40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 229 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectdown
  4634   Thu May 5 12:01:53 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

 Having finished the bulk of the work for the LPF itself ( see here ), I have begun trying to design the seismometer box to Jenne's specifications.

 

Currently looking into what the voltage buffer amplifier might look like for this.

 

 

Suggestions/corrections would be much appreciated!

 

 

  4690   Wed May 11 16:04:36 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

The schematic for the seismometer box from this last time  has been updated...

 

Koji was helpful for coming up with a general diagram for the voltage buffer amplifier, which has now been added to the configuration pictured below.

The only thing that remains now before I try to plot it with Eagle/LISO is to pick an op amp to use for the voltage buffer itself. Someone suggested THS4131 for that (upon Googling, it hit as a "high speed, low noise, fully-differential I/O amplifier"). It looks good, but is it the best option?

  5475   Tue Sep 20 03:12:14 2011 AnamariaUpdateSUSJenne's Scripts started

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

  5476   Tue Sep 20 04:12:26 2011 JenneUpdateSUSJenne's Scripts started

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

  5477   Tue Sep 20 09:44:44 2011 JenneUpdateSUSJenne's Scripts started

Quote:

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

 I began restoring the optics at ~9:30am, so I have a full 6 hours of data, in case I need that much to separate the Pos/Side modes on some of the optics.  They are all damping again with their original matricies.

  5479   Tue Sep 20 14:53:13 2011 JenneUpdateSUSJenne's Scripts started

Quote:

Quote:

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

 I began restoring the optics at ~9:30am, so I have a full 6 hours of data, in case I need that much to separate the Pos/Side modes on some of the optics.  They are all damping again with their original matricies.

 So, clearly this was a kind of dumb idea.  There is nothing mechanical going on between our sensor inputs and our Pit/Pos/Yaw/Side DoF filter banks.  It's just math.  On the other hand, we now have a 3rd set of in-vac free swinging data, so I can (after all the suspensions are working) have a look at the drift in matrix elements over time.

In other news, after some meditation, and fitzing with DoF gain values, all of the IFO optics except for SRM now have their new input matricies, and are damping pretty nicely.  I need to go through and do an "eyeball" check to make sure that everything has a Q of ~5ish.  So far, I've kicked the optics, and watched that they damped fairly quickly, but I don't have a guesstimate of the Q's for each optic, for each DoF.

So, still to do:

Use another set of data and invert the SRM matrix DONE

Plug in the MC matricies, make sure they're okay. DONE

Check the Q's for all optics, all DoFs. 

  17021   Wed Jul 20 11:58:45 2022 PacoSummaryGeneralJenne laser kaput?

[Paco, Yehonathan, JC]

We were trying to setup the Jenne laser to characterize the response of three 1811s that Yehonathan is using for his WOPA experiment (in QIL). We hooked up a ~ 5 VDC power supply to the bias tee and looked to see if there was any DC response in the REF PD. We used a DB9 breakout board and a DB9 cable, and saw some current being drawn. The DC current was a bit too high (500 mA), so we turned the DC voltage off, and realized the VDC power was reversed, probably along the DB9 cable which we didn't check before. As we flipped the power supply leads and turned power back on, we could no longer see any current even though the voltage was now right (or was it???). We would like to debug this laser, and continue using it if it still works (!), but there is negligible documentation either here or in the wiki, so if there are any known places to look at it would be helpful to know them.

  17022   Wed Jul 20 14:12:07 2022 PacoSummaryGeneralJenne laser kaput!

[Koji, Yehonathan, Paco]

Koji pointed out that this laser was always driven with a current driver (which was not nearby), and after finding it on one of the rolling carts, we hooked up the system but found that the laser driver displayed open circuit near the usual 20mA operating point. We therefore have to conclude that this laser is no more. We will look for a reasonable replacement.

Quote:

[Paco, Yehonathan, JC]

We were trying to setup the Jenne laser to characterize the response of three 1811s that Yehonathan is using for his WOPA experiment (in QIL). We hooked up a ~ 5 VDC power supply to the bias tee and looked to see if there was any DC response in the REF PD. We used a DB9 breakout board and a DB9 cable, and saw some current being drawn. The DC current was a bit too high (500 mA), so we turned the DC voltage off, and realized the VDC power was reversed, probably along the DB9 cable which we didn't check before. As we flipped the power supply leads and turned power back on, we could no longer see any current even though the voltage was now right (or was it???). We would like to debug this laser, and continue using it if it still works (!), but there is negligible documentation either here or in the wiki, so if there are any known places to look at it would be helpful to know them.

 

  17023   Wed Jul 20 15:58:52 2022 KojiSummaryGeneralJenne laser kaput!

For troubleshooting, the proper laser driver (found beneath the AG network analyzer) was connected.
The current ~1mA was provided and the driver detected the "open circuit", which means the laser diode was busted.

https://dcc.ligo.org/LIGO-T060240

The laser diode in the parts list is: "GTRAN GaAs Strained QW Laser Diode, Part # LD-1060".

  4197   Tue Jan 25 00:09:54 2011 KojiUpdateGeneralJenne laser is at PSL Lab

I found Tara's elog entry that Jenne laser is at PSL Lab.
Since we recently use it frequently, we should be aware where it is now.

  11369   Mon Jun 22 14:21:42 2015 SteveMetaphysicsTreasureJenne and Den graduated

Last supper before departing at  "Grazie" El Portal. All the best on your journey!

  6424   Fri Mar 16 10:37:52 2012 JenneUpdateElectronicsJenne Laser

Quote:

Here is a picture of the small black breadboard on which I have put together the PD characterisation setup.  It would be great if we can retain this portable set up as it is, since we keep reusing it every couple of weeks.  It would be convenient if we can fiber couple the path to the PD under test with a 2m long fiber.  Then we will not have to remove the PD from the optical table while testing it. 

 This is totally sweet Suresh!  I don't remember how much more fiber is coiled up under the plate that has the "Jenne Laser" label, but there's a reasonable amount.  It's not 2m, but maybe we can just extend the blue snakey thing some?

  11454   Tue Jul 28 16:42:25 2015 SteveUpdateGeneralJamies entry was deleted

Sorry Jamie, I accidentally deleted your elog entry #11453

  7683   Wed Nov 7 15:51:44 2012 JenneUpdateAlignmentJamie's tip tilt proposal

Steve's elog 7682 is in response to the conversation we had at group meeting re: Jamie's proposed idea of re-purposing the active tip tilts.

What if we use the active TTs for the PR and SR folding mirrors, and use something else (like the picomotors that Steve found from the old days) for our input steering?

  7684   Wed Nov 7 17:20:01 2012 jamieUpdateAlignmentJamie's tip tilt proposal

Quote:

Steve's elog 7682 is in response to the conversation we had at group meeting re: Jamie's proposed idea of re-purposing the active tip tilts.

What if we use the active TTs for the PR and SR folding mirrors, and use something else (like the picomotors that Steve found from the old days) for our input steering?

I think we will still need two active steering mirrors for input pointing into the OMC, after the SRC, so I think we'll still need two of the active TTs there.

My thought was about using the two active TTs that we were going to use as the input PZT replacements to instead replace the PR2/3 suspensions.  Hysteresis in PR2/3 wouldn't be an issue if we could control them.

With static input pointing, ie. leaving PZT2/3 as they are, I think we could use PRM and PR2/3 to compensate for most input pointing drift.  We might have to deal with the beam in PRC not being centered on PRM, though.

Koji's suggestion was that we could replace the PZTs with pico-motors.  This would give us all the DC input pointing control we need.

So I guess the suggestion on the table is to replace PZT1/2 with pico-motor mounts, and then replace PR2/3 with two of the active tip-tilts.  No hysteresis in the PRC, while maintaining full input pointing control.

  7686   Wed Nov 7 23:22:45 2012 ranaUpdateAlignmentJamie's tip tilt proposal

 With Picos, we lose the ability to dither the input beam as well as align the beam with the IFO locked. And the active TT will still have hysteresis, but also actuators. Once in vacuum, I'm not sure how we adjust them - what's the error signal for PR2/PR3 ?

If the interferometer is aligned, why not just pump down now? I'm not sure that we have evidence of TT hysteresis issues once people stop touching them.

  7879   Mon Jan 7 19:23:19 2013 ranaUpdateElectronicsJamie's 1811 PS from 1998

  1. Front Panel switch supplies power, but does not light up - its unsafe as is. Needs new switch.
  2. Output has current limiting (which is nice) and schematic inside the box (which is very nice).
  3. Output voltage is not filtered or regulated ? LM7812 / 7912 would do the trick - or pick a PS with 18V outputs to reg down to 15 V.
  4. Box needs rubber feet.
  5. Overall B-

Also, we still need to get a 32GB SD card for the new camera. It only has an 8GB one.

  10155   Tue Jul 8 17:59:12 2014 jamieOmnistructureElectronicsJamie 1811 power supply fixed!

I finally made good on the LIFE TIME WARRANTY on the ancient, Jamie-made 1811 power supply with the faulty switch:

20140708_165010.jpg

Back to fully working form.  Hopefully I'll still be around the next time it breaks in 16 years.

  10156   Tue Jul 8 18:20:15 2014 jamieOmnistructureElectronicsJamie 1811 power supply fixed!

 Placed in PD cabinet in Y arm, next to the OTHER Jamie-made 1811 power supply from 1998.

  3335   Fri Jul 30 17:52:12 2010 KojiConfigurationGeneralJacket

Jenne and I need our jackets. We removed them from the Rb clock.
Thanks for making them warm.
Probably a Scotland sweater would fit.

  3337   Fri Jul 30 19:20:15 2010 AlastairConfigurationGeneralJacket

Quote:

Jenne and I need our jackets. We removed them from the Rb clock.
Thanks for making them warm.
Probably a Scotland sweater would fit.

 Thanks for the loan guys.  I do have a lot of warm weather clothing at home that is not so necessary in the California climate.  I will find some suitable attire for the Rb clocks there.

  13425   Fri Nov 10 18:57:41 2017 ranaSummaryElectronicsIthaca 1201 vs. SR560

I characterized the black Ithaca 1201 pre-amp that we had sitting in the racks. It works fine and the input referred noise is < 10 nV/rHz. I also checked that the filter selection switches on the front panel did what they claim and that the gain knob gives us the correct gain.

For comparison I have also included the G=100, 1000 input referred noise of one of the best SR560 that we have (s/n 02763) in the lab. Above a few Hz, the SR560 is better, but for low frequency measurements it seems that the 1201 is our friend.

As with the SR560, you don't actually get low noise performance for G < 100, due to some fixed output noise level.

Steve:  sn48332 of Ithaca 1201

  14756   Fri Jul 12 18:54:47 2019 KojiUpdateGeneralItem loan: optical chopper from Cryo Lab

Optical chopper borrowed from CryoLab to 40m

https://nodus.ligo.caltech.edu:8081/Cryo_Lab/2458

  14553   Fri Apr 19 09:42:18 2019 KojiBureaucracyGeneralItem borrowing (40m->OMC)

Apr 16, 2019
Borrowed two laser goggles from the 40m. (Returned Apr 29, 2019)
Apr 19, 2019
Borrowed from the 40m:
- Universal camera mount
- 50mm CCD lens
- zoom CCD lens (Returned Apr 29, 2019)
- Olympus SP-570UZ (Returned Apr 29, 2019)
- Special Olympus USB Cable (Returned Apr 29, 2019)

 

  2971   Fri May 21 16:41:38 2010 Alberto, JoUpdateComputersIt's a boy!

Today the new Dell computer for the GSCS (General SURF Computing Side) arrived.

We put it together and hooked it up to a monitor. And guess what? It works!

I'm totally impressed by how the Windows get blurred on Windows 7 when you move them around. Good job Microsoft! Totally worth 5 years of R&D.

  338   Fri Feb 22 20:42:44 2008 AndreySummaryComputer Scripts / ProgramsIt seems I succeeded in theoretical simulations

I am pretty happy at this moment.

I definitely feel that it took me too much time to understand how to do the Matlab program and how to overcome difficulties,

but eventually at last my Matlab program seems to start working.

Briefly: What the program does?
--> take time-domain signal from two accelerometers near ITMX and ETMX (use 'get_data');
--> calculate the time-evolution of those two signals through the system "stack + pendulum" to the test-masses ITMX and ETMS (use 'lsim' in Matlab),
which gives us the time-domain evolution of the deviation of the position of individual test-mass from its average position.
--> Subtract the two results from each other in time-domain, this gives us the deviation of the length of the XARM-cavity from its average value
(roughly speaking, deviation of the length of the cavity from exactly 40 meters, although I am aware that the exact average length of XARM is less than 40 meters).
--> Take the amplitude spectrum of the result, using Sqrt(pwelch) and calibrate it from "counts" to "meters".
--> Calculate root-mean-square of peaks at different frequency intervals, for example near 0.8Hz,
and plot the three-dimensional surface showing the dependence of RMS on Q-factors Q_{ETMX} and Q_{ITMX}.

Eventually I am able to create these dependences of RMS.

I see that the minimum of the dependence is close to the diagonal corresponding to exact equality of Q_ETMX} and Q_{ITMX}, but not exactly along the diagonal. The plot allows to say
which of two conditions "Q_I > Q_E" or "Q_E < Q_I" should be fullfilled for optimization reasons. My plot is raw, I might have made a mistake in axis-label, I do not garantee now that the axis label "Q_ITMX - Q_ETMX" is correct,
maybe I need to change it for "Q_ETMX - Q_ITMX". I need some more time to determine this on Monday, but clearly there is asymmetry between Q_I and Q_E.

The peak at 0.8 Hz is pretty stable, while the peak at around 3Hz is not very repeatable, therefore in both experimental measurements and these simulations the amplitude of RMS of peak at 3Hz) is several orders of magnitude smaller than for RMS of peak at 0.8Hz, and I do not see minimum somewhere in the RMS-dependence, I see now only steady growth of RMS as Q_factors increase.

I will need to spend some time on Monday trying to understand how the sampling frequency and number of fft-points influence my results when I take amplitude spectrum using pwelch-command, as well I will need to double-check the correctness of normalization from counts to meters (I am not confident right now that amplitude of order of 10^(-12) meters is correct).

So, I need some time after the weekend to analyze my results and maybe make some slight changes, but I am glad that my Matlab model started to work in principle. I wanted to let others know about the status of the progress in my work. The fact that Matlab program works now is a good ending of a week.

Andrey.
  544   Wed Jun 18 18:50:09 2008 ranaUpdateComputersIt can only be attributable to human error. (HAL - 2001)
There has been another one of "those" events and all of the front end machines are down.

We poked around and Rob determined that the FEs can't get the EPICS data from EPICS. The
dcuepics machine is hooked up and running and all of the epics binaries are running. We also
tried resetting its RFM switch as well as power cycling the box using the "poweroff" command.


Not a sausage.

Rob points out that although the Signal Detect lights are on on the cards, the 'Own Data' light
is not on on the dcuepics' card although it is on for some of the cards on the other boxes.


We have placed messages with the Russian. If anyone sees him, don't let him go without fixing things.
Also, make sure to follow him around with notepad and possibly a camera to record what it is that
he does. If he's muttering, maybe try to use a sensitive hidden sound recorder.
  9070   Tue Aug 27 15:44:08 2013 manasaUpdateCDSIssues with ALS fixed

I figured out the problem with ALS from yesterday. While the model was just fine, the medm screens were not checked if they were reading the correct channel names. 

The channel names of the ALS input matrix elements had changed when the coarse channels were deleted from the c1als model. So the error signals were not reaching the servo modules as expected. This is why I was not able to make sense as to what the ALS was doing. 

All is fixed now and should be back to normal

  4328   Fri Feb 18 20:17:07 2011 JoonhoSummaryElectronicsIsolation of Voltage regulator

Today I was working on RF distribution box.

So far I almost finished to electronically isolate voltage regulators from the box wall by inserting mica sheet, sleeve, and washers.

 

The problem I found is the resistance between wall and the voltage regulator is order of M ohms

I checked my isolation (mica sheet and sleeve and washer) but there is no problem there.

But I found that the power switch is not completely isolated from the wall.( around 800 kohm)

and that the resistance between the regulator and the wall is smaller for the regulator closer to the power switch

and greater for the regulator less closer to it.

So I think we need to put washer or sleeve to isolate the powersitch electronically from the box wall.

Suresh or I will fix this problem

[ To Suresh, I can finish the isolation when I come tomorrow. Or you can proceed to finish isolation.]

  9965   Fri May 16 16:08:12 2014 steveUpdateLSCIsolating base plates

 Electronic components should be ISOLATED as they are installed on the optical tables.

This is essential to avoid ground loops, 60 Hz and harmonic peaks in the spectrum. We have just got some made.

Please only use it for this reason. Earlier black delrin base plates were used up in not needed places.

 

The anodized Aluminum base plates with magenets certainly will conduct.

 

  16535   Thu Dec 23 16:38:21 2021 KojiUpdateGeneralIs megatron down? (Re: chiara local backup)

The local backup seems working fine again. But I found that megatron is down and this is a real issue. This should be fixed at the earliest chance.


It seems that the local backup has been successfully taken this morning.

controls@nodus|backup> tail /opt/rtcds/caltech/c1/scripts/backup/localbackup.log
2021-12-19 07:00:01,146 INFO       Updating backup image of /cvs/cds
2021-12-19 07:00:01,146 ERROR      External drive not mounted!!!
2021-12-20 07:00:01,255 INFO       Updating backup image of /cvs/cds
2021-12-20 07:00:01,255 ERROR      External drive not mounted!!!
2021-12-21 07:00:01,361 INFO       Updating backup image of /cvs/cds
2021-12-21 07:00:01,361 ERROR      External drive not mounted!!!
2021-12-22 07:00:01,469 INFO       Updating backup image of /cvs/cds
2021-12-22 07:00:01,470 ERROR      External drive not mounted!!!
2021-12-23 07:00:01,594 INFO       Updating backup image of /cvs/cds
2021-12-23 07:19:55,560 INFO       Backup rsync job ran successfully, transferred 338425 files.

However, I noticed that the autoburt has been stalled since Dec 6 (I used to check how the backup is up-to-date using the autoburt snapshots)

Dec>pwd
/opt/rtcds/caltech/c1/burt/autoburt/snapshots/2021/Dec
Dec>ls -l
total 24
drwxr-xr-x 26 controls controls 4096 Dec  1 23:07 1
drwxr-xr-x 26 controls controls 4096 Dec  2 23:07 2
drwxr-xr-x 26 controls controls 4096 Dec  3 23:07 3
drwxr-xr-x 26 controls controls 4096 Dec  4 23:07 4
drwxr-xr-x 26 controls controls 4096 Dec  5 23:07 5
drwxr-xr-x 19 controls controls 4096 Dec  6 16:07 6

There are a bunch of errors in the log file as follows, but maybe this is not an issue

controls@nodus|burt> pwd
/opt/rtcds/caltech/c1/burt
controls@nodus|burt> tail burtcron.log
!!!  ERROR !!! Target c1supepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1tstepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1x10epics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1aux Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1dcuepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1iscaux Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1iscepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1losepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1psl Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1susaux Snapshot file inconsistent with Request file

The real issue seems that megatron is down. It has a lot of house keeping jobs on corn including the N2 pressure alert.
https://wiki-40m.ligo.caltech.edu/Computers_and_Scripts/CRON
This needs to be fixed at the earliest chance.

  16536   Fri Dec 24 16:49:41 2021 KojiUpdateGeneralIs megatron down? (Re: chiara local backup)

It turned out that the UPS installed on Nov 22 failed (cf https://nodus.ligo.caltech.edu:8081/40m/16479 ). As a fact, it was alive just for 2 weeks!

The APC UPS unit indicated F06. According to the manual (https://www.apc.com/shop/us/en/products/APC-Power-Saving-Back-UPS-Pro-1000VA/P-BR1000G), F06 means "Relay Welding" and can not be fixed by a user. Resetting the UPS eliminated the error, but I didn't want to have the same issue while no one is in the lab, I moved the megatron power source from the UPS to the power strip on 1Y7. So, megatron is currently vulnerable to a power glitch.

After the power cords were restored, megatron eventually recovered ssh terminals. I manually ran autoburt.cron at 16:50 so that the latest snapshot is taken.

  14720   Tue Jul 2 17:34:54 2019 gautamUpdateLSCIrides opened up on EY table

In preparation for the ASS debugging, I decided to check out the beam path on the EY table. In order to be able to do this, I had to setup the POY locking to trigger on AS110 instead of TRY (as is usual for this kind of debugging). Then I could poke an IR card in the beam path without destroying the lock.

There are two irides in the beam path immediately between the vacuum window and the harmonic separator that splits off the IR and green beams. I found that the beam was in fact getting clipped on both of them. It was also somewhat off center on a 2" beamsplitter that sends half of the light to the QPD (currently decommissioned). The purpose of these irides are (I think) to eliminate some ghost reflections of the green beam and also the Oplev beam. I opened up the irides until I felt that there wasn't any more clipping of the IR beam, but the appropriate ghost beams were still getting caught.

I also re-aligned the beam onto the TRY Thorlabs PD so as to better center it on the active area. In summary, the result of this work was that the TRY level went from ~0.6 to ~0.93. There may still be some scope for optimizing this - I tried running the Y-arm ASS scripts, and already, the loops don't run away any more. I'll do the systematic analysis of the servo anyways. But given that the IMC Trans lev el used to be ~15,500 counts and is now ~14,500 counts, I think ~7% drop in TRY level is in line with what we "expect" (assuming the pre-power-degradation TRY level was 1.000).

Note that these irides were installed (I think) by Yuki, and so cannot explain the ASS anomalies of July 2018 (i.e. it does not exonerate in-vacuum clipping of the beam, as Koji had already verified that the in-air path was clean back then).

  11764   Sat Nov 14 00:52:25 2015 KojiSummaryCDSInvestion on EPICS freeze

[Yutaro, Koji]

Recently "EPICS Freeze" is so frequent and the normal work on the MEDM screen became almost impossible.

As a part of the investigation, all 19 realtime processes were stopped in order to see any effect on the probem.

IN FACT, when the realtime processes were absent (still slow machines were running), frequency of EPICS Freeze
became much less. This might mean that the issue is related to the data collection of the slow channels. We need more investigation.

After the testing, all the processes were restored although it was not so straghtforward. Particularly, c1sus DAC had an error which was
not visible from the CDS Status screen. We noticed it as suspension damping was not effective on any of the vertex suspensions.
This has been solved by restarting c1x02 process.

  10847   Tue Dec 30 00:46:05 2014 ranaUpdateIOOInvestigations into the mad PCDRIVE

Koji and I noticed that there was a comb* of peaks in the MC and FSS at harmonics of ~37 kHz. Today I saw that this shows up (at a much reduced level) even when the input to the MC board is disconnected.

It also shows up in the PMC. At nominal gains, there is just the 37 kHz peak. After tweaking up the phase shifter settings, I was able to get PMC servo to oscillate; it then makes a comb, but the actual oscillation fundamental is 1/3 of 37 kHz (some info on Jenne from elog 978 back in 2008).

Not sure what, if anything, we do about this. It is curious that the peak shows up in the MC with a different harmonic ratio than in the PMC. Any theories?

 

Anyway, after some screwing around with phase and amplitude of the RF modulation for the PMC from the phase shifter screen**, I think the gain is higher in the loop and it looks like the comb is gone from the MC spectrum.

Another clue I notice is that the PCDRIVE mad times often are coincident with DC shifts in the SLOWDC. Does this mean that its a flakiness with the laser? While watching the PCDRIVE output from the TTFSS interface board on a scope, I also looked at MIXER mon. It looks like many of the high noise events are associated with a broadband noise increase from ~50-140 kHz, rather than some specific lines. Don't know if this is characteristic of all of the noisy times though.

 

* this 'comb' had several peaks, but seem not be precise harmonics of each other: (f3 - 3*f1)/f3 ~ 0.1%

** I think we never optimized this after changing the ERA-5 this summer, so we'd better do it next.

 *** UPDATE: the second plot show the comparison between the new quiet and noisy states. Its just a broad bump.

 

  15885   Tue Mar 9 12:41:29 2021 KojiSummaryElectronicsInvestigation on the invacuum Dsub cables

I believe the aLIGO style invac dsub cables and the conventional 40m ones are incompatible.
While the aLIGO spec is that Pin1 (in-vac) is connected to the shield, Pin13 (in-vac) is the one for the conventional cable. I still have to check if Pin13 is really connected to the shield, but we had trouble before for the IO TTs https://nodus.ligo.caltech.edu:8081/40m/7864.
(At least one of the existing end cables did not show this Pin13-chamber connection. However, the cables OMC/IMC chambers indicated this feature. So the cables are already inhomogenious.)

- Which way do we want to go? Our electronics are updated with aLIGO spec (New Sat amp, OMC electronics, etc), so I think we should start making the shift to the aLIGO spec.

- Attachment Top: The new coil drivers can be used together with the old cables using a custom DB25 cable (in-air).

- Attachment Mid: The combination of the conventional OSEM wiring and the aLIGO in-vac cable cause the conflict. The pin1 which is connected to the shield is used for the PD bias.

- Attachment Bottom: This can be solved by shifting the OSEMs by one pin.

Notes:
o The aLIGO cables have 12 twisted pair wires, but paired signals do not share a twisted pair.
   --- No. This can't be solved by rotating the connectors.
o This modification should be done only for the new suspension.
   --- In principle, we can apply this change to any SOSs. However, this action involves the vent. We probably want to install the new electronics for the existing suspensions before the vent.
o ^- This means that we have to have two types of custom DB25 in-air cables.
   --- Each cable should handle "Shield wire" from the sat amp correctly.

Related Links:

Active TT Pin Issue
https://nodus.ligo.caltech.edu:8081/40m/7863
and the thread

Hacky solution
https://nodus.ligo.caltech.edu:8081/40m/7869

Photo
https://photos.google.com/u/1/album/AF1QipOEDi7iBdS4EHcpM7GBbv9l6FiJx-Tkt1I2eSFA
Active TT Pin Swapping (December 21, 2012)

TT Wiring Diagram (Wiki)
https://wiki-40m.ligo.caltech.edu/Suspensions/Tip_Tilts_IO

  540   Wed Jun 18 18:20:10 2008 YoichiUpdatePSLInvestigation on the NPRO temperature stabilization glitches
As Rob pointed out in http://dziban.ligo.caltech.edu:40/40m/537 the MOPA NPRO has been showing some glitchiness in the LTEC loop.
Following Rana's suggestion, Steve and I opened the MOPA and directed a heat gun for a minute to the NPRO hoping that we can see something in the LTEC loop.
The first attachment shows the behavior of LTMP and LTECH along with DTMP and DTECH at the time of the heat gun attack.
T=0 is the time when Steve directed the heat gun to the NPRO. There is no response neither in LTMP nor LTECH.
DTMP and DTECH look like responding.
Around the center, there is a dip in LTMP. This might be caused by removing the heat gun. But we are not sure. This kind of small glitches can be found in LTMP everywhere (see the attachment 2).
It looks like the LTMP sensor is not working, or the LTECH loop is actually working but the LTECH reading is broken.
However, the scan of the slow actuator (temperature) shows the LTECH loop is actually working. So it is a bit confusing.
More investigation is necessary.
See the next entry by me.
  14292   Tue Nov 13 18:09:24 2018 gautamUpdateLSCInvestigation of SRCL-->MICH coupling

Summary:

I've been looking into the cross-coupling from the SRCL loop control point to the Michelson error point.

[Attachment #1] - Swept sine measurement of transfer function from SRCL_OUT_DQ to MICH_IN1_DQ. Details below.

[Attachment #2] - Attempt to measure time variation of coupling from SRCL control point to MICH error point. Details below.

[Attachment #3] - Histogram of the data in Attachment #2.

[Attachment #4] - Spectrogram of the duration in which data in #2 and #3 were collected, to investigate the occurrance of fast glitches.

Hypothesis: (so that people can correct me where I'm wrong - 40m tests are on DRMI so "MICH" in this discussion would be "DARM" when considering the sites)

  • SRM motion creates noise in MICH.
  • The SRM motion may be naively decomposed into two contributions -
    • Category #1: "sensing noise induced" motion, which comes about because of the SRCL control loop moving the SRM due to shot noise (or any other sensing noise) of the SRCL PDH photodiode, and
    • Category #2: all other SRM motion.
  • We'd like to cancel the former contribution from DARM.
  • The idea is to measure the transfer function from SRCL control point to the MICH error point. Knowing this, we can design a filter so that the SRCL control signal is filtered and summed in at the MICH error point to null the SRCL coupling to MICH.
  • Caveats/questions:
    • Introducing this extra loop actually increases the coupling of the "all other" category of SRM motion to MICH. But the hypothesis is that the MICH noise at low frequencies, which is where this increased coupling is expected to matter, will be dominated by seismic/other noise contributions, and so we are not actually degrading the MICH sensitivity.
    • Knowing the nosie-budget for MICH and SRCL, can we AC couple the feedforward loop such that we are only doing stuff at frequencies where Category #1 is the dominant SRCL noise?

Measurement details and next steps:

Attachment #1

  • This measurement was done using DTT swept sine.
  • Plotted TF is from SRCL_OUT to MICH_IN, so the SRCL loop shape shouldn't matter.
  • I expect the pendulum TF of the SRM to describe this shape - I've overlaid a 1/f^2 shape, it's not quite a fit, and I think the phase profile is due to a delay, but I didn't fit this.
  • I had to average at each datapoint for ~10 seconds to get coherence >0.9.
  • The whole measurement takes a few minutes.

Attachments #2 and #3

  • With the DRMI locked, I drove a sine wave at 83.13 Hz at the SRCL error point using awggui.
  • I ramped up the amplitude till I could see this line with an SNR of ~10 in the MICH error signal.
  • Then I downloaded ~10mins of data, demodulated it digitally, and low-passed the mixer output.
  • I had to use a pretty low corner frequency (0.1 Hz, second order butterworth) on the LPF, as otherwise, the data was too noisy.
  • Even so, the observed variation seems too large - can the coupling really change by x100?
  • The scatter is huge - part of the problem is that there are numerous glitches while the DRMI is locked.
  • As discussed at the meeting today, I'll try another approach of doing multiple swept-sines and using Craig's TFplotter utility to see what scatter that yields.

Attachments #2

  • Spectrogram generated with 1 second time strides, for the duration in which the 83 Hz line was driven.
  • There are a couple of large fast glitches visible.
  15623   Tue Oct 13 11:13:54 2020 gautamUpdateBHDInvestigation into RF44 sensing

Attachment #1: spectra of the phase noise between LO and IFO output fields sensed using the RF44 signal.

  • Measurement setup:
    • LO an IFO fields are combined on a beamsplitter, with ~60% mode-matching efficiency.
    • One port of the BS goes to a DCPD.
    • The other port goes to an RF sensing photodiode, PDA10CF. The spec-ed dark noise NEP is ~12 pW/rtHz at 1.6 um, (so let's say 25 pW/rtHz) and transimpedance is 5kohms into a 50 ohm load. We can convert this to an equivalent sensing noise at the error point of this loop, though it's more likely that the electronics (demod, ADC etc) noise downstream dictate the sensing limit, which I measure by blocking light on the photodiode.
  • The demodulation is done on one of the newly received D0902745 boards - this was just a more compact setup than many cascaded minicircuit components. We don't have the hardware to package this into a chassis to shield against electronics noise pickup yet, so I'm using a bench supply to power this for now (via a voltage regulation board, D1000217.
  • "Dark Noise" = ASD with no light incident on the photodiode. "LO field only" = ASD with only the LO field incident on the photodiode.
  • The "Dark noise" trace and "LO field only" traces are converted from cts/rtHz to rad/rtHz by noting that when the Michelson is locked on a dark fringe, the demodulated RF44 quadratures have a pk-pk amplitude of ~160 cts (corresponding to pi radians of phase shift). Since in these conditions the demodulated quadratures do not undergo any fringe wrapping, I converted the spectra by simple multiplication.
  • For the "RF44 open loop" trace:
    • The DC offset in the demodulated signal (due to the RF44 signal from the LO field only) is digitally compensated, so that the fringing has (roughly) zero offset.
    • The Michelson was locked on a dark fringe, and the demodulated RF44 quadratures were monitored for ~5 mins. Then arctangent (specifically, arctan2 to get the correct quadrant in the IQ plane) of the two signals was taken to convert the fringing signals to phase noise.

Closing a feedback loop:

  • Since it seems like we are sensing a signal (below ~1kHz at least), I tried to close a feedback loop (modelled loop shape shown in Attachment #2, it's just a model because I have to guess what the sensing and actuation gains are, and they're both assumed to be flat, digital delays etc aren't accounted for). I've also added the inferred loop gain by taking the ratio of the in loop and unsuppressed ASDs (though of course I don't account for the flat sensing noise at higher frequencies). At least qualitatively, things line up...
  • While I can get the light level on the DCPD to stabilitze somewhat, the loop is not at all stable, and the suppression isn't very good at all.
  • Not sure how meaningful any of the spectra with the loop closed are, but FWIW, I've put in the spectra of the demodulated RF44 signals with the loop engaged (RF44 Q is used as the error signal). A clear problem is evident at ~120 Hz, and the forest of lines isn't helping for sure. Also unclear to me why the I and Q signals don't have the same profile at low frequencies.

Conclusions/Questions:

  1. What is the reason for the huge forests of lines in the "RF44 open loop" ASD, that are absent in the other two traces? If this were electrical pickup, it should be there in all three traces?
  2. Is the shape of the spectrum reasonable? The roll-off above ~5 Hz doesn't seem quite steep enough to be seismic noise from the suspensions. Can it really be that the Michelson dark field has such high phase noise?
  3. How can we get this scheme to give us cleaner sensing?
  4. The actuation chain was verified to work fine with the single bounce beam from an ITM interfered with the LO field, and using the DC light level as an error signal and locking to the half-fringe point. So the problem is not due to insufficient actuation range. Seems like the error signal is so polluted with these forests of lines that even though there is some suppression of the error signal at low frequencies, the unsuppressed noise is still significant. I can't solve the problem by simply increasing the loop gain...
  5. It is not shown here, but with only the LO field incident on the RFPD, I see a drift of the demodulated signals on the ~5 minute timescale - is this just due to fiber length change? If so, this is potentially problematic, as on long time scales, the true zero of the error point of the servo would be changing on the ~5 minute timescale. This would be true even for the final suspended scheme - if the path length between PR2 and the homodyne BS changes by some microns, we would have to correct this at DC?
  10723   Mon Nov 17 20:40:29 2014 rana, diegoUpdateIOOInvestigating the IMC WFS situation

We've known for years that the IMC WFS sensing chain is pointlessly bad, but until recently, we haven't thought it was worth it to fix.

There are problems in all parts of the chain:

  1. The WFS Photodetectors oscillate ~200 MHz when turned up to full gain. Diego and I confirmed this today by measuring the RF spectrum of the signals going into the WFS demod boards and seeing the oscillation change (not much) with RF gain. I recommend we switch the heads into the full gain mode (turn all of the attenuators OFF). At the moment we are operating with the 2dB and 8dB attenuators ON.
  2. The demod board has some bad gain allocation and noisy opamps.
  3. The whitening board has too much up/down of gain with noise injection along the way. And the range cannot fill up the ADC.
  15877   Mon Mar 8 12:01:02 2021 Paco, AnchalSummarytrainingInvestigate how-to XARM locking

[Paco, Anchal]

- Started zoom stream; thanks to whoever installed it!
- Spent some time trying to understand how anything we did last thursday lead to the sensing matrix change, but still cannot figure it out. 
- Tracking back on our actions, at ~10:30 we ran burt Restore with the 08:19/.*snap and in lack of a better suspect, we blame it on that action for now.

# ARM locking??
- Reading (not running) the scripts/XARM/lockXarm.py script and try to understand the workflow. It is pretty confusing that the result was to lock Yarm last time.
- It looks like this script was a copy of lockYarm.py, and was never updated (there's a chance we ran it for the first time last thursday)
- *Is there a script to lock the Arms?* Or should we write one? To write one, we first attempt a manual procedure;
    1. No need to change RFPD InMTRX
    2. All filters inputs / outputs are enabled 
    3. Outputs from XARM and YARM in the Output matrix are already going to ETMX and ETMY
      - Maybe we can have the ARM lock engage by changing the MC directly?
    4. Change C1:SUS-MC2_POS_OFFSET from -38 to -0, and enable C1:SUS-MC2_POS_OFFSET_ON
    5. Manually scan MC2_POS_OFFSET to 250 (nothing happens), then -250, then back to -38 (WFS1 PIT and YAW changed a little, but then returned to their nominal values)
      - Or maybe we need to provide the right gain...
    6. Disabled C1:SUS-MC2_POS_OFFSET_ON (back to nominal state)
    7. Look into manually changing C1:LSC-XARM_GAIN;
      From the command line using python:
      >> import epics
      >> ch_name = 'C1:LSC-XARM_GAIN'
      >> epics.caput(ch_name, 0.155) # nominal = 0.150
      - Could be unrelated, but we noted a slow spike on C1:PSL-FSS_PCDRIVE (definitely from before we changed anything)
      - Still nothing is happening
    8. Changed the gain to 0.175, then back to 0.150, no effect... then 0.2, 0.3 ...
      - Stop and check SUS_Watchdogs (should not have changed?) and everything remains nominal
      - Revert all changes symmetrically.
      - Could we have missed enabling FM1?
      - Briefly lost MC lock, but it came back on its own (probably unrelated)

- Wrap it up for the day. In summary; no harm done to our knowledge.

  15878   Mon Mar 8 12:40:35 2021 gautamSummarytrainingInvestigate how-to XARM locking

For the arm locking, the "Restore Xarm (XARM POX)" script from the "IFO_CONFIGURE" MEDM screen should get you there (I just checked it and it works fine). It is worth getting a hang of the PDH signal chain (read what the script is doing and map it to the signal chain) so you get a feel for where there may be offsets, saturations, what the trigger logic is etc. The LSC overview screen is supposed to be pretty intuitive (if you think it can be improved, I'd love to hear it but please don't change it without documenting) and there are also the webviews of the simulink models (these are RO so feel free to click around, for the LSC the c1lsc model is the relevant one).

  11587   Wed Sep 9 15:45:11 2015 ericqUpdatePEMInverted STS filters in C1OAF

Our online subtraction filters for PRC angle and MC length were trained on the raw ADC signals, so I've inverted the filters that Rana installed in the PEM filter banks in the OAF signal conditioning filter banks (C1:OAF-WIT_STS1X, etc.)

It's not perfect, since the inversion would be unstable, and thus needs a low pass. I used an ELP at 800Hz. The error in the inversion is then something like half a degree at 5Hz, which is the highest frequency we really ever subtract at. It should be ok.

  12029   Thu Mar 10 16:29:32 2016 gautamUpdateendtable upgradeInventory check

I did a quick sweep of the lab to find out what hardware has already been acquired for the X-end table upgrade. The attached PDF is an inventory check in the spirit of this elog.

Some things we have to decide:

  • Are we okay with using the old green coloured faraday mount for the IR faraday? I have in hand a piece identical to the one used at the Y-end for the green faraday, that is red in colour, so I guess we can switch this out.
  • The way in which the doubling oven is currently mounted at the X-end is using some posts cobbled together. The Y-end looks to have a custom mount machined for it (see Attachment #2). Do we want to go ahead and get something like this done?
  • I suppose it is okay to reuse all the old optics (mirrors, lenses, harmonic separators) and PDs? It may be that we need to order som extra mirrors/lenses/posts (this will become clear once I do the layout)

I have not gotten around to planning the layout or doing drawings. I will try and first work through a mode-matching solution to make sure we have all the required lenses. It may be that we need some 1" or 2" mirrors as well. The beam from the lightwave NPRO is quite elliptical, but we have a number of cylindrical lenses in hand already if we decide we want to use these, so I guess we don't have to worry about this...

This is quite a preliminary list, and I will add/update over the coming days as I do more detailed planning, but have I missed out anything obvious?

  12030   Thu Mar 10 16:32:45 2016 ranaUpdateendtable upgradeInventory check

Its not a good idea to use green mounts with green lasers. Steve should be able to get another copy of the EY doubler mount made up if we really don't have another one sitting in the Manasa end table box which Koji mentioned.

  12033   Mon Mar 14 22:42:23 2016 gautamUpdateendtable upgradeInventory check
Quote:

Steve should be able to get another copy of the EY doubler mount made up if we really don't have another one sitting in the Manasa end table box which Koji mentioned.

I located the second doubler mount, it was sitting inside a cabinet along the Y-arm. So this will not have to be machined. The doubling oven mount is black in colour.

So as things stand now, the only thing that needs to be machined is a non-green mount for the IR faraday (IO-5-1064-HP) - is it possible to just coat the existing mount with a different color? I've got a drawing for this part ready, but it seems unnecessary to machine the whole thing from scratch when only the color is an issue. Steve was talking about dipping this in some sort of solution and taking the green off. But if this isn't possible, I'll send Steve the drawings tomorrow so that he can place the order with the machine shop...

I will work on the mode-matching calculations over the next couple of days to make sure we have all the mirrors and lenses we need.

 

  2083   Mon Oct 12 18:37:55 2009 ZachUpdatePSLInventory

--Apologies for the late post--

I was at the PSL table taking an inventory of the components for a while after Koji, Steve, and Kiwamu were there. I set the HEPAs back to 20% when I left (assuming that they were turned up when the compartment was opened).

  2615   Fri Feb 19 02:38:32 2010 KojiConfigurationoplevsIntsant green oplevs for ITMs shooting from the ends

I set up instant green oplevs for ITMs.

A green laser pointer has been set on each end table. It illuminates the ITM center. The beam goea through the ETM substrate.
The reflected green beam returns to the ETM if the ITMs are aligned. Even though the reflected beam to the end is too big, this can
be a rough reference for each ITM.

Note: The green laser pointer at the ETMX were borrowed from Frank. We must return it to him when we finish the work.

  3193   Mon Jul 12 11:20:56 2010 Gopal HowToCOMSOL TipsIntrusions (Negative Extrusions)

For the sake of future users, I have decided to periodically add tips and tricks in using COMSOL that I have figured out, most probably after hours of circuitous efforts. They will always be listed under the new COMSOL Tips category.

Today's topic: Intrusions

COMSOL has a very user-friendly interface for taking objects from 2D to 3D using the "extrusion" feature. But suppose one wants to design an object which contains screw holes or some other indentation. I've found that creating "punctures" in COMSOL is either impossible or very complicated.

Instead, COMSOL encourages users to always "add" to the object. In other words, one must form the lowest level first, then build layers sequentially on top using new work plane and boolean difference operators. This will probably be a bit clearer with an example:

1) First, create the planar projection in a work plane:

Screen_shot_2010-07-12_at_10.51.22_AM.png

2) Extrude the first layer only in the regular fashion:

Screen_shot_2010-07-12_at_10.51.28_AM.png

 3) Add a new work plane which is offset in the z-direction to the deepest point of the intrusion.

Screen_shot_2010-07-12_at_10.52.08_AM.png

 4) Now, create the shape of the intrusion in this new work plane.

Screen_shot_2010-07-12_at_10.53.53_AM.png

5) Use the Boolean "Difference" to let COMSOL know that, on this plane, the object has a hole.

 Screen_shot_2010-07-12_at_10.54.36_AM.png

 6) Extrude once more from the second work plane to complete the intrusion.

Screen_shot_2010-07-12_at_10.55.36_AM.png

  3194   Mon Jul 12 12:16:50 2010 DmassHowToCOMSOL TipsIntrusions (Negative Extrusions)

 An entry on the 40m wiki page might serve you better, and be easier to sift through once all is said and done

ELOG V3.1.3-