromag DB15 connector)
    CH1 --- PMC TRANS (BNC cable from PD to pomona minigrabber to pins 2/10 of the Acromag DB15 connector)
    CH2-6 are unsued currently and are available via the DB15 breakout board shown in Attachment #3. CH7 is not connected at the time of writing
    The pin-out for the temperature sensor interface box may be found here. Restarted the modbus process. The channels are now being recorded, see Attachment #4, although checking the status of the modbus process, I get some error message, not sure what that's about.

So now we can monitor both the temperature of the enclosure (as reported by the sensor on the PSL table) and the NPRO diagnostics channels. The new fan for the controller has not been installed yet, due to us not having a good mounting solution for the new fans, all of which have a bigger footprint than the installed fan. But since the laser isn't running right now, this is probably okay.

modbusPSL.service - ModbusIOC Service via procServ
   Loaded: loaded (/etc/systemd/system/modbusPSL.service; disabled)
   Active:
active (running) since Fri 2019-05-10 13:17:54 PDT; 2h 13min ago
  Process: 8824 ExecStop=/bin/kill -9 ` cat /run/modbusPSL.pid`
(code=exited, status=1/FAILURE)
 Main PID: 8841 (procServ)
   CGroup: /system.slice/modbusPSL.service
           ├─8841 /usr/bin/procServ -f -L /home/controls/modbusPSL.log -p /run/modbusPSL.pid 8009 /cvs/cds/rtapps/epics-3.14.12.2_long/module...
           ├─8842 /cvs/cds/rtapps/epics-3.14.12.2_long/modules/modbus/bin/linux-x86_64/modbusApp /cvs/cds/caltech/target/c1psl2/npro_config.c...
           └─8870 caRepeater

May 10 13:17:54 c1auxex systemd[1]: Started ModbusIOC Service via procServ.

Attachment 1: IMG_7427.JPG
IMG_7427.JPG
Attachment 2: IMG_7428.JPG
IMG_7428.JPG
Attachment 3: IMG_7429.JPG
IMG_7429.JPG
Attachment 4: newPSLAcro.png
newPSLAcro.png
  14604   Sat May 11 11:48:54 2019 JonUpdatePSLSome work on/around PSL table

I took a look at the error being encountered by the modbusPSL service. The problem is that the /run/modbusPSL.pid file is not being generated by procServ, even though the -p flag controlling this is correctly set. I don't know the reason for this, but it was also a problem on c1vac and c1susaux. The solution is to remove the custom kill command (ExecStop=...) and just allow systemd to stop it via its default internal kill method.

modbusPSL.service - ModbusIOC Service via procServ
   Loaded: loaded (/etc/systemd/system/modbusPSL.service; disabled)
   Active:
active (running) since Fri 2019-05-10 13:17:54 PDT; 2h 13min ago
  Process: 8824 ExecStop=/bin/kill -9 ` cat /run/modbusPSL.pid`
(code=exited, status=1/FAILURE)
 Main PID: 8841 (procServ)
   CGroup: /system.slice/modbusPSL.service
           ├─8841 /usr/bin/procServ -f -L /home/controls/modbusPSL.log -p /run/modbusPSL.pid 8009 /cvs/cds/rtapps/epics-3.14.12.2_long/module...
           ├─8842 /cvs/cds/rtapps/epics-3.14.12.2_long/modules/modbus/bin/linux-x86_64/modbusApp /cvs/cds/caltech/target/c1psl2/npro_config.c...
           └─8870 caRepeater

May 10 13:17:54 c1auxex systemd[1]: Started ModbusIOC Service via procServ.

  14605   Mon May 13 10:45:38 2019 gautamUpdatePSLPSL turned ON again

I used some double-sided tape to attach a San Ace 60 9S0612H4011 to the Innolight controller (Attachment #1). This particular fan is rated to run with up to 13.8V, but I'm using a +15V Sorensen output - at best, this shortens the lifespan of the fan, but I don't have a better solution for now. Then I turned the laser on again (~1040 local time), using the same settings Rana configured earlier in this thread. PMC was locked, and the IMC also could be locked but I closed the shutter for now while the laser frequency/intensity stabilizes after startup. The purpose is to facilitate completion of the pre-vent alignment checklist in prep for the planned vent tomorrow. PMC Trans reports 0.63 after alignment was optimized, which is ~15% lower than in Oct 2016.

Attachment 1: IMG_7431.JPG
IMG_7431.JPG
  14609   Wed May 15 10:56:47 2019 gautamUpdatePSLPSL turned ON again

To test the hypothesis that the fan replacement had any effect on the NPRO shutoff phenomena, I turned the HEPA on the PSL table down to the nominal 30% setting at ~10am.

Tomorrow I will revert the laser crystal temperature to whatever the nominal value was. If the NPRO runs in that configuration (i.e. the only change from March 2019 are the diode TEC setpoints and the new fan on the back of the controller), then hurray.

  14662   Tue Jun 11 00:00:15 2019 MilindHowToPSLSteps to lock the PMC

Today, Rana had me key the PSL crate.

  1. Locating the rack: the crate is 1X1. This link provides details of the locations and functions of the racks.
  2. Keying the crate: the key is located at the bottom of the rack (in this case). Keying it requires one to turn the key through 90 degrees (anti clockwise facing the rack) and back to to the original position.

Locking the PMC:

  1. Accessing the medm screen for the PMC: open a new terminal and use the command sitemap. This should open up the sitemap medm screen. Click on the PSL button and then select C1PSL_PMC from the dropdown that is produced. This opens up a medm screen similar to that in Attachment #1.
  2. The correct toggling: The keying of the crate sometimes scrambles the settings on the medm screen. Rana and I performed extensive toggling of the buttons and concluded that the combination in Attachment #1 ought to be the correct one.
  3. Locking the PMC: The state of the PMC was deduced by observing CH01 on monitor 7. When not locked, there is no observable bright spot. At this point the "Input Offset (V)" slider is set to zero and the "Servo Gain Adjust (dB)" slider is set to minimum. To obtain lock, complete step 2 and then move the "DC Output Adjust (V)"  slider (at the bottom left on the screen) around rapidly while looking for a bright spot. On observing such a spot on the monitor, release the slider and quickly increase the "Servo Gain Adjust (dB)" slider to around 15 dB. Higher gain values produce a bright spot on CH02 as well which vanishes (almost) on decreasing the gain to the aforementioned value.
Attachment 1: pmc_locked_settings.pdf
pmc_locked_settings.pdf
  14817   Tue Jul 30 09:13:31 2019 gautamUpdatePSLc1psl keyed, Agilent setup cleared
  1. IMC would not lock. c1psl EPICS channels were unresponsive. I keyed the crate and went through the usual burtrestore/PMC-relocking dance.
  2. While at 1X2, I decided to take this opportunity to clean up the AG4395 setup that has been setup there unused for several weeks now.
    • Unplugged the active probe connected via BNC-T connector to the mixer IF output.
    • Noticed that the active probe (S/N 2850J01450) did not have it's power connection connected. According to the manual, this is bad. I don't know if the probe is damaged or not.
    • Moved the AG4395 cart out of the way so that there is a little more room around 1X1/1X2.
  15004   Thu Oct 31 10:44:40 2019 gautamUpdatePSLPMC re-locked

PMC got unlocked at ~4am. I re-locked it. Also tweaked the input pointing into the cavity. The misalignment was mostly in pitch.

There was also a loud buzzing in the control room due to the audio cable being improperly seated in the mixer. I re-seated it.

  15005   Sat Nov 2 16:36:55 2019 YehonathanUpdatePSLUp to date sketch of the 1x1 and 1x2 Eurocrates

I reproduced Gautam's sketch of the 1x1 and 1x2 Eurocrates into a pdf image that contains links to the appropriate DCCs in the legend (see attachement).

Attachment 1: 1x1_1X2_Eurocrates_with_links.pdf
1x1_1X2_Eurocrates_with_links.pdf
  15006   Sat Nov 2 17:08:34 2019 YehonathanUpdatePSLUp to date sketch of the 1x1 and 1x2 Eurocrates

Thanks. Please update this wiki page too.

https://wiki-40m.ligo.caltech.edu/Electronics/ElectronicsRacks#A1X1

  15008   Mon Nov 4 13:26:04 2019 YehonathanUpdatePSLUp to date sketch of the 1x1 and 1x2 Eurocrates

Done.

Quote:

Thanks. Please update this wiki page too.

https://wiki-40m.ligo.caltech.edu/Electronics/ElectronicsRacks#A1X1

  15011   Mon Nov 4 19:02:25 2019 YehonathanUpdatePSLMapping the PSL electronics

I created a spreadsheet (Attached) by taking Koji's c1psl sheet from slow_channel_list and filtering out the channels that do not need an Acromag. I added in the QPD channels that are relevant to the PSL from the c1iool0 sheet.

I began mapping the PSL related Eurocrates connectors to their respective VME channels starting with the PMC electronics.

I am confused about the TTFSS interface (D040423): While it is a Eurocrate card, in the schematics it seems to have 50 pin connectors.

I found old wiring schematics that might help with identifying the channels once the connector issue is clarified.

 

 

Attachment 1: PSL_Wirings_-_Sheet1_(1).pdf
PSL_Wirings_-_Sheet1_(1).pdf
  15017   Wed Nov 6 19:26:57 2019 gautamUpdatePSLSome PSL cable admin

Koji and I taked about cleaning up some of the flaky cable situation on the PSL table a while ago. The changes were implemented and are documented in Attachment #1. Now the Pomona box between the Thorlabs HV Driver and the NPRO head is sitting on the PSL table (sandwiched between some teflon pieces I found in cabinet S4 along the south arm), and the cables between these two devices are better strain relieved. I turned off the Thorlabs HV supply while working on the PMC table. The IMC could be locked after this work. Probably won't solve the long standing FSS mysteries but probably can't hurt.

Unrelated to this work: I also removed a Bias tee that was just hanging out on top of the FSS electronics, which was used for the modeSpec project.

Attachment 1: PSLcableAdmin.jpg
PSLcableAdmin.jpg
  15087   Mon Dec 9 19:19:04 2019 YehonathanUpdatePSLAOM first order beam alignment

{Yehonathan, Rana}

In order to setup a ringdown measurement with perfect extinction we need to align the first order beam from the AOM to the PMC instead of the zeroth order.

We connected a signal generator to the AOM driver and applied some offset voltage. We spot the first order mode and align it to the PMC. The achieved transmitted power is roughly as it was before this procedure.

Along the way few changes has been made in the PSL table:

1. Some dangling BNCs were removed.

2. Laser on the south east side of the PSL table was turned off.

3. DC power supplies were removed (Attachment 1 & 2). The rubber legs on the first one are sticky and leave black residue.

4. The beam block that orginally blocked the AOM high order modes was raised to block the zeroth order mode (Attachment 3).

5. The unterminated BNC T junction (Attachment 4 - before picture). from the PMC mixer to the PMC servo was removed.

However, we are currently unable to lock the PMC on high gain. When the gain is too high the PZT voltage goes straight to max and the lock is lost.

Attachment 1: 20191209_193112.jpg
20191209_193112.jpg
Attachment 2: 20191209_193203_HDR.jpg
20191209_193203_HDR.jpg
Attachment 3: imageedit_2_7551928142.gif
imageedit_2_7551928142.gif
Attachment 4: imageedit_3_5863650538.gif
imageedit_3_5863650538.gif
  15089   Tue Dec 10 01:24:17 2019 YehonathanUpdatePSLAOM first order beam alignment

 

However, we are currently unable to lock the PMC on high gain. When the gain is too high the PZT voltage goes straight to max and the lock is lost.

Just realized that the diffracted beam is frequency shifted by 80MHz. It would shift the PZT position in the PMC lock acquisition, wouldn't it?

  15090   Tue Dec 10 13:26:46 2019 YehonathanUpdatePSLAOM first order beam alignment

nvm the PZT can scan over many GHz.

Quote:

 

However, we are currently unable to lock the PMC on high gain. When the gain is too high the PZT voltage goes straight to max and the lock is lost.

Just realized that the diffracted beam is frequency shifted by 80MHz. It would shift the PZT position in the PMC lock acquisition, wouldn't it?

 

  15091   Tue Dec 10 15:17:17 2019 YehonathanUpdatePSLPMC is locked

{Jon, Yehonathan}

We burt-restored the PSL and the PMC locked immediately.

The PMC is now locked on the AOM first order mode.

  15092   Tue Dec 10 18:27:22 2019 YehonathanUpdatePSLPMC is locked

{Yehonathan, Jon}

We are able to lock the PMC on the TEM00 mode of the deflected beam.

However when we turn off the driving voltage to the AOM and back on the lock is not restored. It get stuck on some higher order mode.

There are plethora of modes present when the PZT is scanned, which makes us believe the cavity is misaligned.

 

To lock again on the TEM00 mode again we disconnect the loop (FP Test point 1), find a TEM00 mode using the DC output adjust and close the loop again.

 

  15093   Wed Dec 11 15:01:57 2019 JonSummaryPSLPMC cavity ringdown measurement

[Jon, Yehonathan]

We carried out a set of cavity ringdown measurements of the PMC. The 1/e decay time scale is found to be 35.2 +/- 2.4 (systematic) μs. The statistical error is negligible compared to the systematic error, which is taken as the maximum absolute deviation of any measurement from the average value.

To make the measurement, we injected the first order deflection beam of an 80 MHz AOM, then extinguished it quickly by cutting the voltage offset to the AOM driver provided by an RF function generator. A 100 MHz oscilloscope configured to trigger on the falling voltage offset was used to sample the cavity in transmission as sensed by a PDA55. We found the detector noise of the DC-coupled output of the 35.5 MHz REFL PD to be too high for a reflection-side measurement.

Further loss analysis is forthcoming.

Attachment 1: IMG_0101.jpg
IMG_0101.jpg
  15094   Wed Dec 11 15:29:17 2019 YehonathanUpdatePSLPMC is locked

Make sure to measure the power drop of the beam downstream of the AOM but before the PMC. Need to plot both together to make sure the chop time is much shorter than the 1/e time.

  15096   Thu Dec 12 19:20:43 2019 YehonathanUpdatePSLPMC cavity ringdown measurement

{Yehonathan, Rana, Jon}

To check whether we laser is being shut fast enough for the ringdown measurement we put a PD55 in the path that leads to the beat note setup. The beam is picked off from the back steering mirror after AOM and before the PMC.

@Shruti the PD is now blocking the beam to your setup.

As before, we drive the AOM to deflect the beam. The deflected beam is coupled to the PMC cavity. We lock the PMC and then shut the beam by turning off the output of the function generator that provides voltage to the AOM driver.

We measure the transmitted light of the PMC together with the light that is picked off before the PMC. In Attachment 1, the purple trace is the PMC transmission, the green trace is the peaked-off beam and the yellow trace is the function generator signal.

Rana was pointing out that the PDs, the function generator and the scope were not carefully impedance matched, which could lead to erroneous measurements. He also mentioned that the backscattered beam was too bright which might indicate that the PMC is oscillating. To remedy this we lowered the gain of the PMC lock to ~8.

We repeat the measurement after setting all the components to 50ohm (attachment 2). We then realize that the BNC T junction connected on the function generator is splitting the signal between the 50ohm AOM driver and 1Mohm oscilloscope channel which causes distortions as can be seen. We remove the T junction and get a much cleaner measurement (see next elog).

 

It seems like either the shutting speed or the PDs are only slightly faster than the PMC. I also check the AOM driver RF output fall time doing the same kind of measurement (attachment 3).

We suspect the PDs' bandwidth is to blame (although they are quoted to have 10MHz bandwidth).

In any case, this is fast enough for the IMC and arm cavities whose lifetime should be much longer than the PMC.

I will post an elog with some numbers tomorrow.

Attachment 1: IMG_0105.jpeg
IMG_0105.jpeg
Attachment 2: TEK00001.PNG
TEK00001.PNG
Attachment 3: 20191212_151642.jpg
20191212_151642.jpg
  15097   Fri Dec 13 12:28:43 2019 YehonathanUpdatePSLPMC cavity ringdown measurement

I grab the data we recorded yesterday from the scope and plot it in normalized units (remove noise level and divide by maximum). See attachment.

It can be seen that the measured ringdown time is ~ 17us while the shut-off time is ~12us.

I plan to model the PD+AOM as a lowpass filter with an RC time constant of 12us and undo its filtering action on the PMC trans ringdown measurement to get the actual ringdown time.

Is this acceptable?

 

Attachment 1: Ringdown_InitialProcess.pdf
Ringdown_InitialProcess.pdf
  15098   Mon Dec 16 18:19:42 2019 shrutiUpdatePSLPMC cavity ringdown measurement : beat-note disruption

I have removed the PD55 + ND filter attached to it (see Attachment) and placed it next to the oscilloscope, after disconnecting its output and power supply. The post is still in place.

I did see the beat after that.

Quote:

{Yehonathan, Rana, Jon}

To check whether we laser is being shut fast enough for the ringdown measurement we put a PD55 in the path that leads to the beat note setup. The beam is picked off from the back steering mirror after AOM and before the PMC.

@Shruti the PD is now blocking the beam to your setup.

 

Attachment 1: IMG_0040.jpg
IMG_0040.jpg
  15099   Tue Dec 17 00:23:28 2019 YehonathanUpdatePSLMapping the PSL electronics

I added to the PSL wiring list the ioo channels and the laser shutter (See attached pdf for an updated list).

The total channel numbers for now:

ai 57
ao 13
bi 1
bo 36

I counted each mbbo as 1 bo but I am not sure that's correct.

Still need to allocate Acromags.

Attachment 1: PSL_Wirings_-_Sheet1_(2).pdf
PSL_Wirings_-_Sheet1_(2).pdf PSL_Wirings_-_Sheet1_(2).pdf
  15100   Tue Dec 17 18:05:06 2019 YehonathanUpdatePSLMapping the PSL electronics

Updated the channel list (Attached):

1. Removed the MC steering mirror PZT channels

2. Added Sourcing/Sinking column

3. Recounted the mbbos correctly

4. Allocated Acromags:

Model Purpose No. Spare channels
XT1221 ai 7 11
XT1541 ao + src bo 2 9 ao
XT1121 src bo 2 4
XT1121 sink bo 1 4

I think we can start wiring.

Attachment 1: PSL_Wirings_-_Sheet1_(3).pdf
PSL_Wirings_-_Sheet1_(3).pdf PSL_Wirings_-_Sheet1_(3).pdf
  15102   Tue Dec 17 20:45:30 2019 ranaUpdatePSLPMC cavity ringdown measurement

idk - I'm recently worried about the 'thermal self locking' issue we discussed. I think you should try to measure the linewidth by scanning (with low input power) and also measure the TF directly by modulating the power via the AOM and taking the ratio of input/output with the PDA55s. I'm curious to see if the ringdown is different for low and high powers

Quote:

I plan to model the PD+AOM as a lowpass filter with an RC time constant of 12us and undo its filtering action on the PMC trans ringdown measurement to get the actual ringdown time.

Is this acceptable?

This is an ole SURF report on thermal self-locking that may be of use (I haven't read it or checked it for errors, but Royal was pretty good analytically, so its worth looking at)

  15103   Fri Dec 20 18:33:21 2019 YehonathanUpdatePSLMapping the PSL electronics

Final (hopefully) PSL channel list is attached with allocated Acromag channels. Wiring spreadsheet coming soon.

Current Acromag count:

AI 8
AO 2
BIO 4
Number of channels 8*8+2*8+4*16=144
Number of wires 144*2=288

 

Attachment 1: PSL_Wirings_-_Channel_List.pdf
PSL_Wirings_-_Channel_List.pdf PSL_Wirings_-_Channel_List.pdf PSL_Wirings_-_Channel_List.pdf PSL_Wirings_-_Channel_List.pdf PSL_Wirings_-_Channel_List.pdf
  15104   Mon Dec 23 19:30:20 2019 YehonathanUpdatePSLMapping the PSL electronics

PSL wiring spreadsheet is ready. (But the link was stripped. Koji)

Link to a wiki page  with the link to the wiring spreadsheet (Yehonathan)

  15105   Fri Dec 27 15:01:02 2019 YehonathanUpdatePSLPMC cavity ringdown measurement

I measured PMC ringdowns for several input powers. I change the input power by changing the DC voltage to the AOM.

First, I raise the DC voltage to the AOM from 0V and observe the signal on the picked off PD. I see that at around 0.6V the signal stops rising. The signal on the PD is around 4V at that point so it is not saturated.

Up until now, we provided 1.5V to the AOM, which means it was saturated.

I measured ringdowns at AOM voltages of 0.05, 0.1, 0.3, 0.5, 1 volt by shutting off the DC voltage to the AOM and measuring the signal at the PMC transmission PD and the picked off PD simultaneously for reference.

Attachment 1 shows the reference measurement for different AOM voltages. For low AOM DC voltages, the response of the AOM+PD is slower.

Attachment 2 shows the PMC transmission PD measurements which barely change as a function of AOM voltage but shows the same trend. I believe that if the AOM+PD response was much faster there would be no observable difference between those measurements.

Attachment 3 shows PMC transmissions and references for AOM voltages 0.05V and 1V. It seems like for low AOM voltages we are barely fast enough to measure the PMC ringdown.

I fitted the 0.3V ringdown and reference to a sum of two exponentials (Attachment 4).

The fitting function is explicitly a * nm.exp(-x/b) +c* nm.exp(-x/d) +e

For the PMC transmission I get:

a = 0.21
b = 3.64 (us)
c = 0.69, 
d = 39.62 (us)
e = 2.0e-04

For the reference measurement:

a = 0.34
b = 4.97 (us)
c = 0.58
d= 31.22 (us)
e = 1.11e-03

I am still not able to do deconvolution of the ref from the measurement reliably. I think we should do a network analyzer measurement.

Shruti, the PD is again in your beam path.

Attachment 1: PDAOMResponse.pdf
PDAOMResponse.pdf
Attachment 2: PMCTransmission.pdf
PMCTransmission.pdf
Attachment 3: RingdownsAndRefs.pdf
RingdownsAndRefs.pdf
Attachment 4: TwoExponentialFitAOM0.3V.pdf
TwoExponentialFitAOM0.3V.pdf
  15106   Fri Dec 27 16:26:11 2019 YehonathanUpdatePSLPMC Linewidth measurement

I try to measure the linewidth of the PMC by ramping the PMC PZT. 

I do it by connecting a triangular shape signal to FP Test 1 on the PMC servo front panel (I know, it is probably better to connect it to DC EXT. next time.) and turn the servo gain to a minimum.

Attachment 1 shows the PMC transmission PD as the PZT is swept with the EOM connected and when it is disconnected. It shows the PMC over more than 1 free spectral range.

For some reason, I cannot seem to be able to find the 35MHz sidebands which I want to use to calibrate the PZT scan. I made sure that the EOM is driven by a 35MHz signal using the scope. I also made sure that the PMC cannot to lock without the EOM connected.

I am probably doing something silly.

Attachment 1: PMCTransmissionSpectra.pdf
PMCTransmissionSpectra.pdf
  15107   Tue Dec 31 03:03:02 2019 gautamUpdatePSLPMC cavity ringdown measurement

When I was looking at this, the AOM shutdown time was measured to be ~120 ns, and while I wasn't able to do a ringdown measurement with the PMC (it'd just stay locked because at the time i was using the zeroth order beam), the PMC transmission decayed in <200 ns. 

  15108   Wed Jan 1 04:53:11 2020 gautamUpdatePSLMapping the PSL electronics

For the IMC servo board, it'd be easiest to copy the wiring scheme for the BIO bits as is configured for the CM board (i.e. copy the grouping of the BIO bits on the individual Acromag units). This will enable us to use the latch code with minimal modifications (it was a pain to debug this the first time around). I don't see any major constraint in the wiring assignment that'd make this difficult.

Quote:

PSL wiring spreadsheet is ready. (But the link was stripped. Koji)

Link to a wiki page  with the link to the wiring spreadsheet (Yehonathan)

  15109   Wed Jan 1 14:14:00 2020 YehonathanUpdatePSLPMC Linewidth measurement

Turns out the 35MHz sidebands are way too weak to resolve from the resonance when doing a PZT scan.

I connect the IFR2023B function generator on the PSL table to the EOM instead of the FSS box and set it to generate 150MHz at 13dbm.

To observe the resulting weak sideband I place a PDA55 at the peak-off path from the transmission of the PMC where there is much more light than the transmission of the PMC head mirror. Whoever is using this path there is a PD blocking it right now.

I do a PZT scan by connecting a triangular signal to the EXT DC on the PMC servo with and without the EOM (Attachment 1). A weak sideband can clearly be spotted now.

Using the above 150MHz sideband calibration I can find the roundtrip time to be 1.55ns.

I take a high-resolution scan of a resonance peak and fit it to a Lorentzian (Attachment 2) and find a roundtrip loss of 1.3%.

Using the above results the cavity decay time is 119ns.

We should investigate what's going on with the ringdown measurements.

Attachment 1: 150MHzSideBandCreation.pdf
150MHzSideBandCreation.pdf
Attachment 2: LinewidthMeasurment.pdf
LinewidthMeasurment.pdf
  15110   Wed Jan 1 16:04:37 2020 YehonathanUpdatePSLMapping the PSL electronics

Done.

Quote:

For the IMC servo board, it'd be easiest to copy the wiring scheme for the BIO bits as is configured for the CM board (i.e. copy the grouping of the BIO bits on the individual Acromag units). This will enable us to use the latch code with minimal modifications (it was a pain to debug this the first time around). I don't see any major constraint in the wiring assignment that'd make this difficult.

Quote:

PSL wiring spreadsheet is ready. (But the link was stripped. Koji)

Link to a wiki page  with the link to the wiring spreadsheet (Yehonathan)

 

  15111   Mon Jan 6 15:36:55 2020 JonUpdatePSLAssembly underway for c1psl upgrade

[Jon, Yehonathan]

We've begun assembling the new c1psl Acromag chassis based on Yehonathan's final pin assignments. So far, parts have been gathered and the chassis itself has been assembled.

Yehonathan is currently wiring up the chassis power and Ethernet feedthroughs, following my wiring diagram from previous assemblies. Once the Acromag units are powered, I will help configure them, assign IPs, etc. We will then turn the wiring over to Chub to complete the Acromag to breakout board wiring.

I began setting up the host server, but immediately hit a problem: We seem to have no more memory cards or solid-state drives, despite having two more SuperMicro servers. I ordered enough RAM cards and drives to finish both machines. They will hopefully arrive tomorrow.

  15112   Mon Jan 6 16:07:12 2020 gautamUpdatePSLAssembly underway for c1psl upgrade

RTFE. Where did the spares go?

Quote:

I began setting up the host server, but immediately hit a problem: We seem to have no more memory cards or solid-state drives, despite having two more SuperMicro servers. I ordered enough RAM cards and drives to finish both machines. They will hopefully arrive tomorrow.

  15113   Mon Jan 6 19:05:09 2020 not gautamUpdatePSLAssembly underway for c1psl upgrade

I found them, thanks. After c1psl, there are 4 2GB DIMM cards and 1 SSD left. I moved them into the storage bins with all the other Acromag parts.

Quote:

RTFE. Where did the spares go?

Quote:

I began setting up the host server, but immediately hit a problem: We seem to have no more memory cards or solid-state drives, despite having two more SuperMicro servers. I ordered enough RAM cards and drives to finish both machines. They will hopefully arrive tomorrow.

  15114   Tue Jan 7 18:51:51 2020 JonUpdatePSLNew c1psl server assembled

I've assembled a new SuperMicro rackmount machine to replace c1psl. It is currently set up on the electronics bench.

  • OS: Debian 10.2
  • Hostname: c1psl1 (will become c1psl after installation)
  • IP: 192.168.113.54 (registered in the martian DNS)
  • Network drive mount point set up (/cvs/cds), which provides all the EPICS executables.
  15115   Fri Jan 10 14:21:19 2020 YehonathanUpdatePSLc1psl reboot

PSL controls on the sitemap went blank. Rebooted c1psl. PSL screens seem normal again.

  15116   Fri Jan 10 19:48:46 2020 yehonathanUpdatePSLAssembly underway for c1psl upgrade

{Yehonathan, Jon}

I finished pre-wiring the PSL chassis. I mounted the Acromags on the DIN rails and labeled them. I checked that they are powered up with the right voltage +24V and that the LEDs behave as expected.

Attachment 1: 20200110_194429.jpg
20200110_194429.jpg
Attachment 2: 20200110_194516_HDR.jpg
20200110_194516_HDR.jpg
  15118   Mon Jan 13 16:05:18 2020 yehonathanUpdatePSLAssembly underway for c1psl upgrade

{Yehonathan, Jon}

I configured the Acromag channels according to the Slow Controls Wiki page.

We started testing the channels. Almost at the beginning we notice that the BIO channels are inverted. High voltage when 0. 0 Voltage when 1. We checked several things:

1. We checked the configuration of the BIOs in the windows machine but nothing pointed to the problem.

2. We isolated one of the BIOs from the DIN rail but the behavior persisted.

3. We checked that the voltages that go into the Acromags are correct.

The next step is to power up an isolated Acromag directly from the power supply. This will tell us if the problem is in the chassis or the EPICs DB.

  15119   Mon Jan 13 23:30:53 2020 YehonathanSummaryPSLChanges made since Gautam left

As per Gautam's request, I list the changes that were made since he left:

1. The AOM driver was connected to a signal generator.

2. The first order beam from the AOM was coupled into the PMC while the zero-order beam is blocked. We might want to keep this configuration if the pointing stability is adequate.

3. c1psl got Burt restored to Dec 1st.

4. Megatron got updated.

Currently, c1susaux seems unresponsive and needs to be rebooted.

  15120   Tue Jan 14 17:16:43 2020 yehonathanUpdatePSLAssembly underway for c1psl upgrade

{Yehonathan, Jon}

I isolated a BIO Acromag completely from the chassis and powered it up. The inverted behavior persisted.

Turns out this is normal behavior for the XT1111 model.

For digital outputs, one should XT1121. XT1111 should be used for digital inputs.

Slow machines Wiki page was updated along with other pieces of information.

I replaced the XT1111 Acromags with XT1121 and did some rewiring since the XT1121 cannot get the excitation voltage from the DIN rail.

I added an XT1111 Acromag for the single digital input we have in this system.

  15124   Wed Jan 15 10:12:46 2020 gautamUpdatePSLAssembly underway for c1psl upgrade

I don't think this is an accurate statement. XT1111 modules have sinking digital outputs, while XT1121 modules have sourcing digital outputs. Depending on the requirement, the appropriate units should be used. I believe the XT1111 is the appropriate choice for most of our circuits.

For digital outputs, one should XT1121. XT1111 should be used for digital inputs.

ELOG V3.1.3-