40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 263 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  9990   Fri May 23 11:58:28 2014 manasaUpdateGreen LockingY arm green alignment tuned

The Y arm green transmission had come down to 0.3 and the green steering mirrors on the Y end table required some minor alignment adjustments to bring back transmission to around 0.75 counts.

  5084   Mon Aug 1 20:21:05 2011 kiwamuUpdateGreen LockingY arm green beam axis : aligned

The beam axis of the Y green light has been aligned.

Now I can see TEM00 mode is flashing on the ETMY camera.

 

-- (What I will do tonight)

The next step is to refine some electronics in the PDH loops to get the green light locked to the Y arm cavity.

If the beam isn't locked, I guess the in-vac-work will be so difficult because of the low intensity of the green light.

According to a brief check on the circuits, a low pass filter after the demodulation mixer is in a sad situation.

It doesn't pass any signals and in fact it behaves more like an absorber.

On the other hand, the modulation system looks fine to me because I was able to see the 270 kHz sideband converted into AM due to the fringing.

Quote from #5078

  (not yet) Alignment of the Y green beam (#5066)

  5088   Tue Aug 2 02:20:09 2011 kiwamuUpdateGreen LockingY arm green beam axis : done

I succeeded in locking the green light to the Y arm cavity, but it wasn't so robust. Something is unhealthy in the electronics.

I am leaving the Y green system as it is because I already can see a plenty of the green light flashing in the BS chamber.

So just a flashing of the green light is good enough for the in-vac-work.

DONE.

Quote from #5084

The next step is to refine some electronics in the PDH loops to get the green light locked to the Y arm cavity. 

 

  4769   Mon May 30 23:14:27 2011 valeraUpdateASCY arm initial alignment

I closed all 8 dither loops for the Y arm initial alignment: 2x2 centering servo (this worked before) and 2x2 input beam servo for both pitch and yaw.

So far it looks pretty good - the error points go to zero and the arm power goes up to 1.

The offloading to the alignment biases and the PZTs is not yet automated.

Today the PMC, MC, and Y arm were very cooperative and a pleasure to work with.

  4437   Thu Mar 24 13:50:30 2011 BryanConfigurationGreen LockingY arm laser

 Just a quick update... the Lightwave laser has now been moved up to the end of the Y arm. It's also been mounted on the new mounting block and heatsinks attached with indium as the heat transfer medium.

A couple of nice piccies...IMG_0188.JPG

  6825   Sat Jun 16 18:17:00 2012 yutaUpdateGreen LockingY arm length using 5FSR scan

Calibrating error signal to beat frequency;
  I injected 0 dBm RF sine wave into the beatbox and sweeped the frequency(just like we did in elog #6815).
  This time, we have different whitening filters. I sweeped the frequency from 0 to 100 MHz in 200 sec.
  The length of the delay line is ~1.5 m for COARSE.
ALS-BEATY_COARSE_I_IN1_DQ.png

Y arm length;
  Here, I think we need some assumption. Let's assume wavelength of IR lamb_IR = 1064 nm and Y end green frequency is nu_g = 2*nu_IR.
  There is a relation
    dnu_g / nu_g = dL / L
  So,
    dnu_g / (dL/lamb_IR) = 2*nu_IR * lamb_IR / L = 2c/L
  We know that dL/lamb_IR = 1/2 for difference in beat frequency between TEM00s. Therefore, slope of the dnu_g vs dL/lamb_IR plot gives us the arm length L(figure below, middle plot).

CalibYarmScan20120614_2.png

  Error estimation is not done yet, but I think the COARSE_I_IN1 error signal to the beat frequency calibration has the largest error because it seems like the amplitude of sine wave changes ~10% day by day.

Calibrating beat frequency to Y arm length change;
  I used L = 32.36 m (figure above, bottom plot).
    dnu_g / dL = c / lamb_g / L = 1.74 MHz/m

  6826   Sat Jun 16 18:51:44 2012 KojiUpdateGreen LockingY arm length using 5FSR scan

Quote:

Calibrating beat frequency to Y arm length change;
  I used L = 32.36 m (figure above, bottom plot).
    dnu_g / dL = c / lamb_g / L = 1.74 MHz/m

Wow. This is way too short.

You don't need to use Albertoo's arm length as his measurement was done before the upgrade.

  6827   Sat Jun 16 19:32:11 2012 yutaUpdateGreen LockingY arm length using 5FSR scan

I know!
But I think there's some error (~ 10% ?) in calibrating the beatbox. In elog #6815, slope near zero crossing point is about 68 counts/MHz, but now, its 60 counts/MHz. Also, zero crossing point in elog #6815 was 47 MHz, but now, its 45 MHz. 5FSR scan was done between these two calibration measurement.

Quote:

Quote:

Calibrating beat frequency to Y arm length change;
  I used L = 32.36 m (figure above, bottom plot).
    dnu_g / dL = c / lamb_g / L = 1.74 MHz/m

Wow. This is way too short.

You don't need to use Albertoo's arm length as his measurement was done before the upgrade.

 

  771   Wed Jul 30 15:28:08 2008 robUpdateLSCY arm locked

By using a combination of the SUS-DRIFT mon screen and the optical levers (which turned out pretty well) I steered the BS, ITMY, and ETMY back to their previous positions, and was able to lock the Y arm. The "Restore Y Arm" script on the IFO_CONFIGURE screen works. I couldn't test the alignment script, as a dump truck/construction vehicle showed up and started unlocking the MC.
  4586   Fri Apr 29 05:48:52 2011 kiwamuUpdateLSCY arm locked

The Y arm has been locked with the IR beam. The purpose is to use the arm as an alignment reference for the input PZTs.

Detail will be posted later. Here is a picture of ITMY suspension. You can see there is a beam spot in the middle of the test mass.

DSC_2978_ss.jpg

  4587   Fri Apr 29 12:18:48 2011 kiwamuUpdateLSCY arm locked : details

First of all, the conclusions / results from the exercise of the Y arm locking yesterday are:

   The position of the beam spots on both ETMY and ITMY are now not so bad ( ~ 5 mm off from the center).

   The input PZTs are coarsely aligned to the Y arm.

   Nevertheless IP_ANG is still too high to come out from the view port at the Y end station.

  After the alignments of PRM, SRM and Michelson, POP is still largely clipped.

 


(what I did)

  - Alignments of the Input PZTs

    First I tried letting the incident beam hit the center of ETMY by steering PZT1 and 2 as usual.
    Then I coarsely aligned the cavities to the incident beam and checked the beam flashing spots on ETMY and ITMY with the CCD monitors.
    When the spots were far from the center I went back to the alignment of PZT1 and 2 to get better beam positions. And repeated this work several times.

  - Adjustment of the demodulation phase  for the Y arm PDH.

    First I started looking at the digital signals and tried correcting the demodulation phase by the rotation matrix, but this didn't go fast because I had to do some DAQ settings, plotting and analysis.
    Instead looking at the digital signal, I observed the analog signals with an oscilloscope. I found the demodulation phase was something like 45 deg.
    Based on the analog measurement I rotated the digital matrix by 45 deg to get the I-signal maximized. Indeed this worked well. I obtained a beautiful PDH signal from the I-signal.
    Note that we are using 11 MHz mod/demod and eventually the signals come out from "REFL33" on the digital side.

  - Activation of oplev on ITMY

    Instead using ETMY I used ITMY for the length control because somehow I felt that ETMY coils were suspicious and they looked not so nice.
    One of the reason is that ETMY's coil actuation efficiencies looked low compared to the other test masses.
    For example a gain of 700 for SUSSIDE damping is needed on ETMY to get a reasonable Q. This is about 2 - 3 times larger gain than the other test masses.
    So I started using ITMY for the locking and activated the oplev to suppress unwanted excitation due to kicks from the control signal during the locking,
    The oplev has been misaligned, so I went to the ITMY optical bench and tweaked a steering mirror to let the He-Ne beam go into the QPD.
    I set the gains +2 for PITCH and -2 for YAW.

  - PDH locking

    The locking had been quite difficult even though the cavity alignment was quite good.
    It's because the beam on AS11_RFPD was almost falling off from the photo diode. This causes a big amplitude fluctuation in the PDH signal as the beam position moves.
    After aligning the beam by steering BS I got able to lock the Y arm. The PD whitening gains are all 0 dB and the feedback gain is -2, giving us a UGF of 250 Hz.

 

(Broken or likely broken stuff)

 * IP_ANG doesn't give a signal to the digital side.

 * ETMY coils look weak and 2 - 3 times weaker than the other test masses. (or OSEM readout gain maybe lower)

 * reload button on sitemap.adl doesn't work.

 * Farfalla, a lab laptop, seems out of network.

Quote from #4586

The Y arm has been locked with the IR beam. The purpose is to use the arm as an alignment reference for the input PZTs.

Detail will be posted later. Here is a picture of ITMY suspension. You can see there is a beam spot in the middle of the test mass.

 

  4588   Fri Apr 29 13:15:04 2011 kiwamuUpdateLSCY arm locked : details

As far as I know, this button works only once after the launch of MEDM...

Quote:

 * reload button on sitemap.adl doesn't work. 

 

  4589   Fri Apr 29 13:58:36 2011 ranaUpdateLSCY arm locked : details

Quote:

 * Farfalla, a lab laptop, seems out of network.

 If you look at the real host table instead of the misleading host table in the wiki, you will see that someone has deleted Farfalla from there. She needs to be re-added.

  12466   Fri Sep 2 21:09:08 2016 gautamUpdateSUSY arm locked in air

[johannes, lydia, gautam]

  • The Y arm has been locked to IR in air using POY11 as an error signal yes
  • We had been seeing flashes in the arm since yesterday, but were unable to lock
  • Today we re-did the alignment procedure much the same way as yesterday
    • It is useful to put in the slide-on irides onto the suspension tower for this sort of alignment
    • We were a bit more systematic in aligning back-reflections to overlap each other today
    • It is useful to stick the IR card just in front of the iris, and align the tip tilts by looking at the scatter on the camera. At least for Yaw, this works pretty well, probably a more reliable reference than contorting oneself inside the vacuum chamber to see if we are well aligned or not.
  • Two fixes that made locking possible today:
    • The POY error signal had a large DC offset. I zeroed the offset and adjusted the demod phase to make the error signal 0 when the IMC was unlocked
    • I replaced the 50-50 beam splitter that was dividing the transmitted light between the QPD and Thorlabs PDs with a 2" Y1 CVI mirror - this meant that the flashes we had with the arm roughly aligned went from < 0.1 to a healthier 0.25, which allowed easier locking
  • The POY whitening gain was unchanged from when we locked the Y arm in air just after venting and before taking the doors off
  • The mode is barely visible on ITMY face, although I guess this is to be expected given we are at low power
  • Lydia then tuned the arm alignment more finely such that the transmission is now ~0.65 (See Attachemnt 2 for slider values)
  • From values from normal (pre-vent) IFO operation, I would have expected us to get a transmission of about 1 assuming 100mW going into the IFO from the IMC - and so with the BS switched out for an HR mirror, a transmission of ~2. What we get is about 1/3 of this value. Perhaps the IMC isn't so well aligned, but it is hard to imagine we have only 30mW going into the IFO. Or perhaps the input pointing is sub optimal (I did not run ASS, perhaps I should have)

GV EDIT Sep 5: These numbers do make sense if the ND filter that was on the Transmon QPD had ND = 0.6 (there are two at the end, one labelled ND 0.6 and the other labelled ND10 though the latter label looks like some custom label so I don't really trust that value), even though only one was on, unfortunately I don't remember which. So, for 10% of input power with a factor of 8 increase because the ND filter is removed and also that the 50% BS has been replaced with a HR mirror, we expect a transmission level of ~0.6 (compared to the normalized value under normal IFO operation) which is close to what we see...

  • The UL coil problems continue to plague us but we were able to lock the arm regardless

In any case, I think we can work on putting in the X arm now and work on recovering that. 

To do for the Y-arm (now that the F.C. is off, we should try and do this in as few chamber openings as possible):

  • Fix problematic ITMY UL coil
  • Rotation of all 5 ITMY OSEM coils for B-R peak reduction in sensor outputs
  • Adjustment of axial position of all OSEM coils on ITMY and ETMY to better center the PD outputs to half their saturation value, given that the pitch and yaw biases to the optics have changed since this was last done
  • Insertion of new baffles - try and center the IR and green beams as best as possible on these so that they serve as an alignment reference in the future

Then we need to do all of this for the X arm as well. The PRM LR coil is still giving no output - I will try moving the bias sliders around to see if this is a stuck magnet situation, but perhaps it is not. Since Eric's 3-satellite-box-monte did not yield any positive results, we have to consider the possibility that the LED or PD themselves are damaged. If so, I don't see any workaround without opening up the BS-PRM chamber, but if we can avoid this, we should. Perhaps when ITMX is open we can use the camera with the IR filter removed to see if all the OSEM LEDs are functional through the beam tube.


We are also piping POY11 error to the DAFI model and can hear it in the control room.


Rana suggested reviving the MC autolocker - I've made some changes to the low power MC autolocker scripts and they've been working the few times I tried today evening, but let's see how it does over the weekend. I've also changed the Y axis of the StripTool on the wall to better reflect the low-power range..

  8715   Mon Jun 17 23:53:03 2013 AnnalisaUpdateGreen LockingY arm locked on green!!

Y arm locked on green carrier in 00 mode!

It locked at almost 280 cts, and the transmitted power on the PSL table is  about 40 uW.

To make it lock on the carrier I had to flip the sign of the error signal in the PDH loop, so I put a phase shifter (a Pomona box with a 23 uF capacitor) right before the LO input of the PDH box (on the model of the X arm).

Tomorrow I will put more details about the power budget and the phase shifter transfer function.

 

  12457   Wed Aug 31 22:09:18 2016 gautamUpdateSUSY arm locked to Green

Koji tweaked the alignment sliders till we were able to get the Y arm locked to green in a 00 mode, GTRY ~ 0.5 which is the prevent number I have in my head. The green input pointing looks slightly off in yaw, as the spot on the ITM looks a little misaligned - I will fix this tomorrow. But it is encouraging that we can lock to the green, suggests we are not crazily off in alignment.

[Ed by KA: slider values: ETMY (P, Y) = (-3.5459,  0.7050), ITMY (P, Y) =  (0.3013, -0.2127)]

While we were locked to the green, ITMY UL coil acted up quite a bit - with a large number of clearly visible excursions. Since the damping was on, this translated to somewhat violent jerking of ITMY (though the green impressively remained locked). We need to fix this. In the interest of diagnosis, I have switched in the SRM satellite box for the ITM one, for overnight observation. It would be good to narrow this down to the electronics. Since SRM is EQ-stopped, I did not plug in any satellite box for SRM. The problem is a difficult one to diagnose, as we can't be sure if the problem is with the LED current driver stage or the PD amplifier stage (or for that matter, the LED/PD themselves), and because the glitches are so intermittent. I will see if any further information can be gleaned in this regard before embarking on some extreme measure like switching out all the 1125 OpAmps or something...

Does anyone know if we have a spare satellite box handy? 

  8691   Sat Jun 8 00:24:11 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

[Annalisa, Nic]

After connecting the PD with the reflection from the arm  to the PDH box, theY  arm has been locked on the 01 mode.  Maximizing the alignment, we obtained a 00 mode locking, but we couldn't maximize the power.

The size of the reflected beam was different with respect to the size of the incoming beam, so probably a bad mode matching was one of the issues.

Moreover, the reflected beam is very low power. We need to figure out why it is so (bad alignment? related to mode matching?)

 

After measuring better all the distances, I did a new mode matching calculation. I put the lenses after measuring the beam waist, so the size of the beam on the lenses was the same as expected from the calculation. Nevertheless, the beam size on the beam splitter looks bigger than expected, and also in this case green flashes into the cavity at some HOM (again 01).

I also tried to lock again the cavity and maximize the alignment, but I didn't get any improvement with respect to the previous mode matching.

 

  8692   Mon Jun 10 21:39:26 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

 

Still no good locking!

After making the reflected beam size closer to the injected one, I maximized alignment. I locked again in 00 mode, but I couldn't maximize the power. 

I just realized that maybe I'm not using the correct radius of curvature for the ETMY in the simulation. Tomorrow I will start checking from that.

  8693   Tue Jun 11 10:00:54 2013 nicolasUpdateGreen LockingY arm locked with green but bad mode matching

Quote:

 

Still no good locking!

After making the reflected beam size closer to the injected one, I maximized alignment. I locked again in 00 mode, but I couldn't maximize the power. 

I just realized that maybe I'm not using the correct radius of curvature for the ETMY in the simulation. Tomorrow I will start checking from that.

 Also make sure you are taking into account the substrate of the ETM.

  8695   Wed Jun 12 01:56:58 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

 

 For the mode matching calculation I was using the ETMY focal length that I found on Kiwamu's plot on the wiki page. 

Taking into account also the substrate, the focal length turns out to be

fl = ((n-1)*(1/R1 - 1/R2 + (n-1)d/(nR1R2)))^(-1) = -125.81 m

with n = 1.46071 (refraction index of fused silica at 532nm)

R1 = 5625 m (radius of curvature of the first surface)

R2 = 57.37 m (radius of curvature of the second surface)

d = 25mm (thickness)

 

The value of the focal length is sligthly different from the one I was using before in the calculation, but maybe it is enough to change the coupling.

The mode matching solution I found is very sensitive to the lenses position. 

The beam waist position can vary up to 20m varying by 1cm the first lens position, while it is slightly less sensitive to the second lens displacement.

As shown in the picture, along the green beam path there is also a 1m focal length lens. It's position is fixed, because it is along the IR transmetted beam path also. I tried to get a better solution without it, but I found that the waist position was still strongly dependent on one of the two lenses position, so it would not solve the problem to remove this lens.

I think that the main issue of this mode matching is related to the "space contraints", because the two lenses' positions can vary in a very small space, even though the green beam path on the table is quite long.

Eventually, I put the MM lenses found from this last simulation on the table, and it seems to work, since I've seen very strong 00 flashes. Unfortunately, while trying to maximize the alignment I broke it  and I have to do it again, but I feel confident! 

  8696   Wed Jun 12 22:48:10 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

After restoring alignment I could see again strong 00 flashes (about 250-300 counts on ALS-TRY). So I locked the arm with IR and after enabling the PDH servo for the green locking, I also locked the green on the Y arm in 00 mode. Then I moved the two mode matching lenses to maximize the power into the 00 mode, but I didn't reach more than 30-35 counts.

Green power injected into the Y arm                    0.680mW

Green power reflected back                                  0.090mW

Green power transmitted on the PSL                  few uW

I would expect more power on the PSL table (maybe 10x more).

  8697   Wed Jun 12 23:06:33 2013 JenneUpdateGreen LockingY arm locked with green but bad mode matching
Hmmm.  You seem to be saying that more light is reflected than is injected. Is this a units problem? Or was some IR on the power meter during the 'reflected' measurement? 
We should look at it with fresh eyes in the morning. 
  8698   Thu Jun 13 00:35:23 2013 ManasaUpdateGreen LockingY arm locked with green but bad mode matching
> Hmmm.  You seem to be saying that more light is reflected than is injected. Is this a units problem? Or was some IR on the power meter during the 'reflected' measurement? 
> We should look at it with fresh eyes in the morning. 

Also, if you have been measuring the power of green refl at the rejection port of the green faraday, the polarization of the light entering the green faraday should be checked once again to make sure that you are measuring 
only the reflected power from the arm cavity.
  8699   Thu Jun 13 10:57:36 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching
> > Hmmm.  You seem to be saying that more light is reflected than is injected. Is this a units problem? Or was some IR on the power meter during the 'reflected' measurement? 
> > We should look at it with fresh eyes in the morning. 
> 
> Also, if you have been measuring the power of green refl at the rejection port of the green faraday, the polarization of the light entering the green faraday should be checked once again to make sure that you are measuring 
> only the reflected power from the arm cavity.

Sorry Sorrry Sorry!!
It was 0.090 mW, I just forgot a zero!!!
Sorry!
  8701   Thu Jun 13 16:01:48 2013 nicolasUpdateGreen LockingY arm locked with green but bad mode matching

Quote:

After restoring alignment I could see again strong 00 flashes (about 250-300 counts on ALS-TRY). So I locked the arm with IR and after enabling the PDH servo for the green locking, I also locked the green on the Y arm in 00 mode. Then I moved the two mode matching lenses to maximize the power into the 00 mode, but I didn't reach more than 30-35 counts.

Green power injected into the Y arm                    0.680mW

Green power reflected back                                  0.090mW

Green power transmitted on the PSL                  few uW

I would expect more power on the PSL table (maybe 10x more).

Is this reflection measured with the cavity locked or unlocked?

So what's the actual designed reflectivity of the ETM for green? No one seems to be able to give me a straight answer about this.

Looking at the reflected beam when the beam is misaligned makes it look like it's << 0.9. Is that expected given the coating spec?

You say the cavity scan goes as high as 300cts but you can only lock to 30cts, are you locked on the sideband?

  8704   Thu Jun 13 23:28:40 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

Quote:

Quote:

After restoring alignment I could see again strong 00 flashes (about 250-300 counts on ALS-TRY). So I locked the arm with IR and after enabling the PDH servo for the green locking, I also locked the green on the Y arm in 00 mode. Then I moved the two mode matching lenses to maximize the power into the 00 mode, but I didn't reach more than 30-35 counts.

Green power injected into the Y arm                    0.680mW

Green power reflected back                                  0.090mW

Green power transmitted on the PSL                  few uW

I would expect more power on the PSL table (maybe 10x more).

Is this reflection measured with the cavity locked or unlocked?

So what's the actual designed reflectivity of the ETM for green? No one seems to be able to give me a straight answer about this.

Looking at the reflected beam when the beam is misaligned makes it look like it's << 0.9. Is that expected given the coating spec?

You say the cavity scan goes as high as 300cts but you can only lock to 30cts, are you locked on the sideband?

 

-The reflection is measured when the cavity is unlocked. I measured it with the power meter in front of the PD, so I interrupted the PDH loop.

- From the specs of ETM we have:

T(S1,HR,532nm)=5.0%+/-3% (+/-1% target),  R(S2,AR,532nm)<1000ppm

It means that I should have about 600-550 uW in reflection, but I don't. I can say that there are many losses, and maybe some power is clipping inside the Faraday. Nonetheless, the reflected beam looks less strong than the injected one, so most of the losses should be on the ETM table.

(- The reflected power is 0.090 mW, I just wrote it wrong yesterday, sorry!)

- The last question is actually very interesting. Maybe I was locking on the sideband when I locked to 30 cts, but if it is the case I cannot really explain why today I locked on the carrier (I locked the cavity to about 200-250 cts), and everything I changed was the PD gain and the amplitude on signal generator connected to the PDH box. It seems like there should be some sign flip somewhere, but I need to think about.

 

 

  8157   Mon Feb 25 15:30:29 2013 yutaUpdateAlignmentY arm locked, both colors

[Koji, Yuta]

We aligned Y arm to Y green and tweaked TT1/TT2 to get IR locked in Y arm.

Alignment procedure:
  1. Align ETMY/ITMY to maximize TEM00 green transmission to PSL table. We reached ~240 uW.

  2. Aligned PRM and TT2 so that PRM reflected beam go through FI and get ITMY-PRM cavity flashing. This is to coarsely align input pointing to Y arm. After this alignment, we got tiny Y arm flash. Input pointing to IPANG QPD was lost.

  3. Aligned TT1/TT2 to maximize TRY in TEM00. We reached ~0.92.

Failed procedure:

  I was struggling with finding Y arm flash. I was using IPPOS/IPANG as input pointing reference, and slider values (C1:SUS-(ITMY|ETMY)_(PIT|YAW)_COMM) or OSEM values (C1:SUS-(ITMY|ETMY)_SUS(PIT|YAW)_IN1) before pumping for Y arm alignment reference. But it was a lot more easier if Y arm is aligned to green and having Yarm cavity axis assured.

Next:
  - X arm flash in IR
  - Steer X end green
  - If X arm or AS looks bad, adjust IR input pointing and Y arm alignment. We have to steer Y end green afterwards.

  8158   Mon Feb 25 17:58:28 2013 ranaUpdateAlignmentY arm locked, both colors

 

 That's good news. I was ready to give up and say we should vent and remove the baffles. It will be interesting if you can find out how much the sensors and OL and IPANG are off from their pre-pump values. We should think about how to have better references.

Also, what is the story with the large drift we are seeing in IPANG?

  14094   Sat Jul 21 01:06:49 2018 gautamSummaryThermal CompensationY arm locking

I implemented this today. For now, the LSC output matrix is set to actuate on MC2 for Y arm locking. As expected, the transmission was much more stable, and the PLL control signal RMS was also reduced by factor of ~3. MC2 control signal does pick up a large (~2000 cts) DC component over a few hours, so we need to relieve this periodically.

Now that we have a workable ASS for the Y arm as well, we should be able to have more confidence in returning to the same beam spot position on the ETM and staying there during a scan using this technique.

The main improvement to be trialled next in the scanning is to improve the speed of scanning. As things stand, my script takes ~2.5 seconds per datapoint. If we can cut this in half, that'd be huge. On Wednesday night, we were extraordinarily lucky to avoid MC3 glitching, EPICS/slow machine failures, and GPIB freezes. Today, the latter reared its head. Fortunately, since I'm dumping data to file for each datapoint, this means we at least have data till the GPIB freeze.

Quote:

For future measurements, we should consider locking the IMC length to the arm cavity - this would eliminate such alignment drifts, and maybe also make the PLL control signal RMS smaller. 


Not related to this work: Terra, Sandrine, Keerthana and I cleaned up the lab a bit today, and made better cable labels. Aaron and I have to clean up the OMC area a bit. Huge thanks to Steve for taking care of our mess elsewhere in the lab!

  14096   Sat Jul 21 14:03:19 2018 KojiSummaryThermal CompensationY arm locking

Ah. With MC2 feedback, we have about 3 times smaller "optical gain" for the ASS A2L. We have same dither, same actuator, but we need only 1/3 actuation of the MC2 compared to the ETMY case.
We had to reduce the ASS spot servo from 1 to 0.3 to make is stable, so this means that the ASS is really merginally stable.

  14904   Fri Sep 20 18:28:34 2019 gautamUpdateLSCY arm locking attempt

I tried to lock the Y arm cavity length to the PSL frequency using POY11_I as an error signal. Even though I think the cavity alignment is good (I see TRY flashes ~0.8), I am unable to achieve a lock. I checked the signal conditioning, and as far as I can tell, all the settings are correct, but there may be some settings that have not been re-assigned correct values. The other possibility is that something is not quite right with the new c1iscaux. The PDH error signal and arm cavity flashes all seem good though (see Attachment #1), so I'm not sure what obvious thing I'm missing.

To be continued...

  5392   Tue Sep 13 03:18:14 2011 kiwamuUpdateLSCY arm locking prep

(Preparation of Y arm locking)

(A) The f2a filters were newly designed and applied to ETMY (see the attachment)

(B) Once the Y arm is aligned such that the TEM00 mode flashes, the transmitted light is visible on the ETMYT CCD camera.

(C) With the newly installed resonant EOM circuit the PDH signal from AS55 looks healthy.

 

(some notes)

(A) To design the f2a filters there is a handy python script called "F2A_LOCKIN.py" in /scripts/SUS.

The script measures the coil imbalance at high frequency and low frequency using a LOCKIN module and then gives us the information about the imbalance.

The script hasn't yet been completed, so it doesn't return the intuitive answers but returns something non-intuitive. I will modify it.

 

(B)  To see the transmitted light from the Y arm I was going to align the CCD camera on the Y end table.

However I found that once the green light is blocked, the transmitted light can be visible on the camera without any re-alignment.

Therefore I haven't rearranged anything on the Y end table, but I just blocked the green light.

Perhaps we still need to align the photo diodes for the transmitted light.

 

(C) While Suresh was working on MC, I looked at the signal from AS55 with all the optics misaligned except for ITMY, ETMY and BS.

The signal from the Y arm looked very PDH signal, and the demodulation phase seemed to be about 45 deg to maximize the I signal.

I tried locking it by feeding the signal back to ETMY but failed due to a too much POS to angle coupling in the ETMY actuators.

I was momentarily able to capture a higher order mode with a negative gain in LSC-YARM_GAIN, but it was quite difficult to keep it locked.

This was because once I increased the gain to make it stable, the angle instability became more significant and lost the lock immediately.

This was the reason why I had to do the f2a filter redesign. Tomorrow we can try locking the Y arm.

  5398   Tue Sep 13 19:31:09 2011 kiwamuUpdateLSCY arm locking prep

The Y arm has been locked with AS55.

A next thing is to check the spot positions on the ETMY and ITMY mirrors so that we can evaluate the recent beam pointing.

 

- - - parameter settings - - -

C1:LSC-YARM_GAIN = -0.03

AS55 demod phase = 0.2

WF gains = 21 dB

C1:LSC-TRY_OUT = 0.57 (maximized by steering PZT2)

Quote from #5392

This was the reason why I had to do the f2a filter redesign. Tomorrow we can try locking the Y arm.

 

  5410   Wed Sep 14 21:18:45 2011 kiwamuUpdateLSCY arm locking prep

Although we did some of the Input Matrix diagonalization, we have not yet actually used this knowledge. As a result all of the optics are shaking all over the place.

Sunshine Task: Set the input matrices to their calculated values and then adjust the OSEM damping gains for all optics so as to get a Q ~ 5.

  14450   Tue Feb 12 22:59:17 2019 gautamSummaryLoss MeasurementY arm loss

Summary:

There are still several data quality issues that can be improved. I think there is little point in reading too much into this until some of the problems outlined below are fixed and we get a better measurement.

Details:

  1. Mainly, we are plagued by the inability of the ASS system to get back to the good transmission levels - I haven't done a careful diagnosis of the servo, but the ITM PIT output always seems to run away. As a result, the later measurements are poor, as can be seen in Attachment #2.
  2. For this reason, we can't easily sample different spot positions on the ETM.
  3. Data processing:
    • Download AS reflection and MC transmission DQ channels
    • Take their ratio
    • Downsample to 4 Hz by repeated application of scipy.signal.decimate by a factor of 8 each time, thrice, with the filtfilt option enabled
  4. Attachment #1 and #2 are basically showing the same data - the former collects all locked (top left) and misaligned (top right) data segments and plots them with the corresponding TRY values in the bottom row. The second plot shows a pseudo-continuous time series (pseudo because the segments transitioning from locked to misaligned states have been excised).

As an interim fix, I'm going to try and use the Oplevs as a DC reference, and run the dither alignment from zero each time, as this prevents the runaway problem at least. Data run started at 11:20 pm.

  14451   Wed Feb 13 02:28:58 2019 gautamSummaryLoss MeasurementY arm loss

Attachment #1 shows estimated systematic uncertainty contributions due to 

  1. ITM transmission by +/- 0.01 % about the nominal value of 1.384 %
  2. ETM transmission of +/- 3 ppm about the nominal value of 13.7 ppm
  3. Mode matching efficiency into the cavity by +/- 5% about the nominal value of 92%.

In all the measurements so far, the ratio seems to be < 1, so this would seem to set a lower bound on the loss of ~35 ppm. The dominant source of systematic uncertainty is the 5% assumed fudge in the mode-matching

To do: 

  1. Account for uncertainties on modulation depths
  2. To estimate if the amount of fluctuation we are seeing in the reflected signal even after normalizing by the MC transmission, get an estimate of statistical uncertainty in the reflected power due to 
    • Pointing jitter - is there some spec for the damped angular displacement of the TT1/TT2?
    • Cavity length in-loop residual

Bottom line: I think we need to have other measurements and simultaenously analyse the data to get a more precise estimate of the loss.

  6126   Fri Dec 16 13:29:15 2011 kiwamuUpdateGreen LockingY arm noise budget : 60Hz line noise is killing us
Along with development of the automation script, my goals last night were :
 (1) Take a noise budget when the standard ALS configuration is applied
 (2) Take a beautiful time series to show how ALS brings the cavity to the resonance point
 
 However I gave up goal (2) because the resultant time series were very fluctuating at 60 Hz and it wasn't so beautiful enough.
As shown in the noise budget below, the 60 Hz line noise currently dominates the arm displacement.
 

Yarm_ALS_2011DEC16.png

       About Noise Budget       

 The spectra were taken when the arm length was kept at the resonance point using the ALS servo.
So the error signal was taken from the beat-note and was fed back to ETMY.
The servo UGF was at about 100 Hz and the fine frequency discriminator was used.
The red curve in the plot is the arm displacement observed by POY11, which is an out-of-loop sensor in this case.
From the plot it is apparent that the 60 Hz line noise raises the rms to few 100 pm level.
 

       How to improve it ?     

According to my quick calculation if we can exclude the 60 Hz line noise from the rms integration, the rms becomes about 70 pm, which is nice.
I somehow believe this line noise comes from the ALS servo and is injected to the coil-magnet actuator.
So I propose to lower the UGF and make it lower than 60 Hz such that
the servo doesn't react to the 60 Hz line noise and hence no 60 Hz noise injection to the arm displacement.
In any case lowering the UGF is better since our ALS sensor sees only noise above 40 Hz according to the previous noise measurement (#5970)
  10808   Wed Dec 17 11:57:56 2014 manasaSummaryGeneralY arm optical layout

I was working around the PSL table and Y endtable today.

I modified the Y arm optical layout that couples the 1064nm light leaking from the SHG crystal into the fiber for frequency offset locking.

The ND filter that was used to attenuate the power coupled into the fiber has been replaced with a beam sampler (Thor labs BSF-10C). The reflected power after this optic is ~1.3mW and the trasmitted power has been dumped to a razor blade beam dump (~210mW).

Since we have a spare fiber running from the Y end  to the PSL table, I installed an FC/APC fiber connector on the PSL table to connect them and monitored the output power at the Y end itself. After setting up, I have ~620uW of Y arm light on the PSL table (~48% coupling).

During the course of the alignment, I lowered the power of the Y end NPRO and disengaged the ETMY oplev. These were reset after I closed the end table.

Attached is the out of loop noise measurement of the Y arm ALS error signal before (ref plots) and after.

 

  4411   Fri Mar 18 12:22:04 2011 kiwamuUpdateGreen LockingY arm plan for today

 Prior to the works on the Y end setup I propose to perform the temperature scan business like Koji and Suresh did before (see this entry).

This business will allow us to easily find a beatnote at 532nm after the installation on the Y end.

 I guess the right persons for this work are Bryan and Suresh.

Bryan will have a safety guidance from Steve in this after noon. So after that they can start working on it.

 

/* - - - coarse plan - - - */

* remove Alberto's laser from the AS table

* setup Alberto's laser on the PSL table

* put some stuff such as lenses, mirrors and etc. (Use the IR beam picked off after the doubling crystal for the main laser source)

* mode matching

* measurement

 

Which laser are we going to use,  Alberto's laser or MOPA laser ?

  288   Thu Jan 31 12:39:14 2008 JohnConfigurationGeneralY arm test mass cameras
I've adjusted the test mass cameras on the y arm to make the beam injected through ETMY more visible.
  8821   Wed Jul 10 11:44:02 2013 AnnalisaUpdateGreen LockingY beat note found!

I found the beat note for the Y arm. Nothing was changed with respect to yesterday night, but the beat is back!

  9640   Fri Feb 14 21:03:13 2014 KojiUpdateGeneralY end "BS"

As I didn't have the green laser PZT feedback for the laser temp control, I went to the yend to check out what's the situation.

I found horrible and disgusting "remnants".

WHAT ARE THESE BSs AT THE Y END?

- The table enclosure was left open

- A (hacky) DB25 cable with clips was blocking the corridor and I was about to trip with the cable.

- This DB25 cable went to the table without going through the air tight feedthrough that is designed for this purpose.

- An SR560 (presumably for the openloop TF measurement) was left inserted in the loop with entangled cables connected to the servo box.

- Of course the laser PZT out mon was left unplugged.

Even after cleaning these cables (a bit), the end setups (including the X end too) are too amature.
Everything is so hacky. We should not allow ourselves to construct this level of setup everytime
we work on any system. This just adds more and more mysteries and eventually we can't handle
the complexity.

  12057   Thu Mar 31 09:38:41 2016 SteveUpdateendtable upgradeY end 4x3 existing layout

Beam colors: 1064 nm red, 514 nm green and 633 nm yellow.

There should be room for lens in front of the pd at red3 and a mirror for alignment in the new layout.

This picture may help you how to improve the new ETMX 4' x 3' optical layout.

 

  5890   Mon Nov 14 22:56:31 2011 kiwamuUpdateGreen LockingY end PDH lock : UGF at 17 kHz

[Tomotada / Kiwamu]

  The open loop transfer function of the Y end PDH loop was remeasured : the UGF was found to be at 17 kHz.

The phase margin at the UGF was about 27 deg.

YendOLTF.png

 

While the measurement we noticed that the modulation onto the laser PZT was too big

and it was creating a big AM on the reflected light with an amplitude of a few mV.

So we put a 20 dB attenuator to decrease the modulations and the reflected light became much quitter.

Also the servo shape formed by Newfocus LB1005 looks too simple : we should have a more sophisticated servo filter (i.e. PDH box!!).

  5893   Tue Nov 15 09:51:04 2011 ZachUpdateGreen LockingY end PDH lock : UGF at 17 kHz

Also the servo shape formed by Newfocus LB1005 looks too simple : we should have a more sophisticated servo filter (i.e. PDH box!!).

 As promised, I will get on this this week.

  4481   Fri Apr 1 18:54:41 2011 BryanConfigurationGreen LockingY end doubling oven

The doubling oven is now ready to go for the Y arm. The PPKTP crystal is mounted in the oven:

P4010036.JPG

Note - the crystal isn't as badly misaligned as it looks in this photo. It's just an odd perspective shot. I then closed it up and checked to make sure the IR beam on the Y bench passes through the crystal. It does. Just need to tweak the waist size/position a bit and then we can actually double some frequencies!

P4010041.JPG

  5929   Thu Nov 17 17:21:22 2011 kiwamuUpdateGreen LockingY end green PDH servo : it's okay

Quote from #5914
So I have added an SR560 in the other input of the Newfocus servo box to make the filter shape 1/f^2.
I will post the servo shape and diagram later.

The Y arm green PDH servo is working fine with a sufficient amount of suppression.

(Servo filters)

 As reported on the previous elog entry (#5914) an SR560 was installed to provide one more pole-zero combination in the servo filter.
Here is a plot showing the transfer function of the latest servo filter.
   servoTF.png

And the servo configuration looks like this :

  servofilter.png

 The demodulated signal is split into two path; one goes directly to the Newfocus servo box and the other goes through SR560.
With the SR560 the two way summing path makes a pole at 1 Hz and zero at 100 Hz with when the SR560 has a gain of 100.
The overall gain is adjustable from a knob on the Newfocus servo box.
 

(the Error signal)

 One of the reasons we wanted to increase the servo gain was that :
the laser frequency has to be tightly locked to the Y arm motion because the laser frequency must represent the arm motion in our scheme.
 
Our requirement for allowing a successful ALS is : RMS < 10 pm (1/100 of the cavity linewidth)

I took a spectrum of the error signal when the laser was locked to the Y arm and found that it meets the requirement.

   err_suppression.png

 In the plot I also put a dark noise from the PD to make sure the in-loop noise is above the dark noise.
Right now the power lines at 60 Hz and 180 Hz are lifting the RMS up.
Note that the UGF was at 20-30 kHz.
  5945   Fri Nov 18 11:28:39 2011 ranaUpdateGreen LockingY end green PDH servo : it's okay

Quote:

Quote from #5914
So I have added an SR560 in the other input of the Newfocus servo box to make the filter shape 1/f^2.
I will post the servo shape and diagram later.

 Another way to make a 1:100 pole:zero boost is to use resistors and capacitors in a Pomona box 

mixer -> LB box -> Pomona box -> PZT

Pomona Box =     R1 = 7.2 kOhm, C2 = 22 uF, R2 = 72 Ohms     (sr560 = $2400, pomona ~ $50)

 

For the RMS calculation, it would be good to notch out the harmonics. They don't matter since our ALS feedback will have notches at those frequencies.

  5946   Fri Nov 18 12:11:24 2011 ZachUpdateGreen LockingY end green PDH servo : it's okay

Quote:

 

 Another way to make a 1:100 pole:zero boost is to use resistors and capacitors in a Pomona box 

mixer -> LB box -> Pomona box -> PZT

Pomona Box =     R1 = 7.2 kOhm, C2 = 22 uF, R2 = 72 Ohms     (sr560 = $2400, pomona ~ $50)

 

For the RMS calculation, it would be good to notch out the harmonics. They don't matter since our ALS feedback will have notches at those frequencies.

I wouldn't bother...

  11865   Tue Dec 8 23:24:08 2015 gautamUpdateGreen LockingY end laser (Lightwave) PZT calibration

Summary:

I measured the PZT actuator gain for the Lightwave NPRO at the Y-end to be 3.6 +/- 0.3 MHz/V. This is somewhat lower than the value of 5 MHz/V reported here, but I think is consistent with that measurement. 

Details:

In order to calibrate the Y-axis of my Aux PDH loop noise budget plots, I wanted a measurement of the end laser actuator gain. I proceeded to measure this as follows:

  1. Use a function generator to add a DC offset to the error point - I did this by taking the output of the RF mixer -> Input A of an SR560, output of the function generator -> input B of the SR560 (via a 20 Ohm attenuator, and with a 50ohm T-eed to the input for impedance matching), and setting the output to A-B, and feeding that to the "Servo Input" on the PDH box.
  2. I then locked the arm to IR, ran the dither to maximize the green transmission, and set up a beat note at ~39 MHz with the help of the analyzer in the control room.
  3. Set phase tracker UGF, clear phase history.
  4. Vary the DC offset to the error point by using the offset on the function generator. I varied the offset until the green TEM00 lock was lost, in steps of 0.1 V. At each step, I averaged the output of the phase tracker for 15 seconds.
  5. Convert the applied DC offset to the DC offset appearing at the servo output using the transfer function of the servo box (DC gain measured to be ~65 dB), taking into account the 20dB attenuator also.

The attached plot shows the measured data. The X-axis is shown after the conversion mentioned in the last bullet point. The error bars are the standard deviations of the averaging at each DC offset. 


To do:

  1. The value of the DC gain of the servo, 65 dB, is an approximate one based on a rough measurement I did earlier today. I'll take a TF measurement with an SR785 tomorrow, but I think this shouldn't change the number too much.
  2. Upload the noise budget measurements for the Y-end PDH loop.
ELOG V3.1.3-