ID |
Date |
Author |
Type |
Category |
Subject |
537
|
Wed Jun 18 00:19:29 2008 |
rob | Update | PSL | MOPA trend | 15 day trend of MOPA channels. The NPRO temperature fluctations are real, and causing the PMC to consistently run up against its rails. The cause of the temperature fluctations is unknown. This, combined with the MZ glitches and Miller kicking off DC power supplies is making locking rather tetchy tonight. Hopefully Yoichi will find the problem with the laser and fix it by tomorrow night. |
540
|
Wed Jun 18 18:20:10 2008 |
Yoichi | Update | PSL | Investigation on the NPRO temperature stabilization glitches | As Rob pointed out in http://dziban.ligo.caltech.edu:40/40m/537 the MOPA NPRO has been showing some glitchiness in the LTEC loop.
Following Rana's suggestion, Steve and I opened the MOPA and directed a heat gun for a minute to the NPRO hoping that we can see something in the LTEC loop.
The first attachment shows the behavior of LTMP and LTECH along with DTMP and DTECH at the time of the heat gun attack.
T=0 is the time when Steve directed the heat gun to the NPRO. There is no response neither in LTMP nor LTECH.
DTMP and DTECH look like responding.
Around the center, there is a dip in LTMP. This might be caused by removing the heat gun. But we are not sure. This kind of small glitches can be found in LTMP everywhere (see the attachment 2).
It looks like the LTMP sensor is not working, or the LTECH loop is actually working but the LTECH reading is broken.
However, the scan of the slow actuator (temperature) shows the LTECH loop is actually working. So it is a bit confusing.
More investigation is necessary.
See the next entry by me.
|
541
|
Wed Jun 18 18:26:19 2008 |
Yoichi | Update | PSL | Finding the optimal operation temperature for the NPRO by the slow act scan | Being suspicious of the temperature stabilization of the NPRO crystal, I ran the slow scan script written by Rana to find the suitable operation temperature.
The procedure is the same as the one explained in the entry below:
http://www.ldas-sw.ligo.caltech.edu/ilog/pub/ilog.cgi?group=40m&task=view&date_to_view=09/04/2006&anchor_to_scroll_to=2006:09:04:22:23:56-rana
The attached plots show the results. By looking at C1:PSL-126MOPA_126MON, I set the slow slider voltage to 0.
This time, it looks like the temperature control of the NPRO crystal is working fine.
Obviously, PMC picks up many higher order modes. I will try to mode match/align the PMC later. |
550
|
Fri Jun 20 17:42:48 2008 |
steve | Update | PSL | SS trap scattering compared to black glass trap | Circular SS304 trap was compared to wedged black glass trap.
The measurement set up of entry 529 was changed to define polarization.
CrystaLaser was remounted in horizontal position and half wave plate was placed after it.
These measurements were done in horizontal polarization.
atm1: the cSSt and wBGt was moved horizontally, ~90 degrees of the incident beam
atm2: traps were rotated around the incident beam, ~20 degrees each direction
atm3: set up
atm4: top view of traps
atm5: side view of trap |
569
|
Wed Jun 25 18:03:21 2008 |
Yoichi | Configuration | PSL | FSS Input Offset slider problem | While working on the PMC scanning, I noticed that the FSS input offset slider is doing nothing.
I traced the signal flow and checked the cables/boards.
The slider changes the output voltage from a VMIVME4116 DAC in the PSL rack. This output voltage is confirmed to be correct at the FLKM64 connector. The signal is connected to the FSS servo interface box (D040423) trough a ribbon cable. However, the output from the interface box is always -27V regardless of the slider position.
Therefore, either the interface box (D040423) or the ribbon cable has a problem.
I will debug the interface box using an extension card when no one is working on the interferometer. |
575
|
Thu Jun 26 18:24:28 2008 |
Yoichi | Update | PSL | FSS input ofset slider problem - fixed | I checked the FSS servo interface board and found that a LT1125CSW used to differentialize offset channel was broken (no virtual short).
So I replaced it. Now the slider is working.
The op-amp was hitting the rail. So it seems like we had been applying the maximum offset to the FSS input all the time.
The reason why the FSS loop still worked with the large offset is that the applied offset (~14V) is attenuated by a factor of 500 at the summing point. |
591
|
Sun Jun 29 11:31:52 2008 |
John | Summary | PSL | ISS | I reduced the gain of the ISS (C1: PSL-ISS_VGAGAIN) from 5dB to 2dB. Any higher and it constantly saturates. |
595
|
Sun Jun 29 19:53:26 2008 |
John | Summary | PSL | ISS |
Quote: | I reduced the gain of the ISS (C1: PSL-ISS_VGAGAIN) from 5dB to 2dB. Any higher and it constantly saturates. |
Seemed to go back to normal after the frame builder came back. |
597
|
Sun Jun 29 20:29:48 2008 |
rana | Update | PSL | Correlation of PSL SLOW control v. Room temperature | |
602
|
Mon Jun 30 13:48:47 2008 |
John, Rob | Configuration | PSL | Don't put the bin in front of the air conditioning unit | We spotted that the laser power was dropping.
The air conditioning unit was blocked by the blue bin/trash can/cestino causing the laser head temp to increase by 2 degrees.
Let's be careful about this in the future. |
603
|
Mon Jun 30 14:07:26 2008 |
Rob | Configuration | PSL | Don't put the bin in front of the air conditioning unit |
Quote: | We spotted that the laser power was dropping.
|
the offending configuration: |
604
|
Mon Jun 30 15:08:52 2008 |
John | Summary | PSL | MZ alignment | I adjusted the alignmnet of the Mach-Zehnder's two North mirrors (downstream of the EOMs).
MZ REFL is reduced from 0.54 to 0.43. The largest improvement was due to pitch on the PZT mirror. |
607
|
Mon Jun 30 18:36:01 2008 |
Yoichi | Update | PSL | MZ alignment again | John, Yoichi
We re-adjusted the MZ alignment. The reason behind this is to make sure that the MZ dark port is not falling at a strange fringe, where it is only dark at the dark port PD. It can happen when the two beams poorly overlap.
We tried both the minimization of the MZ dark PD and the maximization of the MZ transmission at the same time.
We also placed another PD in the MZ dark port at a different distance from the original dark PD and tried to minimize this too.
If the MZ dark port is at a strange fringe, one of the dark PD can be dark where the other one is still bright.
If both of the dark PD get dark, the overlap between the beams should be ok.
We tweaked only the two mirrors of the MZ after the EOMs (mainly the one with a PZT).
Right now, the MZ dark power is 0.432.
BTW, we should change the name of the MZ dark port on the medm screen (it is now MZ reflection, where it is not a reflection).
I will try to change it later.
We wanted to put the beam position on the IOO-QPD_POS_* back to the original (before John tweaked the MZ alignment earlier).
However, the trends of IOO-QPD_POS_* show a lot of fluctuation and jumps, of which we don't know the cause. So we could not find reasonable original values.
We suspect a circuit problem in IOO-QPD_POS, especially because the jumps are very strange.
We will do this investigation later too. |
609
|
Tue Jul 1 10:15:22 2008 |
steve | Update | PSL | eventfull two days | The laser recovered from a short temp rise. The MZ was aligned and realigned. The suspentions were kicked up accidentally.
Now the computers are down. |
611
|
Tue Jul 1 11:57:24 2008 |
Yoichi | Configuration | PSL | MZ servo switch problem again | C1:PSL-MZ_BLANK switch (to turn on/off the servo) is not working again. The switch is always off regardless of the epics state.
I pushed the cables into the xycom card, but it did not fix the problem.
|
612
|
Tue Jul 1 12:08:38 2008 |
John, Joe | Configuration | PSL | PMC input PD | Joe and I switched cables so that the PMCR screen actually shows reflection not transmission.
The trans camera had a BNC connected to "video out" labelled PMC input PD. The video signal
going to the monitors does not come from "video out", it comes out the "DC in/sync" cable.
As far as we can see this diode doesn't exist. Where should the PMC input PD BNC cable be
connected? |
616
|
Tue Jul 1 16:48:42 2008 |
rob, john | Configuration | PSL | MZ servo switch problem resolved forever |
Quote: | C1:PSL-MZ_BLANK switch (to turn on/off the servo) is not working again. The switch is always off regardless of the epics state.
I pushed the cables into the xycom card, but it did not fix the problem.
|
We have fixed this problem forever, by totally disabling this switch. Looking at the schematic for the MZ servo and the datasheet of the AD602, we found that a HI TTL on pin 4 disables the output of the AD602. Since the MZ servo was stuck in the off position, this seemed to indicate that it may be the XYCOM220 itself which is broken, constantly putting out a +5V signal regardless of the EPICS controls. We thought we might be able to get around this by disconnecting this signal at the cross-connect, but ultimately we couldn't find it because there is no wiring diagram for the Mach-Zehnder (!). So, we pulled the board and wired pin 9A of P1 to ground, permanently NORMALizing the MZ_BLANK switch. John has marked up the schematic, and someone should modify the MEDM screen and check the new screen into svn.
We can still the turn the MZ servo on and off by using the test input 1 switch.
Someone also will need to modify the MZ autolocker to use the test input 1 (MZ_SW1) instead of the old MZ_BLANK. |
618
|
Tue Jul 1 21:45:48 2008 |
John | Update | PSL | Mach Zehnder script and screen | I've edited C1: PSL_MACH_ZEHNDER.adl and /cvs/cds/caltech/scripts/PSL/MZ/lockMZ
to reflect the changes described in entry #616. |
639
|
Mon Jul 7 13:49:27 2008 |
Yoichi | HowTo | PSL | MZ offset, gain tips | John, Yoichi
This morning John found that MZ servo is not working.
We were able to bring the MZ back by changing the output offset a bit. But we were not sure what was actually wrong.
So we pulled out the MZ board and checked several TPs to understand the behavior.
Here is the summary of what we learned this morning.
The MZ control board has the following stages:
[Mixer] -(error signal)-> [Sum amp for input offset] -(error + offset)-> [Variable Gain Amp] -> [Filter (x100 DC gain)] -(FB signal)-> [High Voltage Amp] -> output
(The HV amp also works as the sum amp for the output offset)
(1) We noticed that the Sum amp for the input offset has an output of -0.14V even when the offset input is 0V. This can be canceled by the input offset slider.
So for the moment, it is fine. But we might want to change the op-amp because the weird offset implies there might be something wrong with the chip.
The procedure to null the -0.14V offset is the following:
a) Enable Test 1 input on the MZ MEDM screen.
b) Move the input offset slider until the mixer monitor becomes 0V. Currently the input offset slider is at -7.5V to cancel the -0.14V offset.
(2) Because the gain of the Variable Gain Amp and the Filter combined is large, the Filter can be easily saturated if the output offset is not right.
This was the cause of the MZ problem this morning. The output offset slider was at a wrong position making the error signal slightly off centered from zero.
This residual DC error signal was amplified by the large gain chain and saturated the filter amp.
Our experience is that the output offset cannot go below -3V. We set it at 0V for now. |
642
|
Mon Jul 7 16:30:08 2008 |
steve | Update | PSL | PSL-PEM 16 days trend | This morning the laser head temp was up to 20.3C because the laser chiller was overflowing.
I removed 700 cc water.
The PSL-FSS_RMTEMP became much more stable during the holidays as the psl enclosure was closed for 4 days
The high particle counts can be explaned by construction activity today.
The PMC & MZ PZT high voltages were out of range this morning. |
645
|
Tue Jul 8 08:16:56 2008 |
steve | Update | PSL | PMC problem | The PMC is unhappy. PMC auto locker is not working.
DC output slider adjust has to be moved from rail to rail before it locks.
MZ is working great. |
648
|
Tue Jul 8 12:25:54 2008 |
John | Summary | PSL | ISS gain set to 2dB | |
649
|
Tue Jul 8 21:46:38 2008 |
Yoichi | Configuration | PSL | GC650M moved to the PMC transmission | I moved a GC650M, which was monitoring the light coming out of the PSL, to the transmission port of the PMC to see the transmitted mode shape.
It will stay there unless someone find other use of it.
Just FYI, you can see the picture from the control computers by the following procedure:
ssh -X mafalda
cd /cvs/cds/caltech/target/Prosilica/40mCode
./SampleViewer
Chose 02-2210A-06223 and click on the Live View icon. |
659
|
Fri Jul 11 09:29:02 2008 |
steve | Update | PSL | the PMC still hangs up | Morning alarms:
PMC high voltage is railing, it's auto locker is frosen
I have to move DC Output Adjust slider by hand and it locks immediately
PSL_ISS is saturating. Saturation goes away when PMC is locked.
Laser chiller water is overflowing again: removed 450 cc water |
662
|
Sat Jul 12 23:28:31 2008 |
rana | Update | PSL | PMC needs help | As everyone has noticed recently, the PMC seems to have a PZT problem. It often zooms
of to one of its rails after locking as if the PZT range has decreased dramatically.
WE should check this on Monday by disabling the FSS and applying a slow triangle wave to
the NPRO frequency. The PMC will track this frequency change and this will allow us to
diagnose its problems.
If it has real problems, I have a spare in W. Bridge which we can swap in temporarily.
The attached plot shows 3 years of trend; looks like it went bad in summer of last year.
This also seems to be the cause of our ISS saturation problems: lowering the gain of the PMC
even slightly increased the intensity noise enough to cause saturation. Increasing the gain
even slightly increased the intensity noise enough to cause saturation due to PMC servo oscillation. |
663
|
Sun Jul 13 17:19:29 2008 |
rana | Summary | PSL | MOPA SLOWM Calibration | John, Rana
We first unlocked the FSS and ramped the SLOW actuator. With the PMC locked we observed the PMC PZT voltage
as a function of SLOWM (SLOW loop actuator voltage). We believed this to be ~1-5 GHz / V. Since this is
not so precise we then ran a slow (2 min. period) triangle wave into the slow actuator and looked at the
ref cav transmission peaks to calibrate it.
Plot is attached>
We assume that the reference cavity length = 203.2 mm then the FSR = 737.7 MHz. So looking at the plot
and using our eye to measure the SLOWM calibration is 1054 +/- 30 MHz/V. This is probably dominated by
our eye method.
Note: we tried to get the length from T010159-00-R (Michele, Weinstein, Dugolini). In that doc,
the length used is 203.3 mm whereas its 203.2 mm in the PSL FDD (?). The calculation of the FSR is also
incorrect (looks like they used c = 299460900 instead of 299792458 m/s). We took the length from the PSL FDD
(T990025-00-D) but not the FSR, since they also did not find the right value of 'c'. I guess that the speed
of light just ain't what it used to be. |
665
|
Mon Jul 14 00:36:19 2008 |
John | Summary | PSL | Slow sweep of laser temp - PMC PZT response | John, Rana
Follow up to # 663
Top trace: C1: PSL-PMC_PZT
Middle: C1: PSL-FSS_SLOWDC
Bottom: C1: PSL-PMC_PMCTRANSPD
The only calibration I could find for the PMC PZT (LLO e-log Sep 3 2003 - 23 MHz/V) predicts 31V for an FSR. I did a rough calibration and got our FSR to be around 210 V. I assumed 713 MHz for an FSR and applied this calibration (~3.4 MHz/ V) to the PZT data.
In terms of volts per metre our PZT gives 2.54 nm/ V whereas the LLO PZT is 17.16 nm/ V. |
672
|
Tue Jul 15 10:24:57 2008 |
steve | Update | PSL | PMC temp & pzt voltage | The PMC pzt HV was happy with no HEPA temp stability.
Can we thermally insulate the pmc ? |
684
|
Wed Jul 16 17:36:51 2008 |
John | DAQ | PSL | FSS input offset | I changed the nominal FSS input offset to 0 from 0.3. Tolerance remains unchanged at +/-0.05. |
688
|
Thu Jul 17 08:30:15 2008 |
steve | Update | PSL | PMC relocked manually | The PMC pzt HV and the servo gain adj. are railing at max this morning
Why is it on the decreasing side of FSS_RTTEMP slope? |
689
|
Thu Jul 17 12:15:21 2008 |
Eric | Update | PSL | Swept PMC PZT voltage range | I unlocked the PMC and swept over C1:PSL-PMC_RAMP's full range a couple of times this morning. The PMC should now be relocked and returned
to normal. |
692
|
Thu Jul 17 20:13:34 2008 |
Yoichi | Update | PSL | PMC alignment/mode matching effort | I'm working to improve the mode matching of PMC.
Because I noticed that the beam was hitting the aperture of the EOM for PMC, I moved the EOM a little bit to maximize the transmission.
This did not change the alignment to the reference cavity but changed the alignment of the PMC a lot.
So I adjusted it back.
The alignment of the PMC can be easily optimized but the Hermite 02 mode still remains. This means the mode matching is bad.
Moving the lenses by a small amount (a few mm) did not change the height of 02 mode.
I'm planning to move the lenses by a large amount tomorrow. But it will destroy the alignment to the PMC.
So I installed two irises in the beam path after the lenses to remember the alignment roughly.
Right now the PMC transmission is slightly worse than before because the lens positions are not good. |
699
|
Fri Jul 18 19:41:09 2008 |
Yoichi | Update | PSL | PMC PZT investigation | I measured the HV coming to the PMC PZT by plugging it off from the PZT and hooking it up to a DVM.
The reading of DVM is pretty much consistent with the reading on EPICS. I got 287V on the DVM when the EPICS says 290V.
Then I used a T to monitor the same voltage while it is connected to the PZT. I attached a plot of the actual voltage measured by the DVM vs the EPICS reading.
It shows a hysteresis.
Also the actual voltage drops by more than a half when the PZT is connected. The output impedance of the HV amp is 64k (according to the schematic). If I believe this number, the impedance of the PZT should also be 64k. The current flowing the PZT is 1.6mA at 200V EPICS reading.
The impedance of the PZT directly measured by the DVM is 1.5M ohm, which is significantly different from the value expected above. I will check the actual output impedance of the HV amp later.
The capacitance of the PZT measured by the DVM is 300nF. I don't know if I can believe the DVM's ability to measure C.
I noticed that when a high voltage is applied, the actual voltage across the PZT shows a decay.
The second plot shows the step response of the actual voltage.
The voltage coming to the PZT was T-ed and reduced by a factor of 30 using a high impedance voltage divider to be recorded by an ADC.
The PMCTRANSPD channel is temporarily used to monitor this signal.
After the voltage applied to the PZT was increased abruptly (to ~230V), the actual voltage starts to exponentially decrease.
When the HV was reduced to ~30V, the actual voltage goes up. This behavior explains the weird exponential motion of the PZT feedback signal when the PMC is locked.
The cause of the actual voltage drop is not understood yet.
From the above measurements, we can almost certainly conclude that the problem of the PMC is in the PZT, not in the HV amp nor the read back. |
701
|
Fri Jul 18 23:24:24 2008 |
rob | Update | PSL | PMC PZT investigation |
Quote: | I measured the HV coming to the PMC PZT by plugging it off from the PZT and hooking it up to a DVM.
The reading of DVM is pretty much consistent with the reading on EPICS. I got 287V on the DVM when the EPICS says 290V.
Then I used a T to monitor the same voltage while it is connected to the PZT. I attached a plot of the actual voltage measured by the DVM vs the EPICS reading.
It shows a hysteresis.
Also the actual voltage drops by more than a half when the PZT is connected. The output impedance of the HV amp is 64k (according to the schematic). If I believe this number, the impedance of the PZT should also be 64k. The current flowing the PZT is 1.6mA at 200V EPICS reading.
The impedance of the PZT directly measured by the DVM is 1.5M ohm, which is significantly different from the value expected above. I will check the actual output impedance of the HV amp later.
The capacitance of the PZT measured by the DVM is 300nF. I don't know if I can believe the DVM's ability to measure C.
I noticed that when a high voltage is applied, the actual voltage across the PZT shows a decay.
The second plot shows the step response of the actual voltage.
The voltage coming to the PZT was T-ed and reduced by a factor of 30 using a high impedance voltage divider to be recorded by an ADC.
The PMCTRANSPD channel is temporarily used to monitor this signal.
After the voltage applied to the PZT was increased abruptly (to ~230V), the actual voltage starts to exponentially decrease.
When the HV was reduced to ~30V, the actual voltage goes up. This behavior explains the weird exponential motion of the PZT feedback signal when the PMC is locked.
The cause of the actual voltage drop is not understood yet.
From the above measurements, we can almost certainly conclude that the problem of the PMC is in the PZT, not in the HV amp nor the read back. |
I'd believe the Fluke's measurement of capacitance. Here's some info from PK about the PZT:
Quote: |
But the PMC ones were something like
0.750 in. thick x 0.287 in. thick. 2 microns per 200 V displacement,
resonant frequency greater than 65 kHz. Typical capacitance is around 0.66
uF.
|
If the PZT capacitance has dropped by a factor of two, that seems like a bad sign. I don't know what to expect for a resistance value of the PZT, but I wouldn't be surprised if it's non-Ohmic. The 64k is the series resistor after the PA85, not the modeled resistance of the PZT itself. |
702
|
Sat Jul 19 19:39:44 2008 |
rob | Update | PSL | PMC PZT investigation |
Quote: |
Quote: | The 64k is the series resistor after the PA85, not the modeled resistance of the PZT itself. |
Yes. What I meant was that because the measured voltage across the PZT was a half of the open voltage of the HV amp, the DC impedance of the PZT is expected to be similar to the output impedance of the HV amp. Of course, I don't think the DC impedance of a normal PZT should be such low.
I'm puzzled by the discrepancy between this expected DC impedance and the directly measured impedance by the Fluke DVM (1.5M Ohm).
One possibility is that the PZT leaks current only when a high voltage is applied. |
703
|
Sat Jul 19 19:41:56 2008 |
Yoichi | AoG | PSL | The author of the entry 702 is Yoichi not Rob | I made a mistake. |
711
|
Tue Jul 22 03:03:22 2008 |
John, Rob | Update | PSL | FSS open loop transfer function | With the common gain slider maxed out the unity gain frequency is 58kHz.
The reference cavity refl diode appears to be okay. RF OUT/ TEST IN transfer function was normal.
There is a ~220mV offset in the RF out. We removed this using a coupler - no change. We also checked the
diode->FSS cable.
Tomorrow I'll take a closer look at the board. |
712
|
Tue Jul 22 09:24:17 2008 |
steve | Update | PSL | laser power | Laser power reality of 120 days |
713
|
Tue Jul 22 11:55:22 2008 |
rana | Update | PSL | Note from R. Abbott re: the PMC | an email from Rich:Your PZT is broken.
R |
714
|
Tue Jul 22 13:15:14 2008 |
rob | Update | PSL | Note from R. Abbott re: the PMC |
Quote: | an email from Rich:Your PZT is broken.
R |
Quelle surprise
 |
715
|
Tue Jul 22 13:16:09 2008 |
John, Rob | Update | PSL | FSS open loop transfer function |
Quote: | With the common gain slider maxed out the unity gain frequency is 58kHz.
The reference cavity refl diode appears to be okay. RF OUT/ TEST IN transfer function was normal.
There is a ~220mV offset in the RF out. We removed this using a coupler - no change. We also checked the
diode->FSS cable.
Tomorrow I'll take a closer look at the board. |
Should note that the UGF of 58kHz was measured with the test cable (from RFPD to board), so the demod phase was presumably sub-optimal. |
719
|
Wed Jul 23 01:42:26 2008 |
rana | Configuration | PSL | FSS RFPD: Examined, "repaired", and re-installed | Rob said that there might be something wrong with the FSS RFPD since the loop gain is so low.
Next time we should just use the Jenne laser on it in-situ and compare with our reference.
We had a 24.5 MHz LSC PD which Rob got from Sam. Sam got it from Rai. I gave it to Rai in Livingston
because it seemed suspicious. Seems fine now. This black box PD had a lower overall response than
the goldbox one we already had. The 2001-2005 era diodes which we got from the Canadian Perkin-Elmer
all had high capacitance and so that's not a surprise.
So the goldbox one was not broken totally.
I found that the offset came from a cracked capacitor. C25 was a yellow thru-hole ceramic 0.1 uF.
Its a surface mount board...don't know why this was like this but there's also no reason it should
have cracked unless it was soldered on with too much heat. I replaced it with a 0.47 uF ceramic
surface mount. Also R24 was a 20 Ohm resistor and L3 was not stuffed?? Removed R24 and put a 1 uH
inductor into L3. This is there so that the input to the MAX4107 is AC coupled.
However, the DC signal that Rob saw was actually because of the cracked C25. It had shorted and was
making a 25 mV signal at the input to the MAX4107 which has a gain of 10. This was producing ~165 mVdc
into a 50 Ohm load and so it could have saturated most mixers. The FSS board, however, has an overly
monstrous level 21 (I think) mixer and so this should not have been an issue. Maybe.
I was able to lock with the 24.5 MHz black box PD but it was not too hard to repair the gold box one
so I did. I tuned it so that the notch is truly at 43 MHz (2x the FSS 21.5 MHz modulation) but because
someone has done this using a hacky cap in parallel with the main PD, I am unable to get the resonant
peak to line up at 21.5 MHz. Its at 23 MHz instead. This loses us ~2 dB in signal. Since the frequency
is so low, we can increase the gain in the MAX4107 by another factor of 3 or so in the future.
So the PD is not our problem. Still worth verifying that the cable is good -- its around 10 miles long!!
And loops around in there with a bunch of other cables. We have an electronic phase shifter so this seems
totally misguided.
The other bad problem is that the mode matching is pretty horrible. Something like 1/3 of the carrier
power doesn't go into the cavity.
FSS TODO:
1) Check cable between RFPD and FSS box for quality. Replace with a good short cable.
2) Using a directional coupler, look at the RFPD output in lock on a scope with 50 Ohm term.
I suspect its a lot of harmonics because we're overmodulating to compensate for the bad
mode matching.
3) Purchase translation stages for the FSS mode matching lenses. Same model as the PMC lenses.
Fix the mode matching.
4) Get the shop to build us up some more bases for the RFPDs on the PSL such as we have for the LSC.
Right now they're on some cheesy Delrin pedestals. Too soft...
5) Dump the beam reflected off the FSS RFPD with a little piece of black glass or a razor dump.
Anodized aluminum is no good and wiggles too much.
The attached PDF shows photos of the old and new style PDs. One page 3 there's a wire that I soldered on
as a handle so that we can remove the RF can (occasionally people claim that soldering to the lid screws
up the magnetic shielding magic of the lid. use this as a litmus test of their electronics know-how; its
a tin can - not an orgone box). Pages 4 & 5 are the circuit before I soldered, page 6 the cap after I
tried to remove it, page 7 is the circuit after I put in the new cap, and page 8 is the schematic with
the mark up of the changes. |
726
|
Wed Jul 23 18:42:18 2008 |
Jenne | Update | PSL | Alignment of AOM | [Rana, Yoichi, Jenne]
Short Version: We are selecting the wrong diffracted beam on the 2nd pass through the AOM (we use the 2nd order rather than the first). This will be fixed tomorrow.
Long Version of AOM activities:
We checked the amount of power going to the AOM, through the AOM on the first pass, and then through the AOM on the second pass, and saw that we get about 50% through on the first pass, but only about 10% on the 2nd pass. Before the AOM=60mW, after the first pass=38mW, after the 2nd pass=4mW. Clearly the alignment through the AOM is really sketchy.
We translated the AOM so the beam goes through the center of the crystal while we align things. We see that we only get the first order beam, which is good. We twiddled the 4 adjust screws on the side of the AOM to maximize the power at the curved mirror for the 1st order of the first pass, which was 49.6mW. We then looked at the DC output of the Reference Cavity's Refl. PD, and saw 150mV on the 'scope. The power measured after the polarizing beam splitter and the next wave plate was still 4mW. Adjusting the curved mirror, we got up to 246mV on the 'scope for the Refl. PD, and 5.16mW after the PBS+Waveplate. We adjusted the 4 side screws of the AOM again, and the tip/tilt of the PBS, and got up to 288mV on the 'scope.
Then we looked at the beam that we keep after the 2nd pass through the AOM, and send to the reference cavity, and we find that we are keeping the SECOND order beam after the second pass. This is bad news. Yoichi and I will fix this in the morning. We checked that we were seeing a higher order beam by modulating the Offset of the MC servo board with a triangle wave, and watching the beam move on the camera. If we were chosing the correct beam, there would be no movement because of the symmetry of 2 passes through the AOM.
I took some sweet video of the beam spot moving, which I'll upload later, if I can figure out how to get the movies off my cell phone. |
735
|
Thu Jul 24 19:29:26 2008 |
Yoichi | Configuration | PSL | C1:PSL-STAT_FSS_NOM_C_GAIN is changed from 30 to -0.7 | Koji, Yoichi
Since the light power going to the ref. cavity is now significantly increased (see Janne's elog later), C1:PSL-STAT_FSS_NOM_C_GAIN is changed from 30 to -0.7.
Otherwise, the MC did not lock. |
736
|
Thu Jul 24 21:04:58 2008 |
rana | Update | PSL | FSS | Since Jenne and Yoichi are going to finish up their refcav/FSS work in the morning I decided to
look at the trends. I set the RF modulation level from 10.0 back down to 7.5 so that we would
have the same RF modulation depth as before. I also set the FSS common gain and its nominal to
1.0 dB since it seemed more stable this way.
With 7.5, the transmission of the refcav is ~6.9 V. It was around 0.7 V before so there's already
been a factor of 10 improvement in the power since the work started. In addition to the mode matching
work which is about to commence, we should attenuate the RC TRANS with a real mirror (not ND) so that
the camera and PD don't saturate. We should also do the same for the REFL PD and camera and make sure
to put in a steering mirror for the REFL PD and orient REFL so that it faces West (so that we can
look at its face with a viewer) and dumps its reflection.
Since the common gain is so low now, I expect that we will want less light in total. We can achieve
this by turning down the RF drive to the VCO.
I also fixed the MC down script which was putting the FSS common gain to the unstable +10 dB level
during the MC locking process. |
741
|
Fri Jul 25 19:57:18 2008 |
Jenne | Update | PSL | Ref Cav & PMC | "PMC is in, but is still being worked on. Leave it alone." ---Rana
Ref. Cavity is locked again. Still a work in progress. I think we're ready to mode match on Monday. ---Jenne |
745
|
Sun Jul 27 23:06:17 2008 |
rana | Update | PSL | PMC, MZ, MC-MMT, etc. | With the new PMC now in I aligned the MZ to the new beam (there is sadly no steering
between the PMC and the MZ).
I also removed the pickoff that we had put before the MZ just in case we wanted to
move the FSS pickoff to there - its been 2 years now so I guess its not going to happen.
The new PMC's cavity axis seems to be a few hundred microns higher than the old one. So I
tried to move the MZ EOMs to compensate but ended up also steering all of the MZ's mirrors
to get the contrast good, the beam onto the ISS PDs, centered (sort of) onto the MMT lenses
and onto the periscope.
Along the way I also removed some of the vestigial squeezer stuff around the power control
PBS. The output of the PBS now goes directly into the high power dump with no steering. This
eliminated around a dozen clamps, bases, etc. and a couple of mirrors.
The MC is locked on the low power beam we have running through everything. I restored the
PSL launch beam just using the MC-WFS and it locked on a TEM00. So now we know that we
really don't need the PSL quads for this as long as the MC1 angle is stable.
The good news is that the PMC PZT voltage is now flat: the problem must have really been with
the PZT and not the cabling or notch box like I had wondered about.
Todo:
-----
1) Continue mode matching into the PMC. Its transmission now is around the same as the
old one.
2) Put a UHV foil covered lead brick onto the PMC to quiet it down.
3) Characterize the PMC loop and retune the body notch for the new body.
4) Tweak the MZ alignment to minimize the RFAM. We can use StochMon to do this as
long as we have the MC WFS turned off or we can put in a flipper to take the
beam before the MC and send it to the StochMon RFPD.
5) Re-align onto the ISS.
6) Install irises around the periscope for the beam. The old iris there is way off.
7) Fix PSL ANG and center both POS and ANG.
|
746
|
Mon Jul 28 11:20:13 2008 |
Jenne | Update | PSL | Work on the FSS and Reference Cavity | [Yoichi, Jenne, Koji]
The Reference Cavity's saga continues....
Thursday, Yoichi and I worked to change the beam that we chose from the 2nd pass through the AOM, to the first order beam rather than the 2nd order beam (see elog #726). After choosing the correct beam, we get 29mW incident on the reference cavity (compared with 4mW before any work began). We adjusted the angle of the AOM in the plane of the table, and got up to 30.6mW. We adjusted the tip/tilt of the AOM and got to 30.7mW (the tip/tilt adjustment made a more significant difference in the work described in elog #726, but after that work, it was probably already pretty close to optimized). We noticed that for the above measurements, we had 2 beams through the Polarizing Beam Splitter and Waveplate (one very dim), so after excluding that beam, the power meter read 30.4mW. We adjusted the curved mirror a little, and got 30.8mW incident on the reference cavity.
We then put a triangle wave into the offset of the MC Servo Board using the "trianglewave <channel> <center> <amplitude> <period> <runtime>" command in a terminal screen. This changes the voltage to the VCO, and thus the frequency response of the AOM. We watch the diffracted spots from the second pass through the AOM, and confirm that the beam we have chosen is not moving, and all the others are. By symmetry, if we chose the first order beam after the first pass through the AOM, and then again chose the first order beam after the second pass, the resulting beam will not move with the frequency change of the AOM.
We saw 1.50V (Refl. PD, unlocked) on the 'scope after aligning the optics to make the newly chosen beam hit the input mirror of the reference cavity. Order of operations for this alignment:
- Recenter the beam on the 2 lenses that are just after the PBS and the waveplate
- Adjust pitch and yaw of the two steering mirrors until the beam reflected off the input mirror of the reference cavity is parallel to the incident beam
- Use a sensor card to check the alignment of the incident and reflected beams, and adjust the steering mirrors to get the alignment close
- Note the amplitude of the DC output of the Refl. PD with the iris completely open. Close the iris until the signal decreases by ~50%, then adjust the steering mirrors until the original amplitude is regained. Repeat until the iris can be almost completely closed but the Refl. PD signal doesn't change
- Watch the DC output of the Refl. PD, and maximize the signal on a 'scope
- Sweep the PZT of the laser using a function generator into the RAMP input on the FSS board (~10Vpp at ~1Hz), OR sweep the temperature of the laser using the trianglewave function on the SLOW FSS channel (amplitude~0.5, period~50)
- Watch the modes that resonate in the cavity, and adjust pitch and yaw of the steering mirrors to get closer to the TEM00 mode
- When the TEM00 mode appears in the sweep, stop the sweep, and lock the cavity
- Watch the DC output of the Transmitted PD, and maximize the signal on a 'scope
- Celebrate!
After all of this adjusting,
Refl. PD (unlocked) = 1.48V
Refl. PD (locked) = 680mV
Trans. PD (locked) = 6.28V
Power reflected (unlocked) = 26.28mW
Power transmitted (locked) = 13.89mW
Thus, 53% transmission
Next: check the amount of power transmitted by reducing the amplitude of the RF modulator. This reduces the amount of power used by the sidebands, and so should increase the transmission.
Power incident = 27mW
Power transmitted = 17.2mW
Thus, 64% transmission
We then put the RF modulator back where it was originally.
We then replaced the lens mounts for the f=802 and f=687 lenses between the AOM and the reference cavity, to the new mounts that Yoichi bought. Koji helped me realign into the reference cavity, and we got:
Refl. PD (unlocked) = 1.48V
Refl. PD (locked) = 880mV
Trans PD (locked) = 4.64V
Power incident = 26.97mW
Power transmitted = 10.39mW
39% transmission
Since more mode matching etc. is in the works, we left this for the night.
On Friday, we changed the setup of the cameras and PDs for both reflection and transmission, to avoid saturating the PDs and cameras.
On the Refl. side of the reference cavity, we put a W2-PW-1025-UV-1064-45P pickoff between the last mirror and lens before the camera and PD. We moved the camera to the pickoff side of the new optic. We then replaced teh 45UNP beam splitter that split the beam between the PD and the camera with a Y1-1037-45P highly reflective mirror, and put the PD in the old camera location.
On the Trans. side of the ref. cavity, we replaced the BSI-1064-50-1025-45S with a W2 pickoff, and replaced the Y1-1037-45-P highly reflective mirror with the 50/50 beam splitter that was replaced by the W2.
Now we have:
Refl. PD (unlocked) = 1.68V
Refl. PD (locked) = 640mV
Trans PD (locked) = 4.24V
Power incident = 25mW
Power transmitted = 14.48mW
58% transmission
Koji pointed out that when remounting, I had put the f=802 lens ~2cm away from its original position (along the z-axis), so I moved the lens back to where it should be, and realigned into the reference cavity. Since Rana was working on the PMC at the same time, the laser was turned down by about a factor of 100, so my starting measurements were:
Refl. PD (unlocked) = 23.6mV
Refl. PD (locked) = 10.2mV
Trans PD (locked) = 56mV
Power incident = 0.35mW
Power transmitted = 0.16mW
46% transmission
Since it was late on Friday by the time everything was realigned into the ref. cavity (I'm still working on my optics aligning skills), I forgot to measure the transmission after all of my work. I'll do that today (Monday) as soon as Sharon/Koji are done working with the IFO this morning. Also, I'll put up before/after pictures as soon as I find the camera...it seems to have walked off.
UPDATE:
Ref. Cav. measurements after Friday's alignment (and after turning the laser power back up to normal):
Refl. PD (unlocked) = 1.58V
Refl. PD (locked) = 304mV
Trans PD (locked) = 3.68V
Power incident = 24.96mW
Power transmitted = 16.45mW
66% transmission
To do: Start the actual mode-matching into the reference cavity. |
749
|
Mon Jul 28 17:44:07 2008 |
rana | Update | PSL | PMC PZT v. temperature | This plot shows that the PMC PZT has ~20 Vpp fluctuations on a 24 hour timescale
which is correlated to the 24 hour temperature fluctuations. By contrast, the MZ
has ~75 Vpp. |
751
|
Mon Jul 28 23:41:07 2008 |
rob | Configuration | PSL | FSS/MC gains twiddled |
I found the FSS and MC gain settings in a weird state. The FSS was showing excess PC drive and the MC wouldn't lock--even when it did, the boost stage would pull it off resonance. I adjusted the nominal FSS gains and edited the mcup and mcdown scripts. The FSS common gain goes to 30dB, Fast gain to 22dB, and MCL gain goes to 1 (which puts the crossover back around ~85 degrees where phase rises above 40 degrees). |
|
ELOG V3.1.3- |