40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m elog, Page 268 of 357  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  13651   Thu Feb 22 16:16:43 2018 KiraUpdatePEMtemp sensor input

Rewired the temperature sensor inputs to Molex connectors so that we can now attach them to the +/- 15V Sorensens for input instead of using a power supply.

Attachment 1: IMG_20180222_160602.jpg
IMG_20180222_160602.jpg
  13656   Mon Feb 26 16:22:10 2018 KiraUpdatePEMtemp sensor input

[Kira, Gautam]

We began the setup for the lab temperature sensor today. First, we needed to add in a DIN fuse for both temperature sensors, which required us to shut down everything else first. To avoid having to do that next time, we made three instead of two spaces where we have + and - 15V. Attachment 1 shows the new fuses we installed, along with the fuses they connect to. Attachment 2 shows the wiring that we used to connect all the fuses. Attachment 3 shows the labeled long wires that are attached to the lab temperature sensor. The other end is labeled as well. I measured the voltage at the other end of the long cables, and while the -15V one looks good, the +15V one shows only about 13.5V. 

-----

edit (Tuesday) - I set up the other set of cables that will eventually lead to the sensor in the can, but neither of them are showing any voltage on the other end. I'll work on this issue tomorrow.


gautam: some additional remarks about the procedure followed:

  • Wires were tinned with solder to facilitate easier insertion into DIN fuse blocks.
  • ETMX watchdog was shutdown. I then unplugged the satellite box at the X end to avoid any sort of electrical impulse being sent to the optic.
  • Shut down all the sorensens in the EX rack.
  • Tapped new +15VDC and -15 VDC outputs at the EX rack in the locations Kira indicated.
  • Turned Sorensens back on. Checked that all voltages as reported by front panel monitor points were as they were expected to be.
  • Had some trouble getting the modbus IOC going after this work. Kept throwing an error that modbus couldn't be initialized by procserv. Ended up having to reboot c1auxex2, after which it worked fine.
Attachment 1: 1.jpg
1.jpg
Attachment 2: IMG_20180226_154649.jpg
IMG_20180226_154649.jpg
Attachment 3: IMG_20180226_154720.jpg
IMG_20180226_154720.jpg
  13660   Wed Feb 28 12:31:28 2018 KiraUpdatePEMtemp sensor input

I switched out the DIN fuses for the long cables and it fixed the issue of them not showing any votage on the other end. At first, the +15V cable worked and the -15V didn't, but when I switched the fuse for the -15V it began working, but the +15V stopped working. I then switched out the fuse for +15V and both cables began showing voltage. But for both the long cables and the shorter ones, they show +13.4V instead of +15V. Not sure what's going on there.

  13662   Wed Feb 28 21:14:34 2018 gautamSummaryPEMChannel admin

Since we decided to use the Acromag for readback of the temperature sensor for Kira's seismometer temperature control, I enabled logging of the channel Johannes had reserved for this purpose last week. Kira has made the physical connection of a temperature sensor to the BNC input for this channel - it reads back -2.92 V right now, which is around what I remember it being when Kira was doing her benchtop tests. I edited C0EDCU.ini to enable logging of this channel at 16 Hz. Presumably, a study of the ADC noise of the Acromag at low frequencies has to be made to ensure appropriate whitening (if any) can be added. Channel name is C1:PEM-SEIS_EX_TEMP_MON. Similarly, there is C1:PEM_SEIS_EX_TEMP_CTRL which is meant to be the control channel for the servoing. Calibration of the temperature sensor readback into temperature units remains. It also remains to be verified if we can have these slow EPICS channels integrated with a fast control model, or if the PID temperature control will be purely custom-script based as we have for the FSS slow loop.

I removed the fast channels I had setup temporarily in c1als. Recompilation and restart of the model went smoothly.

Quote:
 I then made a "PEM" namespace block inside the c1als model, and placed a single CDS filter module inside it (this can be used for calibration purposes). The filter module is named "C1:PEM-SEIS_EX_TEMP", and has the usual CDSfilt channels available. I DQ'ed the output of the filter module (@256 Hz, probably too high, but I'm holding off on a recompile for now). Recompilation and model restart of c1als went smoothly. 
 
Attachment 1: tempSensData.png
tempSensData.png
  13676   Fri Mar 9 12:59:53 2018 KiraUpdatePEMADC noise measurement

[Kira, Gautam]

I ceated a simple circuit that takes in 15V and outputs precisely 5V by using a 12V voltage regulator LM7812 and an AD586 that takes the output of the voltage regulator and outputs 5V (attachment 1). We plugged this into the slow channel and will leave it running for a few hours to see if we still have the fluctuations we observed earlier and also fit the noise curve. We'll also test the fast channel later as well. Attachment 2 shows the setup we have in the lab, with the red and white cable plugged into the +15V power supply and the red and black cable connected to the slow channel.

Attachment 1: IMG_20180309_114345.jpg
IMG_20180309_114345.jpg
Attachment 2: IMG_20180309_125153.jpg
IMG_20180309_125153.jpg
  13684   Thu Mar 15 17:33:56 2018 KiraUpdatePEMtest setup

I have attached the setup I completed today. The metal box contains the heater circuit and the board for the temperature sensor is right above it. This is basically the same setup as before, but I've just packaged everything up neater. I expect to be able to perform the test tomorrow and begin implementing PID control. I still need a DAC input for the heater circuit and the temperature sensor is having some issues as well.

Attachment 1: IMG_20180315_172512.jpg
IMG_20180315_172512.jpg
  13691   Tue Mar 20 16:56:01 2018 KiraUpdatePEMtest setup

The MOSFET was getting pretty hot, so I switched it out to a larger heat sink and it's fine now. I then used a function generator in place of the DAC to provide ~3.5V. I got the current in the circuit to 1.7A, which is as expected, since we have 24V input, the heater resistance is 12.5ohm and the resistor we are using is 1ohm, so 24V/(12.5+1)ohm = 1.7A. The temperature inside the can rose about 5 degrees in half an hour. The only issue now is the voltage regulators and OP amp inside the box get hot, though it doesn't seem to be dangerous. I switched the function generator input to a DAC and Gautam set it to 1.5V. If it works, then we'll leave this on overnight and work on the PID control tomorrow. I've attached images of the current heater circuit box when it is open and the new heat sink for the MOSFET.


gautam: we also tried incorporating the EPICS channels from the Acromag into the RTCDS so that we can implement PID control by using Foton. I tried doing this using the "EpicsIn" and "EpicsOut" blocks from CDS_PARTS. While the model recompiled smoothly, I saw no signals in the filter module i had connected in series with the EpicsIn block. So I just reverted c1pem to its original state and recompiled the model. Guess we will stick to python script PID reading EPICS channels to implement the PID servo.

Attachment 1: IMG_20180320_154516.jpg
IMG_20180320_154516.jpg
Attachment 2: IMG_20180320_145957.jpg
IMG_20180320_145957.jpg
  13692   Tue Mar 20 19:48:10 2018 gautamUpdatePEMtest setup

according to the temp sensor readout, which was ~-3.35V which corresponds to ~335K, the temperature of the can is now 60 deg C. This is a bit warm for my liking so i'm turning the heater current down to 0 now by writing 0 to C1:PEM-SEIS_EX_TEMP_CTRL

  13700   Fri Mar 23 12:00:20 2018 ranaUpdatePEMtest setup

we don't ever want to use our 16 kHz real time system for such low frequency action; its main purpose is for real-time controls, whereas we are OK with multiple seconds of delay in a thermal loop. The Python PID script is sufficient and highly reliable (after years of testing).

  13701   Fri Mar 23 12:45:08 2018 KiraUpdatePEMtest setup

I fit the data that we got from the test. The time constant for the cooling came out to be about 4.5 hours. The error is quite large and we should add a low pass filter to the temperature sensor eventually in order to minimize the noise of the measurements.

Attachment 1: seis_fit.png
seis_fit.png
  13704   Mon Mar 26 16:10:33 2018 KiraUpdatePEMfinal setup sketch

I made sketches of the final setup. There will be a box in the rack that contains both the heater circuit and the temperature sensor boards. One of them is in the loop while the other isn't. Instead of having many cables leading to the can, there will only be these three, though they can be made into a single wire. It will be connected to the can through a D-9 connector. The second attachment is what will be inside of the box, with all the major wires and components labeled.

-----

Edit: I've canged the layout to (hopefully) make the labels easier to read. I've also added in a cable to the ADC that reads out the voltage across the 1 ohm resistor. I also attached the circuit diagrams for the heater circuit and the temperature sensors. The one for the heater circuit was made by Kevin and I used the same design, except I have LM7818 and LM7918, since the 15V ones were not available at the time I made the circuit. 

In addition, all the wires leading to the can will all be part of one bundle of wires (I didn't clearly indicate it as such). There will be a total of 6 wires: two are needed for the wire to supply power to the heater and will have a LEMO connector on the rack end and two are needed for each temperature sensor, which will be attached to the board directly on the rack end. 

Also, we don't need two voltage regulators for each temperature circuit. We can just have one of each of LM7815 and LM7915 to supply +/- 15V to the boards.

Attachment 1: heater_1_new.png
heater_1_new.png
Attachment 2: heater_2_new.png
heater_2_new.png
Attachment 3: HeaterCircuit.pdf
HeaterCircuit.pdf
Attachment 4: temp_sensor.png
temp_sensor.png
  13710   Tue Mar 27 11:11:16 2018 KiraUpdatePEMChannel setup

[Kira, Gautam]

We setup the channels for PID control of the seismometer can. First, we ssh into c1auxex and went to /cvs/cds/caltech/target/c1auxex2 and found ETMXaux.db. We then added in new soft channels that we named C1:PEM-SEIS_EX_TEMP_SLOWKP, C1:PEM-SEIS_EX_TEMP_SLOWKI, C1:PEM-SEIS_EX_TEMP_SLOWKD that will control the proportional, integral and differential gain respectively. These channels are used in the script FSSSlow.py for PID control. We then had to restart the system, but first we turned off the LSC mode and then shut down the watchdog on the X end. After doing the restart, we disabled the OPLEV as well before restarting the watchdog. Then, we enabled the LSC mode again. This is done to not damage any of the optics during the restart. The restart is done by using sudo systemctl restart modbusIOC.service and restarted with sudo systemctl status modbusIOC.service. Then, we made sure that the channels existed and could be read and writtten to, so we tried z read [channel name] and it read 0.0. We then did z write [channel name] 5, and it wrote 5 to that channel. Now that the channels work, we can implement the PID script and check to make sure that it works as well.

  13718   Thu Mar 29 17:14:42 2018 KiraUpdatePEMPID test

[Kira, Gautam]

We closed the loop today and implemented the PID script. I have attached the StripTool graph for an integral value of 0.5 and proportional value of 20. We had some issues getting it to work properly and it would oscillate between some low values of the control voltage. The set point here was -3.20, which corresponds to about a 20 degree increase in temperature. The next step would be to find which values of Kp, Ki, and Kd would work in this case and low pass filter the signal from the temperature sensor, and also create an MEDM screen for easier PID control.

Attachment 1: PID_test.png
PID_test.png
  13722   Fri Mar 30 06:16:45 2018 ranaUpdatePEMPID test

Can't really figure out what this plot means. We need to see the sensor (in units of deg C) and the control signal (in heating power (W)). The plot should show a few step responses with the PID loop on, so that we can see the loop response time. Please zoom in on the axes so that we can see what's happening.

Quote:

[Kira, Gautam]

We closed the loop today and implemented the PID script. I have attached the StripTool graph for an integral value of 0.5 and proportional value of 20. We had some issues getting it to work properly and it would oscillate between some low values of the control voltage. The set point here was -3.20, which corresponds to about a 20 degree increase in temperature. The next step would be to find which values of Kp, Ki, and Kd would work in this case and low pass filter the signal from the temperature sensor, and also create an MEDM screen for easier PID control.

 

  13723   Fri Mar 30 16:10:46 2018 KiraUpdatePEMPID test

I created two new channels today, C1:PEM-SEIS_EX_TEMP_MON_CELCIUS, which turns the output voltage signal into degrees C, and C1:PEM-SEIS_EX_TEMP_CTRL_WATTS, which takes the input voltage from the DAC and turns it into a value of watts. I'm trying to stabilize the temperature at 35 degrees, but it's taking a lot longer than expected. Perhaps we'll need to use different values for P and I and decrease the noise in the sensor, since right now there's about a 10 degree variation between the highest and lowest values.

  13726   Wed Apr 4 16:23:10 2018 KiraUpdatePEMPID test

I did a step response for the loop from 35 degrees to 40 degrees. The PID is not properly tuned, so the signal oscillates. In the graph, the blue curve is the temperature of the can in celcius and the green curve is the heating power in watts. The x-axis is in minutes. Before, the signal was too noisy to do a proper step response, so I placed a 3.3 microF capacitor in parallel with the resistor in my temperature sensor circuit (I'll draw and attach this updated version). This created a 5 Hz low pass filter and the signal is now pretty clean.

-----

I also added in new Epics channels so that we could log the data using Data Viewer. The channels I added were C1:PEM-SEIS_EX_TEMP_MON_CELCIUS and C1:PEM-SEIS_EX_TEMP_CTRL_WATTS. I used 13023 as a guide on how to do this.

Update: the channels work and show data in Data Viewer

-----

Edit: I've attached a photo of the circuit with the capacitor indicated. It is in parallel with the resistor below it. I've attached an updated circuit diagram as well.

Attachment 1: step_response.png
step_response.png
Attachment 2: capacitor.jpg
capacitor.jpg
Attachment 3: IMG_20180412_120427.jpg
IMG_20180412_120427.jpg
  13735   Fri Apr 6 16:17:20 2018 KiraUpdatePEMPID tuning

I have been trying to tune the PID and have managed to descrease the oscillations without saturating the actuator. I'm going to model the system to calculate the exact values of P, I and D in order to get rid of the oscillations altogether. I was going to record the data using Data Viewer, but there seems to be some issue with that, so I'm using StripTool for now.

Attachment 1: PID_tuning_progress.png
PID_tuning_progress.png
  13736   Fri Apr 6 18:28:57 2018 ranaUpdatePEMPID tuning

Made some changes:

  1. Set P and D gains to zero. We only need slow drift control.
  2. Changed names of the python script and .ini file to distinguish it from the FSS stuff. Lives in scripts/PEM/
  3. removed debug flag from argParse. To run in non-debug mode you use the "-O" option of python as usual.
  4. Fixed the upper/lower limit convention for the heater. Was backwards.
  5. Removed the "rail" function that was defined. We can just use numpy.clip since that's already built in.

There is also now a StripTool file in the scripts/PEM directory which has appropriate channel names and scales for PID loop tuning. Use this file!

I'm leaving it running over the weekend with K_I = -0.003. There is a StripTool on rossa which you can watch. The code itself is running on a tmux session on megatron. Let's ONLY run this code there until we're satisfied that things are good.

Update Sun Apr 8 00:40:11 2018: Lowered gain by factors of 3 down to -0.0001 Saturday afternoon. Seems like still oscillating a bit, now with a ~4 hour period. Setting it to -3e-5 now. Usually we have a linear feedback loop, but our actuation voltage actually gets squared (P = I^2 R) before being integrated to produce temperature. Wonder if we should think of linearizing the feedback control signal to make the loop act nicer.

Update Sun Apr 8 21:09:48 2018: Set K_I = -1e-5 earlier today. Seems to have stabilized nearly, but temperature swings are still +/- 1 K. Will need to add some proportional feedback (K_P) to increase the loop bandwidth, but system is at least sort of stable now. Probably should start construction of EY,BS systems now.

Attachment 1: HeaterTest.png
HeaterTest.png
  13739   Mon Apr 9 08:39:39 2018 SteveUpdatePEMM5.3 eq Souther CA

Earth quake M5.3    2018-04-05 19:29:16UTC          Santa Cruz Island, CA

 

Attachment 1: M5.3_Santa_Cruz_Is.CA.png
M5.3_Santa_Cruz_Is.CA.png
Attachment 2: after_M5.3.png
after_M5.3.png
Attachment 3: M5.3vac.png
M5.3vac.png
  13740   Mon Apr 9 16:30:21 2018 KiraUpdatePEMMEDM setup

I created an MEDM screen for the PID control. In addition, I added a new EPICS channel for the setpoint so that it could be adjusted using the MEDM screen.

Edit: forgot to mention the channel name is C1:PEM-SEIS_EX_TEMP_SETPOINT

Edit #2: the path for the MEDM is /opt/rtcds/caltech/c1/medm/c1pem/C1PEM_SEIS_EX_TCTRL.adl

Attachment 1: MEDM_screen.png
MEDM_screen.png
  13745   Tue Apr 10 15:42:08 2018 KiraUpdatePEMMEDM setup

An update to the screen. I changed the min/max values for some of the parameters, as well as changing the script so that I could specify the integral gain in terms of 1e-5. I've also added this screen to the PEM tab in the sitemap.

Attachment 1: MEDM_2.png
MEDM_2.png
  13748   Thu Apr 12 10:15:33 2018 KiraUpdatePEMMEDM setup

Another update. I've changed the on/off button so that it's visible which state it's in. I did that by changing the type of C1:PEM-SEIS-EX_TEMP_SLOWLOOP from ai to bi (I checked the FSS script and copied the entry for the slowloop). Previously, MEDM was giving me an error that it wasn't an ENUM value when I wanted to use a choice button to indicate the value of slowloop, and this solved the issue. I've also added a StripTool button.

Attachment 1: MEDM_3.png
MEDM_3.png
  13750   Fri Apr 13 00:20:46 2018 ranaUpdatePEMMEDM setup

changed the setpoint of the EX Seismomter T ctrl servo from 35 to 39 C to see if this helps the stability by decreasing the cooldown time constant.

  13759   Wed Apr 18 12:18:39 2018 KiraUpdatePEMfinal setup sketch

I've updated the sketches and added in front panels for the seismometer block and the 1U panel (attachments 3 and 4). There was an issue when it came to the panel on the block because the hole is only big enough for the cable that already exists there and there is no space to add in the D-9 connector. Not quite sure how to resolve this issue. Attachment 7 is the current panel on the seismometer block. Attachments 5 and 6 are the updated temperature circuit and the heater circuit.

The boxes will be located in the short racks at EX and EY to minimize cable length.

Attachment 1: heater_1_new.png
heater_1_new.png
Attachment 2: heater_2_new.png
heater_2_new.png
Attachment 3: 1U-panel.pdf
1U-panel.pdf
Attachment 4: EX-can-panel.pdf
EX-can-panel.pdf
Attachment 5: IMG_20180412_120427.jpg
IMG_20180412_120427.jpg
Attachment 6: HeaterCircuit.pdf
HeaterCircuit.pdf
Attachment 7: IMG_20180418_121115.jpg
IMG_20180418_121115.jpg
  13760   Wed Apr 18 16:59:35 2018 ranaUpdatePEMfinal setup sketch: EX Seis

Can you please add dimensions to the drawing, so we can see if things fit and what the cable lenghts need to be?

For the panel on the granite slab, we should use a thinner piece of metal and mount it with an offset so that the D-sub cable can be fished through the hole in the slab. The hole is wide enough for 2 cables, but not 2 connectors.


Attached is a 8-day minute trend of the heater control signals, as well as the in-loop temperature sensor (which underestimates the true fluctuations; we really need an out-of-loop sensor attached to the can or seismometer).

You can see that since the last tuning (on the 13th), its been stable at the set point of 39 C with 8.5 - 10 W of heating power. Need to add the PID loop settings (all the sliders on the MEDM screen) to the frames so that we can help in diagnosing. Also, fix the spelling of "Celcisususs".

Attachment 1: Screen_Shot_2018-04-18_at_5.20.53_PM.png
Screen_Shot_2018-04-18_at_5.20.53_PM.png
  13768   Thu Apr 19 11:29:11 2018 ranaUpdatePEMPID tune

Yesterday, I changed the P gain of the PID loop from zero to  +0.1. Seems good so far; will monitor for a couple days to see if we're in the right ballpark. Main issue in the stability may now be that the quantization noise is too big for the temperature sensor. If so, we should consider subtracting off the DC value (with a V ref) and then amplifying before ADC.

Attachment 1: Screen_Shot_2018-04-19_at_11.27.08_AM.png
Screen_Shot_2018-04-19_at_11.27.08_AM.png
  13769   Thu Apr 19 12:23:30 2018 KiraUpdatePEMfinal setup sketch update

I've added in the dimensions to my sketch.

It seems like placing the two connectors right next to each other would allow both cables to just barely go through the hole in the block.

Quote:

Can you please add dimensions to the drawing, so we can see if things fit and what the cable lenghts need to be?

For the panel on the granite slab, we should use a thinner piece of metal and mount it with an offset so that the D-sub cable can be fished through the hole in the slab. The hole is wide enough for 2 cables, but not 2 connectors.

 

Attachment 1: heater_1_new.png
heater_1_new.png
Attachment 2: heater_2_new.png
heater_2_new.png
  13771   Thu Apr 19 18:23:51 2018 KiraUpdatePEMfinal setup sketch update

since we're just going from the short rack (not the tall rack) to the seismometer, can't we use a cable shorter than 45' ?

Quote:

I've added in the dimensions to my sketch.

the panel should be completely replaced like I described. We don't want to try to squeeze it in artificially and torque the wires. It just needs to be separated from the slab by a few more cm.

  13774   Fri Apr 20 15:07:45 2018 KiraUpdatePEMfinal setup sketch update

If we lay the cable along the floor then it should be around 6' to the current setup and about 20' to the actual seismometer.

Edit: 16 gauge wire should be good.

Quote:

since we're just going from the short rack (not the tall rack) to the seismometer, can't we use a cable shorter than 45' ?

 

  13777   Fri Apr 20 23:36:28 2018 KevinUpdatePEMSeismometer BLRMs

Steve secured the GPS time server in the rack above the AA board and removed the wooden block that it was resting on. The new rack is shown in attachment 1.

I then opened the AA board to see why the channels aren't working. Even though the board was powered and outputting 4.6 V, none of the chips were getting power. I must have shorted something while trying to diagnose this and the board is no longer powered either.

The schematic is given in D990147. The D68L8EX filter is bypassed on all the channels, as can be seen in attachment 3, so the board isn't really doing anything. Rana suggested that we could just bypass the whole circuit by wiring the IN channels directly to the OUT channels going to the ADC. I'll try that next for a single channel.

Attachment 1: front.jpg
front.jpg
Attachment 2: back.jpg
back.jpg
Attachment 3: detail.jpg
detail.jpg
  13780   Mon Apr 23 20:06:35 2018 ranaUpdatePEMPID tune

This shows a step response of the EX seis temp control with K_I = -1 and K_P = -0.1. The time constants for both heatup and cooldown are ~2 hours.

I'm not so sure if the PID code itself makes sense though:

  # The basic finite-difference PID approximation
  e[0] = (p-s)
  print("Error signal = {}" .format(e[0])) 

  # These are the main equations of the PID Process
  u[0] = u[1]
  u[0] = u[0] + Kp * (e[0] - e[1])
  u[0] = u[0] + Ki * (e[0])
  u[0] = u[0] + Kd * (e[0] - 2*e[1] + e[2])

 

Seems like the Proportional term uses the difference (or derivative) of the error signal. This makes it more likely to pick up some high frequency noise; maybe we should low pass this signal somewhat, or at least implement a running average.

Since we still don't have an out of loop sensor or a PSL room temperature monitor or a particle counter in the frames, I've disabled the PID loop to see how much the can temperature varies with no feedback. Please leave it this way for a few days.

Attachment 1: HeaterTest.png
HeaterTest.png
  13782   Tue Apr 24 09:10:20 2018 KiraUpdatePEMfinal setup sketch

I've attached the final sketch for the panel on the granite block.

Attachment 1: EX-can-panel_1.pdf
EX-can-panel_1.pdf
  13787   Tue Apr 24 21:19:08 2018 KevinUpdatePEMSeismometer BLRMs

In the ongoing attempt to recover the seismometer BLRMS, I removed the AA board from the rack and modified the BS seismometer Z channel. The BS_Z BLRMs seem to be recovered after this modification.

I removed the three resistors from the output of the circuit and wired the input and from the seismometer directly to the input to the ADC. The modified schematic is shown in attachment 1. Attachments 2 and 3 show the top and bottom of the modified board. The board is doing nothing now other than serving as a connector for this channel.

I put the board back in the rack and injected a 2 Vpp signal into the BS_Z channel and saw +/- 1600 cts in C1PEM-SEIS_BS_Z. I then plugged the seismometer back into the board and took the spectrum shown in attachment 4. This shows the working Z channel giving a reasonable seismic spectrum. Note that X and Y are not modified yet.

If there are no objections, I will modify all the other channels on the board in the same way tomorrow.

Attachment 1: modified_schematic.pdf
modified_schematic.pdf
Attachment 2: top.jpg
top.jpg
Attachment 3: bottom.jpg
bottom.jpg
Attachment 4: BS_Seis_PSD.pdf
BS_Seis_PSD.pdf
  13788   Wed Apr 25 17:44:39 2018 ArnoldUpdatePEMPEM Anti-Alias wiring

Related image

 

  13790   Thu Apr 26 09:35:49 2018 KevinUpdatePEMPEM Anti-Alias wiring

I wired all 32 channels going to the AA board directly to the ADC as described in the previous log. However, instead of using the old AA board and bypassing the whole circuit, I just used a breakout board as is shown in the first attachment. I put the board back in the rack and reconnected all of the cables.

The seismic BLRMs appear to be working again. A PSD of the BS seismometers is shown in attachment 2. Tomorrow I'll look at how much the ADC alone is suppressing the common mode 60 Hz noise on each of the channels.

Steve: 5 of ADC DAC In Line Test Boards [ D060124 ] ordered. They should be here within 10 days.

Attachment 1: board.jpg
board.jpg
Attachment 2: SeismometerPSD.pdf
SeismometerPSD.pdf
  13793   Thu Apr 26 19:46:26 2018 ranaUpdatePEMPID Quixote

Increased the Integral gain (from -1 to -4) on the EX temperature controller. This didn't work a few weeks ago, but now with the added P gain, it seems stable. Daily temperature swings are now ~3x smaller.

Notes for Kira on what we need to do tomorrow (Friday):

  1. add the MEDM screen EPICS values to the DAQ so that we can plot those trends DONE
  2. add the out-of-loop sensor to the EX can
  3. reboot the AUX-EX so we can pick up the new channels and the fixed spelling of the old channels DONE
  4. Re-install EX seismometer and hook up seismometer channels to PEM DAQ so we can start testing its performance.

For those who are flabbergasted by the way I calibrated the TEMP_MON channel from volts to deg C, here's how:

XMgrace->Data->Transformations->Geometric Transforms...

use the 'scale' and 'translate' fields to change the slope and offset for calibration in the obvious ways

Attachment 1: dv.pdf
dv.pdf
  13794   Thu Apr 26 20:22:21 2018 KevinUpdatePEMADC common mode rejection with new seismometer connections

Yesterday I wired the outputs from the seismometers directly to the ADC input bypassing the old AA board circuit as is described in this elog. The old circuit converted the single-ended output from the seismometers to a differential signal. Today I looked at whether 60 Hz noise is worse going directly into the ADC due to the loss of the common mode rejection previously provided by the conversion to differential signals.

I split the output from the BS Z seismometer to the new board and to an SR785. On the SR785 I measured the difference between the inner and outer conductors of the seismometer output, i.e. A-B with A the center conductor and B the outer conductor, with grounded input. At the same time I took a DTT spectrum of C1:PEM-SEIS_BS_Z_IN1. Both spectra were taken with 1 Hz bandwidth and 25 averages. The setup is shown in attachment 1.

The spectra are shown in attachment 2. The DTT spectrum was converted from counts to volts by multiplying by 2 * 10 V/32768 cts where the extra factor of 2 is from converting from single-ended to differential input. If there was common 60 Hz noise that the ADC was picking up we would expect to see less noise at 60 Hz in the SR785 spectrum measured directly at the output from the seismometer since that was a differential measurement. Since both spectra have the same 60 Hz noise, this noise is differential.

Attachment 1: setup.pdf
setup.pdf
Attachment 2: seismometerASD.pdf
seismometerASD.pdf
  13795   Thu Apr 26 23:00:42 2018 ranaUpdatePEMnew Seis temp chans

After fixing the spelling of the EX temperature readback, I also added all of the MEDM sliders to the C0EDCU.ini file (making sure to add an even number of channels). Restarted FB (after installing telnet on rossa):

telnet fb 8083

> shutdown


preferred method of posting DataViewer images: print as a SVG image (since its vectorized). Then from the command line do:

inkscape steven.svg --export-pdf=vass.pdf

Attachment 1: chans.pdf
chans.pdf
  13798   Fri Apr 27 18:42:02 2018 ranaUpdatePEMnew Seis temp chans

for whatever reason, I am unable to get minute or second trends from nodus for any channels (IMC, PEM, etc) since the reboot. has there been some more recent FB failure or is this still a bug since last years FB catastrophe?

  13800   Mon Apr 30 15:36:18 2018 KiraUpdatePEMfinal setup sketch

I've attached a sketch of how the panel will be mounted. We should make a small rectangular box that would raise the panel from the block by 1 cm or so to allow the cables to fit into the hole in the block without getting bent. It also has to be airtight so maybe having a thin layer of rubber between the mount and block would be good.

Attachment 1: mount.png
mount.png
  13803   Tue May 1 11:15:19 2018 KiraUpdatePEMPID Quixote

I added an out of loop sensor to the can by placing the lab temperature sensor inside the can. I'm not sure which channel is logging this temperature though. I also noticed that the StripTool still had the old misspelled name for the temperature readout so I fixed that as well.

I've attached a picture of the setup.

Quote:

Increased the Integral gain (from -1 to -4) on the EX temperature controller. This didn't work a few weeks ago, but now with the added P gain, it seems stable. Daily temperature swings are now ~3x smaller.

Notes for Kira on what we need to do tomorrow (Friday):

  1. add the MEDM screen EPICS values to the DAQ so that we can plot those trends DONE
  2. add the out-of-loop sensor to the EX can
  3. reboot the AUX-EX so we can pick up the new channels and the fixed spelling of the old channels DONE
  4. Re-install EX seismometer and hook up seismometer channels to PEM DAQ so we can start testing its performance.

For those who are flabbergasted by the way I calibrated the TEMP_MON channel from volts to deg C, here's how:

XMgrace->Data->Transformations->Geometric Transforms...

use the 'scale' and 'translate' fields to change the slope and offset for calibration in the obvious ways

 

Attachment 1: IMG_20180501_154826.jpg
IMG_20180501_154826.jpg
  13804   Tue May 1 15:23:18 2018 KiraUpdatePEMnew ADC channel setup issue

[Kira, Johannes]

I connected up the channels for the ADC Acromag a while back and we were planning to install it today so that we could set up a new channel for the out of loop sensor. Unfortunately, the Acromag seems to be broken. We connected up a precision 10V voltage to one of the channels, but the Acromag read out ~7V and it kept fluctuating. Even after calibration, we still got the same result. When enabling the legacy support, we got ~11V. But when we measured the voltage at the screw terminals with a multimeter and it showed 10V, so the issue is not with the wiring. All of the channels have this same issue. We will be ordering more Acromags soon, so hopefully we'll be able to set up the channel soon. I've attached a picture of the Acromag along with the front panel with the channels labeled

Attachment 1: IMG_20180501_152014.jpg
IMG_20180501_152014.jpg
  13820   Mon May 7 11:46:07 2018 gautamUpdatePEMFW parameter update

As part of investigation into this issue, Jonathan Hanks pointed out that the "minute trends" being recorded by our system were actually only being recorded every 120 seconds (a.k.a. 2 minutes). He had fixed the appropriate line in the parameter file, but had not restarted the FW processes. I had restarted it on Friday. (but failed to elog it !) no

To check if this made any difference, I pulled 1 hour of "minute trend" data for the PSL table temperature channel from ~1 hour ago, and compared the number of datapoints against a 1 hour minute trend time series from 2 May. I've put the display with # of datapoints (for an identical length of time) from before [left] and after [right] the restart next to the plots in Attachment #1. Seems like we are getting minute trends written every 60 seconds now, as it should be yes.

The unavailability of trends from nodus is a separate issue for which JH has suggested another fix, to be elogged separately.

Quote:

for whatever reason, I am unable to get minute or second trends from nodus for any channels (IMC, PEM, etc) since the reboot. has there been some more recent FB failure or is this still a bug since last years FB catastrophe?

Attachment 1: FWreboot.png
FWreboot.png
  13825   Tue May 8 10:24:10 2018 KiraSummaryPEMplan for this week

Here are a few things I will be working on:

  • Design PCB boards for the heater circuit and temperature sensor circuits [by wednesday]
  • Order the front panel I've designed for the seismometer block [today]
  • [next week?] install the new Acromag when it comes
  13832   Fri May 11 11:47:33 2018 johannesSummaryPEMAcromag issues

The replacement Acromag we scooped from the West Bridge E-Shop does actually seem to work, although we thought it was broken - at first it was just outputting zeros, but after I did the calibration procedure, applying +10 V and -10 V, respectively, it was reporting voltage correctly, over the full range. I don't know why the factory settings would be messed up, but it had been out of the box before. I did this only with channel 7, so you need to calibrate channels 0-6 and confirm that they indeed also work properly.

  13844   Tue May 15 15:13:23 2018 KiraSummaryPEMAcromag issues

I tried calibrating the other channels today, but they still fluctuate. Sometimes they do stabilize at +/- 10V, but then suddenly drop to 5 or 6 V before climbing back up to 10. Turning the legacy off made it go only up to 6.67V. This happens for all the channels, even after doing a factory reset and recalibrating. Not sure what's happening here.

  13849   Wed May 16 21:02:22 2018 KevinUpdatePEMADC common mode rejection with new seismometer connections

As described in this elog, the ADC for the seismometers now has the signals wired directly to the ADC instead of going through an AA board or other circuit to remove any common mode noise. This elog describes one test of the common mode rejection of this setup. Guantanamo suggested comparing directly with a recent spectrum taken a few months before the new setup described in this elog.

Today I took a spectrum (attachment 1) of C1:PEM-MIC_2 (Ch17) and C1:PEM-MIC_3 (Ch18) with input to the ADC terminated with 50 Ohms. These are two of the channels plotted in the previous spectrum, though I don't know how that plot was normalized. It's clear that there are now strong 60 Hz harmonic peaks that were not there before, so this new setup does have worse common mode rejection.

Attachment 1: ADC_noise.pdf
ADC_noise.pdf
  13850   Wed May 16 21:47:17 2018 KevinUpdatePEMSeismometer Noise Spectra

Earlier today Kira and I reconnected the EX seismometer. I just took some spectra of all three seismometers, shown in the attachments, to compare with past data and to do a rough check of the calibration.

This elog has a spectra from 2010 (GUR1 is now EY) and this elog has one for BS at lower frequencies from 2017. Note that the EX seismometers now have strong peaks that are not at 60 Hz harmonics. Other than these peaks, these old spectra roughly match up with the ones taken today, so the callibration is still roughly the same. I couldn't find any old data for EX (GUR2) though so I don't know for sure that these peaks weren't there before.


gautam 20180517 0930: In 2017, Gur2 (now EX) looked like this. Still peaky, but the peaks seem shifted in frequency. Steve also informed me that the Gur1 and Gur2 cables were swapped n times, so perhaps we shouldn't read too much into that.

Attachment 1: BS_vel.pdf
BS_vel.pdf
Attachment 2: EX_vel.pdf
EX_vel.pdf
Attachment 3: EY_vel.pdf
EY_vel.pdf
  13859   Thu May 17 15:38:19 2018 KiraUpdatePEMtest setup with seismometer

I've moved my setup to the actual seismometer. I attached the temperature sensor to the seismometer (attachment 1) with duct tape, though this is temporary. I will be monitoring the temperature fluctuations of the seismometer for a whole day then take the can off and repeat the test. The can isn't clamped down so the insulation isn't perfect, so I'd expect to see some noticeable fluctuations even with the can on. I've also labeled the long cable for the temperatuse sensor readout (attachments 2 and 3). There will also be an out of loop sensor added in later, but for this test since I am not running the loop it doesn't matter which sensor I monitor. Attachment 4 is a picture of the current setup.

Attachment 1: IMG_20180517_144420.jpg
IMG_20180517_144420.jpg
Attachment 2: IMG_20180517_145754.jpg
IMG_20180517_145754.jpg
Attachment 3: IMG_20180517_151956.jpg
IMG_20180517_151956.jpg
Attachment 4: IMG_20180517_145121.jpg
IMG_20180517_145121.jpg
  13864   Fri May 18 14:33:34 2018 KiraUpdatePEMtest setup with seismometer

Here is the result of my test. I think I'll leave the can on over the weekend because there's a long period of time where the seismometer heated up by 0.8 degrees so I can't fully see the fluctuations over a full 24 hour period.

Attachment 1: seis_temp_can_on.png
seis_temp_can_on.png
ELOG V3.1.3-