40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 263 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  1050   Wed Oct 15 22:07:52 2008 peteConfigurationPSLFSS ref phase measurements
Optimizing the FSS LO/RF phase at 500 kHz, above the servo band, proved to be noisy and those measurements were useless. Today I repeated
the measurement at 35 kHz and got good signal to noise. I've attached a plot of the 35 kHz peak in dBm as measured at IN2 by SR785, with
an injection into TEST2 at 35 kHz with 0.2 Vpp, as a function of delay in ns given by the delay phase shifter normally used by the 166 MHz.
I fit the bottom (quadratic) portion of this curve, and found an optimum delay of 25.8 ns, which can be implemented as 25.81 ns on the phase
shift box (25 + 1/2 + 1/4 + 1/16). This is an uncalibrated number and meaningless.. For all these measurements a very long SMA cable
(did not measure) was inserted on the RF output of the 21.5 MHz reference box. The actual phase difference depends on these cable lengths
which I didn't measure.

To determine the actual phase difference I compared the LO and RF input points with the 25.81 ns delay, using a scope with poor man's
averaging (33 manual triggers and recording the phase measurements). The phase difference was 8.24 degrees with an error on the mean of 3.4%,
with the LO having the longer effective cable (cable plus delay from the phase delay box). As a sanity check I set the phase delay box
to 20 ns and re-measured, and found 49.5 degrees. (1/21.5 MHz) * (49.5-8.24)/360 = 5.3 ns, which is about the difference between 20 ns
and 25.81 ns. I did the same with 0 ns dialed in, and found a difference of 21.5 ns (I expected 25.8 ns). So it is possible that the
phase delay box isn't too precise.

Finally, to determine the length of cable needed to implement 8.24 degrees of phase at 21.5 MHz with RG58 cable, I made some phase measurements
using the FSS reference box and mismatched cables. I used three cable lengths (93 cm, 140.5 cm, and 169.5 cm ) and two mismatched pairs with
dL of 29 and 76.5 cm. For each pair I took average of 20 measurements, finding 22.54 degrees mean for the dL=29 cm pair (0.78 degrees/cm, or
a speed of light of 1.0e10 cm/s, or 10.6 cm of cable length on the LO) and 43.57 degrees mean for dL=76.5 cm pair (0.57 degrees/cm, or a speed
of light of 1.4e10 cm/s, or 14.5 cm of cable length on the LO). I expected more precise agreement.

Maybe the 21.5 MHz reference box is not zero phase between the outputs. This could be easily tested. It might be interesting to repeat this
measurement with a few more dL values.
Attachment 1: phasedelay.png
  1051   Thu Oct 16 09:44:49 2008 YoichiUpdatePSLBad cable for FSS
Yesterday arount 1:30PM, we lost the LO signal for the FSS.
I found it was caused by a bad cable connecting from the peter's RF oscillator box to the LO of the FSS.
I temporarily replaced it with a BNC cable of comparable length.
  1052   Thu Oct 16 09:47:49 2008 YoichiConfigurationPSLFSS ref phase measurements

I fit the bottom (quadratic) portion of this curve, and found an optimum delay of 25.8 ns, which can be implemented as 25.81 ns on the phase shift box (25 + 1/2 + 1/4 + 1/16).

The gain of the loop is sinusoidally dependent on the phase delay. So the fit will be better with a function like this: 1/(1+G*sin(dphi + const)).
  1053   Thu Oct 16 13:12:58 2008 peteConfigurationPSLphase between FSS reference outputs
I verified the phase between the FSS reference outputs (used for LO and RF) using matched BNC cables. I measured 0.95 degree (average of 12 scope measurements).
  1054   Thu Oct 16 16:26:26 2008 peteConfigurationPSLFSS phase matching cable installed
RG 405 cable has a solid teflon dielectric, and a velocity factor of 0.69. To get the 8.2 degrees of additional phase on the LO output at 21.5 MHz then requires 22 cm of cable. I made a cable that ended up being 21 cm long after I'd gained some experience putting on the connector. It gives a phase difference between LO and RF of about 10 degrees. It is currently installed.
  1061   Mon Oct 20 20:50:09 2008 YoichiConfigurationPSLFSS board chip replacement
A quick update.

I changed two AD797s on the FSS board to AD829s to mitigate the 50MHz oscillation, which I plan to report later.
For some reason, the PA85 was broken after the replacement. So I had to replace it with a spare one too.
Right now the FSS is back and working. The oscillation is gone.
However, the maximum achievable gain is still about the same as before.
  1063   Tue Oct 21 16:17:45 2008 YoichiUpdatePSLAD797 Oscillation in the FSS board
I checked each op-amp's output in the FSS board to see if any indication of slew-rate saturation can be found.
PA85, which was the most suspicious one, actually has a very large slew rate limit (1000V/usec).
Its output swing was about 5V/usec. So PA85 was ok in terms of slew rate.
However, I found that an AD797 used at the first stage of the PC path was oscillating by itself, i.e. even without the loop closed.
The frequency was about 50MHz and the amplitude was large enough to reach the slew rate limit of this chip (the steepest slope was 30V/usec whereas the slew
rate limit of AD797 is 20V/usec).

I replaced it and another AD797 right after the oscillating one with AD829s. Just replacing the chips caused oscillation of AD829.
It was because there were no phase compensation capacitors connected to the pin 5 of AD829s.
Since the PCB was designed for AD797, there is no pattern for compensation caps. So I ended up putting Mica capacitors (47pF) across the pin 5 and the nearest ground point.
It worked and the oscillation stopped.

As I reported in an earlier elog, stopping the oscillation did not solve the problem of low FSS bandwidth.
  1064   Tue Oct 21 17:52:30 2008 ranaSummaryPSLFSS Photo: early October
This is a photo of the FSS board before Yoichi did his surgery - it was taken with the D40 in macro mode, sitting on the big Gorilla pod.
Attachment 1: fss.jpg
  1078   Thu Oct 23 20:47:28 2008 peteConfigurationPSLFSS LO calibration for MEDM
Today I took a quick series of measurements to calibrate the FSS LO power measurement in the MEDM. This was done by using the spec.an. to measure the 21.5 MHz peak in dBm at the LO input to the FSS box on the PSL table, and recording the MEDM value, for attenuations applied at the FSS REF box output ranging from -5 dBm to -30 dBm.

I measured the loss due to the BNC cable I used, which was (19.66-19.50) dBm. I accounted for this and plotted ln(MEDM) vs. dBm on the attached plot. A linear fit of this gives the CALC field of a calc record for the IOC db:

Since no one knew how to do this nonlinear conversion in EPICS I will describe how to do it in detail tomorrow. It is simple, although it requires power cycling the scipe3 bunch (typing "reboot" or "ctl-x" at the command prompt took it down, but it did not come back). I did power cycle those computers a few times today.
Attachment 1: fss_lo_calibration.png
  1079   Thu Oct 23 21:52:27 2008 YoichiUpdatePSLFSS UGF now 450kHz
I measured the open loop transfer function of the FSS, for the first time after I mitigated the oscillation.
The attached plot shows the comparison of the OPLTF before and after the oscillation was mitigated.
Blue curves are when AD797 was oscillating, and the red ones are after AD797s were replaced by AD829s.
The FSS gain slider values are the same for the both measurements.
There is a notable difference in the shape of the TF.
Right now the UGF is around 450kHz with the phase margin of 50deg.
When the gain is increased by a few dBs in the common gain slider, the PC path becomes saturated.
This might be caused by the peak in the OPLTF at 1.7MHz sticking out of the 0dB line.
Another peak at 770kHz is also annoying.
Too bad that I did not take the TF above 1MHz before the oscillation was mitigated.
Also at 100kHz, the new TF has a lower gain than the old one, although it looks like the slope of the red curve is getting steeper and
it is catching up the blue one at lower frequencies.
I will measure the TF below 100kHz later.

With this bandwidth, I was able to increase the MC gain further.
I will report on the MC open loop measurements soon.
Attachment 1: FSS_OPLTF.png
  1080   Thu Oct 23 23:09:18 2008 YoichiUpdatePSLMC UGF is now 75kHz
I measured three loop transfer functions of the MC servo.
The blue curve in the first attachment is the overall open loop gain of the servo measured using
the sum-amp A of the MC board (it is the sum-amp in the common part).
The red curve is the transfer function measured by the sum-amp B of the MC board, which is in the VCO path.
Mathematically the measured transfer function is G_vco/(1+G_L), where G_L is the loop gain of the length path
and G_vco is the loop gain of the VCO path.
The green curve is G_L/(1+G_vco) which was measured from dtt by using C1:SUS-MC2_MCL_EXC.
The UGF of the MC loop is 75kHz with the phase margin of 27deg.
The cross over frequency of the two loops is 43Hz. The phase margin there seems OK.

The second attachment is the comparison of the MC open loop TF measured on Sep. 4 (old) and today (new).
The increased bandwidth of the FSS gave us a slight gain in the phase margin and the elimination of
the slight bump in the gain around 150kHz existed in the blue curve.
Attachment 1: MC_Loop.png
Attachment 2: OldAndNew.png
  1083   Fri Oct 24 11:21:26 2008 peteConfigurationPSLFSS LO input calibrated in dBm
Based on the measurements described in my previous elog, I created a new calc record in the file /cvs/cds/caltech/target/c1psl/psl.db
grecord(calc, "C1:PSL-FSS_LOCALC")
        field(SCAN,".1 second")

After restarting scipe3 to load this change, I told C1PSL_FSS.adl to look at this record instead of *LODET. That MEDM screen now shows LO input calibrated in dBm.

For reference, the operators available for use in the CALC field are listed in the EPICS Record ref manual, Chapter 9. The manual can be found here:

Yoichi said he was fixing an SVN problem, so I have not yet committed the two files I changed: /cvs/cds/caltech/target/c1psl/psl.db and /cvs/cds/caltech/medm/c1/psl/C1PSL_FSS.adl.
  1095   Mon Oct 27 14:48:27 2008 YoichiConfigurationPSLEO shutter installed to the reference cavity
I'm now preparing for cavity ring down measurements of the reference cavity.
An EOM for polarization rotation is installed between the two steering mirrors for the reference cavity.
The location is before the polarized beam splitter (used to pick-up the reflected light from the cavity) and
after the half-wave plate. So we should be able to use the PBS as a polarizer.
While setting up the high voltage pulse generator, I realized that we don't have enough cables for it.
It uses special kind of connectors (Kings 1065-N) for HV connections. We need three of those but I could find
only two. I asked Bob to order a new connector.

For the moment, the EOM is left in the beam path of the reference cavity until the connectors arrive (Wed. or Thu. this week)
and the measurements are done.
The EOM distorts the beam and degrades the mode matching to the reference cavity.
I optimized the alignment of the crystal so that the RC transmission is maximum.
Even though, the transmission of the reference cavity is down from 2.8 (without EOM) to 1.7 (with EOM).
I increased the common gain of the FSS from 7dB to 10dB to compensate for this.
The mode clearner locks with this configuration.

If the EOM is really disturbing, one can just take it out.
Since I did not touch the steering mirrors, the alignment to the reference cavity should be recovered immediately.
  1099   Wed Oct 29 12:23:04 2008 YoichiConfigurationPSLMZ alignment touched and the alarm level changed
Since the MZ reflection is alarming all the time, I tried to improve the MZ alignment by touching the folding mirror.
I locked the X-arm and monitored the transmitted light power while tweaking the mirror alignment to ensure that the output beam pointing is not changed.
I changed the alignment only a little, almost like just touching the knob.
The reflected power monitor was around 0.6 this morning and now it is about 0.525. Still large.
I changed the alarm level (HIGH) from 0.5 to 0.55.
  1107   Mon Nov 3 09:59:47 2008 steveUpdatePSLPSL HEPAs turned on
The psl enclosure HEPAs were tuned on.

Loose paper drawing was found on the psl inside shelf.
This can fall down into the beam and ignite a tragedy.

Thanks for the color coded correction. My spell checker is not reliable
  1114   Tue Nov 4 17:58:42 2008 AlbertoDAQPSLMC temperature sensor
I added a channel for the temperature sensor on the MC1/MC3 chamber: C1:PSL-MC_TEMP_SEN.
To do that I had to reboot the frame builder. The slow servo of the FSS had to get restarted, the reference cavity locked and so the PMC and MZ.
  1124   Fri Nov 7 18:38:19 2008 AlbertoDAQPSLMC temperature sensor hooked up
Alberto, Rana,
we found that the computer handling the signals from ICS-110B was C1IOVME so we restarted it. We changed the name of the channel to C1:PEM_TEMPS and the number to 16349. We tracked it up to the J14 connector of the DAQ.
We also observed the strange thing that both of the differential pairs on J13 are read by the channle. Also, if you connect a 50 Ohm terminator to one of the pairs, the signal even get amplified.

(The name of the channel is PEM-MC1_TEMPS)
  1130   Wed Nov 12 11:14:59 2008 CarynDAQPSLMC temp sensor hooked up incorrectly
MC Temperature sensor was not hooked up correctly. It turns out that for the 4 pin LEMO connections on the DAQ like J13, J14, etc. the channels correspond to horizontal pairs on the 4 pin LEMO. The connector we used for the temp sensor had vertical pairs connected to each BNC which resulted in both the differential pairs on J13 being read by the channel.
To check that a horizontal pair 4 pin LEMO2BNC connector actually worked correctly we unlocked the mode cleaner, and borrowed a connector that was hooked up to the MC servo (J8a). We applied a sine wave to each of the BNCs on the connector, checked the J13 signal and only one of the differential pairs on J13 was being read by the channel. So, horizontal pairs worked.
  1136   Fri Nov 14 19:20:42 2008 YoichiUpdatePSLReference cavity ring down
Thanks to Bob making the high-voltage BNC cables for the HV pulse generator, I was able to operate the EOM in front of
the reference cavity.

The conceptual setup is the following:
[HV pulse] ----+           +-->-- [PD2]
               V           |
->--[HWP]->-- [EOM] -->-- [PBS] --<->-- [QWP] --<->-- [Reference Cavity] -->-- [PD1]
                [PD3] --<--+

The high voltage pulse rotates the polarization of the light after the EOM. When the HV is applied, the PBS reflects most of the light
into PD2 (Thorlabs PDA255), shutting down the incident light into the cavity.
The transmitted light power of the reference cavity is monitored by PD1 (PDA255). The reflected light from the reference cavity
is monitored by the DC output of the RF PD (PD3). PD3 is low-passed so the response is not fast.
Thorlabs says PDA255 has 50MHz bandwidth.

The attached plot shows the time series of the above PD signals when the HV was applied.
Input Pulse (blue curve) is the input to the HV pulse generator. When it is high, the HV is applied.
"PBS reflection" (red) is PD2. "Reflection" (green) is PD3. "Transmission" (light blue) is PD1.

The red curve shows huge ringing. At first I thought this was caused by the bad response of the PD.
However, the same ringing can be seen in the PD3 and the peaks match very well.
When red curve goes down the green curve goes up, which is consistent with the energy conservation.
So it looks like the light power is actually exhibiting this ringing.
May be the HV pulse is distorted and the voltage across the EOM is showing this ringing.
I will check the input voltage shape to the EOM using a high impedance probe, if possible.

The green curve shows a slow decay because it has a long time constant. It is not an actual
trend of the reflected light power.

The RC transmission power shows some peaks, probably due to the ringing in the input power.
So just fitting with an exponential would not give a good estimate of the cavity pole.
Even though, we should be able to de-convolute the frequency response of the reference cavity
from the input (red curve) and output (light blue curve) signals.
Attachment 1: RingDown.png
  1137   Fri Nov 14 20:35:47 2008 ranaUpdatePSLReference cavity ring down
To make the DEI pulser make a fast pulse on the EO shutter EOMs, we had to make sure:

1) the cable had a high voltage rated dielectric. cheap dielectrics show the 'corona'
effect, especially when there is a bend in the cable.

2) the EO has to have a resistor on it to prevent ringing due to the impedance mismatch.

3) We needed ~3.5 kV to get the EO shutter crystal to flip the light by 90 deg.
  1138   Fri Nov 14 22:40:51 2008 YoichiUpdatePSLReference cavity ring down


To make the DEI pulser make a fast pulse on the EO shutter EOMs, we had to make sure:

1) the cable had a high voltage rated dielectric. cheap dielectrics show the 'corona'
effect, especially when there is a bend in the cable.

I'll check it with Bob.


2) the EO has to have a resistor on it to prevent ringing due to the impedance mismatch.

Did you use a shunt or series resistor ?
If shunt, I guess it has to have a huge heat sink.
Actually, DEI says the pulser does not require any external shunt/series resistors or impedance-matching network.
Looks like it is not true ...


3) We needed ~3.5 kV to get the EO shutter crystal to flip the light by 90 deg.

Yes, I adjusted the voltage to maximize the power change and it was about 3.5kV.
  1140   Mon Nov 17 15:07:06 2008 YoichiUpdatePSLReference cavity ring down
I used MATLAB's system identification tool box to estimate the response of the reference cavity, i.e. cavity pole.
What I did was basically to estimate a model of the RC using the time series of the measured input and output power.

First, I prepared the input and output time series for model estimation.
The input is the input power to the RC, which I produced by inverting the PBS reflected light power and adding an offset
so that the signal is zero at t=0. Offset removal was necessary to make sure that the input time series does not give an
unintentional step at t=0.
The output time series is the transmission power of the RC. I also added an offset to make it zero at t=0.
Then I commanded MATLAB to compute the response of a first order low-pass filter to the input and try to fit
the computed response to the measured output by iteratively changing the gain and the cut-off frequency.
("pem" is the name of the command to use if you are interested in).

The result is shown in the attachment.
Blue curve is the input signal (I added a vertical offset to show it separately from the output).
The green curve is the measured output (RC transmission). The red curve is the response of the estimated model.
The estimated cut-off frequency was about 45kHz.

You can see that the red curve deviates a lot from the green curve after t=15usec.
By looking at this, I realized that the bandwidth of the RC cavity servo was too high.
The time scale we are looking at is about 50kHz whereas the FSS bandwidth is about 400kHz.
So when the input light was cut off, the error signal of the FSS becomes meaning less and the
input laser frequency was quickly moved away from the resonance. This is why the green curve does not
respond to the large peaks in the blue curve (input). The cavity was already off-resonance when the input power
showed bumps.

Since the red curve matches nicely with the green curve at the very beginning of the ring down, the estimated 45kHz
cavity pole is probably not that a bad estimate.

To make a better measurement, I will try to reduce the bandwidth of the RC servo by using only the PZT actuator.
If there were no ringing in the input light power, we wouldn't have to worry about the bandwidth of the servo because our
feedback is all made to the laser, not the cavity length.
In order to reduce the ringing in the input power, I asked Bob to make new HV cables using HV grade coax cables.
Attachment 1: Fit.png
  1149   Thu Nov 20 09:37:39 2008 steveUpdatePSLMZ vs temp
This 12 days plot shows that it can hold lock if the daily temp variation is not more than 3/4 of a degree C
The MZ is happy if it's HV is above 100V
Attachment 1: mztemp.jpg
  1151   Fri Nov 21 16:11:26 2008 rana, alberto, robUpdatePSLMach Zender alignment
The Mach Zender's dark port DC voltage had gone up too high (~0.5 V)and was turning yellow
on the screen. I re-aligned by touching the knobs on the 166 MHz path. Doing alignment after the
166 EOM had very little effect. The main improvement came from doing yaw on the turning mirror
just ahead of the 166 MHz EOM; this is the one which as no adjustment knobs (duh).

During this procedure, I had the MC off, the ISS off, and the MC autolocker off. After finishing
the alignment, the power on the ISS PDs had railed and the dark port power was ~0.29 V. So we
put in a ND0.2 on the ISS path and now the voltages are OK (~2 V on each PD). We have to remove the
ND filters and change the first ISS turning mirror into a ~10-20% reflector.

So now the MZ alignment seems good; Alberto is on the MC periscope alignment like a cheap suit.
Attachment 1: PB210051-1.JPG
  1155   Fri Nov 21 20:29:43 2008 rana, alberto, robUpdatePSLMach Zender alignment

So now the MZ alignment seems good; Alberto is on the MC periscope alignment like a cheap suit.

And alignment is now mostly done - MC locks on the TEM00.

Unlocked           4.50  V
Locked noWFS       1.30  V
Locked + WFS       0.42  V
and the 29.5 MHz modulation depth is really small.

We should be able to rerun the Wiener analysis on this weekends MC data.

I don't know what our nominal StochMon numbers now are, but after Alberto tweaks up the alignment he can tell us if the RFAM has gotten any better.
  1160   Mon Nov 24 17:14:44 2008 ranaUpdatePSLMach Zender trends
It looks like the MZ has gotten less drifty after the alignment on Friday.
Attachment 1: Untitled.png
  1162   Tue Nov 25 18:38:03 2008 Alberto, RobUpdatePSLMC Periscope Alignment
This morning when I came in I found the MC cleaner unlocked and the autolocker script could not lock it. The reflected beam was quite off and showed in the bottom left corner of the IMCR camera. After turning off the WFS locking, I started slightly changing the alignment of the steering mirrors on the MC periscope, waiting for the LSC servo to lock the cavity. It didn't work. At some point I lost the beam from the IMCR camera and that is how someone might have found it when I left it for about one hour.

When I came back and tried again adjusting the steering mirrors, I noticed that the autolocker was working and was trying to lock the cavity. After just a bit of adjustment, the MC got easily locked.

After that, I spent a couple of hours trying to improve the alignment of the periscope to minimize the reflection and maximize the transmission. I started with a transmission of 0.4 V but, despite all the tweaking (I used the technique of turning both yaw knobs at the same time), I couldn't get more than 1.2 V (and 2.4 V at the reflection) if only the LSC servo was on. Looking at the camera, I moved the beam around to look for a more favorable spot but the MC wouldn't lock with the beam in other places. Maybe I could do better or maybe not because the cavity is not aligned. I'm going to try again tomorrow.
  1166   Tue Dec 2 17:56:56 2008 Alberto, RanaConfigurationPSLMC Alignment
In the attempt to maximize the Mode Cleaner transmission and minimize the reflection from the steering mirrors of the MC periscope, we could not get more ~2 V at the MC Trans PD and ~ 0.5 V at MC REFL_DC. As it turned out from the SUS Drift Monitor, the reason was that the MC optics had been somehow displaced from the optimal position.

After restoring the reference position values for the mirrors and tweaking again the periscope, we got ~3V at the MC TransPD and 0.5V at the reflection.
The beam was then probably clipped at the REFL PD so that we had to adjust the alignment of one of the BS in the transmitted beam path on the AS table.
We also zeroed the WFS PDs, but not before reducing the power from the MZ, for their QPDs not to saturate.

After relocking, the transmission was 3V and the reflection ~0.3V.

The beam isnow centered on the Trans PD and REFL PD and the Mode Cleaner locked. More details on the procedure will follow.
  1169   Wed Dec 3 11:58:10 2008 AlbertoUpdatePSLMC Alignment
Rana, Alberto,

more details on the MC alignment we did yesterday.

Last week Rana re-aligned the Mach Zender (MZ) on the PSL table to reduce the power at the dark port (see elog entry #1151). After that, the beam was aligned to the MZ but not properly aligned to the Mode Cleaner (MC) anymore. As a result the MC could not lock or did it on unwanted transverse modes. To fix that we decided to change the alignment of the MC input periscope on the PSL table.

The ultimate goal of the operation was to align the MC transmitted beam to the IFO and to maximize the power.
Such a condition depends on:
a) a good cavity alignment and
b) input beam matching to the cavity TEM00 mode.

Since the MZ alignment had only affected the input beam, we assumed the cavity alignment was still good, or at least it had not changed, and we focused on the input beam.

The IOO computer, by the MC autolocker script, is able to change the cavity alignment and the length to match the input beam and lock the cavity. Although both the length servo (LSC) and the alignment servo (WFS) have a limited effective operating range. So for the script to work properly and at best, input beam and cavity matching have to be not far from that range.

The MC periscope has two mirrors which control the pitch and yaw input angles. By changing either yaw or pitch of both mirrors together (“two-knob" technique) one can change the input angle without moving the injection point on the cavity input mirror (MC1). So this is the procedure that we followed:

  • 1) turned of the autolocker running the MC-down script
    2) brought the reflected beam spot back on the MC-reflection camera and on the reflection photodiode (REFL-PD)
    3) turned on the LSC servo
    4) tweaked the periscope's mirrors until the cavity got locked on a TEM00 mode
    5) tweaked the periscope aiming at ~0.3V from the REFL-PD and ~3V on the transmission photodiode (TRANS-PD).

Following the steps above we got ~0.5 V on the REFL-PD and ~2V on the TRANS-PD but no better than that.

Looking at the Drift Monitor MEDM screen, we found that the cavity was not in the reference optimal position, as we initially assumed, thus limiting the matching of the beam to the MC.

We restored the optics reference position and repeated the alignment procedure as above. This time we got ~3V on the TRANS-PD and ~0.5 on the REFL-PD. We thought that the reason for still such a relatively high reflection was that the beam was not well centered on the REFL-PD (high order modes pick-up?).

On the AS table we centered the REFL-PD by aligning a beam splitter in the optical path followed by the light to reach the photodiode.

We also centered the beam on the reflection Wave Front Sensors (WFS). To do that we halved the power on the MZ to reduce the sidebands power and prevent the WFS QPD from saturating. We then aligned the beam splitters on the QPD by balancing the power among the quadrants. Finally we restored the power on the MZ.

As a last thing, we also centered the transmitted beam on the TRANS-QPD.

The MC is now aligned and happily locked with 3V at the TRANS-PD and 0.3V at REFL-PD.
  1190   Fri Dec 12 22:51:23 2008 YoichiUpdatePSLReference cavity ring down measurement again
Bob made new HV-cables with HV compatible coaxes. The coax cable is rated for 2kV, which was as high as Bob
could found. I used it with 3kV hoping it was ok.
I also put a series resistor to the pockels cell to tame down the ripples I saw in elog:1136.

Despite those efforts, I still observed large ringings.
I tried several resistor values (2.5k, 1k, 330ohm), and found that 330ohm gives a slightly better result.
(When the resistance is larger, the edge of the PBS Refl. becomes dull).
Since the shape of the ringing does not change at all even when the pulse voltage is lowered to less than 1kV,
I'm now suspicious of the DEI pulser.

Anyway, I estimated the cavity pole using the MATLAB's system identification toolbox again.
This time, I locked the reference cavity using only the PZT feedback, which makes the UGF about a few kHz.
So, within the time scale shown in the plot below, the servo does not have enough time to respond, thus the laser
frequency stays tuned with the cavity. This was necessary to avoid non-linear behavior of the transmitted power
caused by the servo disturbing the laser frequency. With this treatment, I was able to approximate the response of
the cavity with a simple linear model (one pole low-pass filter).

MATLAB estimated the cavity pole to be 47.5kHz.
The blue curve in the plot is the measured RC transmitted power.
The incident power to the cavity can be inferred from the inverse of the red curve (the PBS reflection power).
The brown curve is the response of the first order low-pass filter with fc=47.5kHz to the input power variation.
The blue and brown curves match well for the first 10usec. Even after that the phases match well.
So the estimated 47.5kHz is probably a reasonable number. I don't know yet how to estimate the error of this measurement.

According to http://www.ligo.caltech.edu/~ajw/PSLFRC.png the designed transmission of the reference cavity mirrors is 300ppm (i.e.
the round trip loss (RTL) is 600ppm).
This number yields fc=35kHz. In the same picture, it was stated that fc=38.74kHz (I guess this is a measured number at some point).
The current fc=47.5kHz means, the RTL has increased by 200ppm from the design and 150ppm from the time fc=38.74kHz was measured.
Attachment 1: RC-Ringdown.png
  1191   Tue Dec 16 19:06:01 2008 YoichiUpdatePSLReference cavity ring down repeated many times
Today, I repeated the reference cavity ring down measurement many times to see how much the results vary.

I repeated the ring down for 20 times and the first attachment shows the comparison of the measured and estimated cavity transmission power.
The blue curve is the measured one, and the red curve is the estimated one. There are only 10 plots because I made a mistake when transferring data
from the oscilloscope to the PC, and one measurement data was lost.

The second attachment shows the histogram of the histogram of the estimated cavity pole frequencies.
I admit that there are not enough samples to treat it statistically.
Anyway, the mean and the standard deviation of the estimated frequencies are 47.6kHz and 2.4kHz.
Assuming a Gaussian distribution and zero systematic error, both of which are bold assumptions though, the result is 47.6(+/-0.6)kHz.

Now I removed the Pockels Cell from the RC input beam path.
I maximized the transmission by tweaking the steering mirrors and rotating the HWP.
Since the transmission PD was saturated without an ND filter on it, I reduced the VCO RF power slider to 2.85.
Accordingly, I changed the nominal common gain of the FSS servo to 10.5dB.
Attachment 1: RC_Ringdown_Estimates.png
Attachment 2: Cavity_Pole_Histogram.png
  1228   Wed Jan 14 15:53:32 2009 steveDAQPSLMC temperature sensor

I added a channel for the temperature sensor on the MC1/MC3 chamber: C1:PSL-MC_TEMP_SEN.
To do that I had to reboot the frame builder. The slow servo of the FSS had to get restarted, the reference cavity locked and so the PMC and MZ.

Where is this channel?
  1244   Thu Jan 22 11:54:09 2009 AlbertoConfigurationPSLMach Zehnder Output Beam QPD
I rotated by 180 degrees the 10% beam splitter that it is used to fold the beam coming from the Mach Zehnder (directed to the MC) on to the QPD.

The alignment of the beam with that QPD has so been lost. I'll adjust it later on.

The rotation of the BS had the (surprising) effect of amplifying the Absolute Length experiment's beat by 9 times. Maybe because of a polarizing effect of the Beam Splitter which could have increased the beating efficiency between the PSL and the NPRO beams?
  1246   Thu Jan 22 14:38:41 2009 carynDAQPSLMC temperature sensor


I added a channel for the temperature sensor on the MC1/MC3 chamber: C1:PSL-MC_TEMP_SEN.
To do that I had to reboot the frame builder. The slow servo of the FSS had to get restarted, the reference cavity locked and so the PMC and MZ.

Where is this channel?

That's not the name of the channel anymore. The channel name is PEM-MC1_TEMPS. It's written in a later entry.
  1248   Fri Jan 23 10:00:21 2009 steveUpdatePSLPMC transmission is down
The PMC transmission is going down.
I have not relocked the PMC yet.
Attachment 1: pmc4d.jpg
  1250   Fri Jan 23 14:00:02 2009 YoichiUpdatePSLPMC transmission is down

The PMC transmission is going down.
I have not relocked the PMC yet.

I tweaked the alignment to the PMC.
The transmission got back to 2.65. But it is still not as good as it was 3 days ago (more than 3).

It is interesting that the PMC transmission is inversely proportional to the NPRO output.
My theory is that the increased NPRO power changed the heat distribution inside the power amplifier.
Thus the output mode shape changed and the coupling into the PMC got worse.
MOPA output shows a peak around Jan-21, whereas the NPRO power was still climbing up.
This could also be caused by the thermal lensing decreasing the amplification efficiency.
Attachment 1: LaserPower.png
  1254   Wed Jan 28 12:42:51 2009 YoichiUpdatePSLMOPA dying
Yoichi, Jenne, Peter

As most of you know, the MOPA output power has been declining rapidly since Jan 21. (See the attachment 1)
There was also an increase in the NPRO power observed in LMON, which is an internal power monitor of the NPRO.
Similar trend can be seen in 126MON, which picks up some scattered light from the NPRO but there may be some contributions from the PA output.

The drop in the AMPMON, LMON and CURMON (NPRO current) from the middle of Jan 26 to the end of Jan27 was caused by me.
I tried to decrease the NPRO current to put the NPRO power back to the level when the MOPA output was higher. But it did not bring back the MOPA power.
So I put back the current after an hour. This caused the sharp power drop on Jan26.
By mistake, I did not fully recover the current at that time and left it like that for a day. This accounts for the long power drop period continued until Jan27.

Shortly after I tweaked the current, the MOPA output power started to fluctuate a lot. This drives the ISS crazy.
To see if this was caused by the NPRO or power amplifier,
we decided to fix the 126MON to monitor the real NPRO power.
We opened the MOPA box and installed a mirror to direct a picked off NPRO beam to the outside of the box through an unused hole.
We set up a lens and a PD outside of the MOPA box to receive this beam. The output from the PD is connected to the 126MON cable.
So 126MON is now serving as the real monitor of the NPRO power. It has not yet been calibrated.

The second attachment shows a short time series of the MOPA power and NPRO power. When the beam is blocked, the 126MON goes to -22.
So the RIN of the NPRO is less than 1%, whereas the MOPA power fluctuates about 5%. There is also no clear correlation between the power fluctuation of the MOPA and the NPRO. So probably the MOPA power fluctuation is not caused by NPRO.

At this moment, all the feedback signals (current shunt, slow and fast actuators) are physically disconnected from MOPA box so that we can see the behavior of MOPA itself.
Attachment 1: Recent10Days.png
Attachment 2: 126_MOPA.png
  1256   Wed Jan 28 19:08:50 2009 YoichiUpdatePSLLaser is back (sort of)
Yoichi, Peter, Jenne

We found that the chiller water is not going to the NPRO base. It was hot whereas it was cold when I touched it a few months ago.
I twisted the needle valve on the water line to the NPRO base. Then we heard gargling noise in the pipe and the water started to flow.
The laser power is now climbing up slowly. The noisiness of the MOPA output is reduced.

I will post more detailed entry explaining my theory of what actually happened later.
Attachment 1: Improving.png
  1257   Thu Jan 29 13:52:34 2009 YoichiUpdatePSLLaser is back (sort of)
Here is what I think has happened to the laser.

After the chiller line to the NPRO base clogged, the FSS slow slider went down to keep the laser frequency constant.
It is evident in the attachment 1 that the behavior of the slow slider and the DTEC (diode temp. stabilization feedback signal) are almost the same except for the direction. This means the slow servo was fighting against the increased heat caused by the lack of the cooling from the bottom.
DTEC was doing the same thing to keep the diode temperature constant.

Even though the slow actuator (a Peltier on the crystal) worked hard to keep the laser frequency constant, one can imagine that there was a large temperature gradient in the crystal and the mode shape may have changed.

Probably this made the coupling of the NPRO beam to the PA worse. It may also have put the NPRO in a mode hopping region, which could be the cause of the noisiness.

Right now, the MOPA power is 2.7W.
The FSS, PMC, MZ are locked. At first, the PMC locked on a sideband. I had to twiddle the phase flip button of the PMC servo to lock the PMC. Probably this is another sticky channel, which needs to be tweaked after a reboot of c1psl. I added a code to do this in /cvs/cds/caltech/scripts/Admin/slider_twiddle.

Currently the ISS is unstable. Kakeru and I are now taking OPLTF of the servo.
Looks like the phase margin at the lower UGF is too small.
Attachment 1: SlowDC.pdf
  1260   Thu Jan 29 18:10:13 2009 YoichiUpdatePSLISS Bad
Kakeru, Yoichi

As we noted before, the ISS is unstable. You can see the laser power oscillation around 3Hz.
We took the open-loop transfer function of the ISS around the lower UGF.
The phase margin is almost non-existent.
It was measured with the ISS gain slider at 2dB (usually it was set to 7dB).
So if we increase it by 3dB, it is guaranteed to be unstable.

The higher UGF has also a small phase margin (about 12deg.).
With the ISS gain slider at 2dB, the upper UGF is too low, i.e. the UGF is located at the beginning of the 1/f region.
So we if we make the lower UGF stable by lowering the gain, the upper UGF becomes unstable.

We took out the ISS box from the PSL table.
Kakeru and Peter are now trying to modify the filter circuit to give more phase margin at the lower UGF.
Attachment 1: OPLTF1.png
  1262   Fri Jan 30 19:38:57 2009 KakeruUpdatePSLISS Bad
Kakeru, Peter

We try to improve ISS bord, but there isn't circuit diagram with correct parameters.
We are to measure transfar function and guess each parameter before we desogn new circuit parameters.
  1270   Tue Feb 3 23:44:44 2009 Kakeru, Peter, YoichiUpdatePSLISS unstability

We found that one OP-amp used in ISS servo oscillated in 10 MHz, 100mV.

Moreover, we found another OP-amp had big noise.

We guess that these oscilation or noise cause saturation in high frequency, and they effect to lower frequency to cause 

 Attached files are open loop transfar function of ISS.

The blue points are open loop TF, and the green line is product of TF of ISS servo filter and TF of current shunt TF of servo filter.

This two must be same in principle, but They have difference f<2Hz and f>5kHz.

Attachment 1: TFgain.png
Attachment 2: TFphase.png
  1276   Thu Feb 5 21:42:28 2009 YoichiUpdatePSLMy thoughts on ISS

Today, I worked with Kakeru on ISS.

The problem is sort of elusive. Some time, the laser power looks fine, but after a while you may see many sharp drops in the power. Some times, the power drops happen so often that they look almost like an oscillation.

We made several measurements today and Kakeru is now putting the data together. Meanwhile, I will put my speculations on the ISS problem here.

The other day, Kakeru took the transfer function of the ISS feedback filter (he is supposed to post it soon). The filter shape itself has a large phase margin ( more than 50deg ?) at the lower UGF (~3Hz) if we assume the response of the current shunt to be flat. However, when we took the whole open loop transfer function of the ISS loop, the phase margin was only 20deg. This leads to the amplification of the intensity noise around the UGF. The attached plot is the spectrum of the ISS monitor PD. You can see a broad peak around 2.7Hz. In time series, this amplified intensity noise looks like semi-oscillation around this frequency.

Since it is very unlikely that the PD has a large phase advance at low frequencies, the additional phase advance has to be in the current shunt. We measured the response of the current shunt (see Kakeru's coming post). It had a slight high-pass shape below 100Hz (a few dB/dec). This high-pass response produces additional phase advance in the loop.

There seems to be no element to produce such a high-pass response in the current shunt circuit ( http://www.ligo.caltech.edu/docs/D/D040542-A1.pdf )

This Jamie's document shows a similar high-pass response of the current ( http://www.ligo.caltech.edu/docs/G/G030476-00.pdf  page 7 )

Now the question is what causes this high-pass response. Here is my very fishy hypothesis :-)

The PA output depends not only on the pump diode current but also on the mode matching with the NPRO beam, which can be changed by the thermal lensing. If the thermal lensing is in such a condition that an increase in the temperature would reduce the mode matching, then the temperature increase associated with a pump current increase could cancel the power increase. This thermal effect would be bigger at lower frequencies. Therefore, the intensity modulation efficiency decreases at lower frequencies (high-pass behavior). If this model is true, this could explain the elusiveness of the problem, as the cancellation amount depends on the operation point of the PA. 

To test this hypothesis, we can change the pump current level to see if the current shunt response changes. However, the PA current slider on the MEDM screen does not work (Rob told me it's been like this for a while). Also the front panel of the MOPA power supply does not work (Steve told me it's been like this for a while). We tried to connect to the MOPA power supply from a PC through RS-232C port, which did not work neither. We will try to fix the MEDM slider tomorrow.

Attachment 1: INMONPD_Spectrum_1-10Hz.pdf
  1277   Fri Feb 6 09:52:35 2009 KakeruUpdatePSLCurrent shunt transfar function

I attach the transfar function of the current shunt.
There is a little gap at 10 Hz for phase, but it is a ploblem of measurement and not real one.

Attachment 1: TF_CS_gain.png
Attachment 2: TF_CS_phase.png
  1278   Fri Feb 6 09:56:11 2009 KakeruUpdatePSLISS servo transfar function

I attache the transfar function of ISS servo.

The 4th stage and variable gain amplifier has alomost same transfar function, so their lines pile up.

Attachment 1: TF_ISSservo_gain.png
Attachment 2: TF_ISSservo_phase.png
  1279   Fri Feb 6 10:46:40 2009 KakeruUpdatePSLISS servo and noise
I measured the output noise of eache stage of ISS servo, and calcurated the noise ratio between input and 
output of each stage.
Generaly, each noise ratio corresponds to their transfar function. This means servo filter works well, not 
adding extra noise.

I attache example of them.
For 2nd stage, the noise ratio is smaller than transfar function with a few factor. This is because the 
input noise is coverd by analyser's noise and ratio between output and input looks small.
This means the input noise of 2nd stage was enough small and all stage before 2nd stage work well
Attachment 1: ISS_servo_TF_noise.png
  1281   Fri Feb 6 16:20:52 2009 YoichiUpdatePSLMOPA current slider fixed

I fixed the broken slider to change the current of the PA.

The problem was that the EPICS database assigned a wrong channel of the DAC to the slider.

I found that the PA current adjustment signal lines are connected to the CH3 &CH4 of VMIC4116 #1. However in the database file (/cvs/cds/caltech/target/c1psl/psl.db), the slider channel (C1:PSL-126MOPA_DCAMP) was assigned to CH2. I fixed the database file and rebooted c1psl. Then the PA current started to follow the slider value.

I moved the slider back and forth by +/-0.3V while the ISS loop was on. I observed that the amount of the low frequency fluctuation of the MOPA power changed with the slider position. At some current levels, the ISS instability problem went away.

Kakeru is now taking open-loop TFs and current shunt responses at different slider settings.

  1283   Fri Feb 6 23:23:48 2009 Kakeru, YoichiUpdatePSLISS is fixed

Yoichi and me found that the transfar function of the current shunt changed with the current of PA.
We changed PA current and fixed the unstability of ISS.
Now, laser power is stabilized finely, with band of about 1 Hz.
Yoich will post the stabilized noise spectrum.

There looks to be some non-linear relation between PA current and  the TF of current shunt.
It had changed from the TF which we measured yesterday, so it might change again.

I try to write scripts to sweep PA current and measure the laser power and its rms automatically.
It will be apply for auto-adjustment of PA current.

Attached files are the transfar function of the current shunt with changing PA.
They have difference in lower frequency.

Attachment 1: Current_ShuntTF_gain.png
Attachment 2: Current_ShuntTF_phase.png
  1284   Mon Feb 9 16:02:42 2009 YoichiUpdatePSLPSL relative intensity noise
I attached the relative intensity noise of the PSL.
There is no bump around the lower UGF (~1Hz), but at the higher UGF (~30kHz) there is a clear bump.
When the ISS gain slider was moved up to 21dB, the peak got milder, because there is larger phase margin at higher frequencies with the current filter design.
We may want to optimize the filter later.
Attachment 1: RIN-13dB.png
Attachment 2: RIN-21dB.png
  1287   Mon Feb 9 19:50:48 2009 YoichiConfigurationPSLISS disconnected
We are doing measurements on ISS.
The ISS feedback connector is disconnected and the beam to the MC is blocked.
ELOG V3.1.3-