40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 217 of 357  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  2190   Fri Nov 6 07:55:59 2009 steveUpdateComputersRFMnetwork is down

The RFMnetwork is down.  MC2 sus damping restored.

  9004   Tue Aug 13 11:40:19 2013 Alex ColeSummaryElectronicsRFPD Demod Filter Frequency Response Measurement

 For the RF PD Frequency Response Measurement project, we get each PD signal from the "PD RF Mon" output of each demodulator board corresponding to our PD under test. Therefore we can't neglect the frequency response of various filters inside the demodulator board. I used our Agilent 4395 Network Analyzer to gather frequency response data for each demodulator board being considered for the RFPD frequency response project (AS55, REFL11, REFL33, REFL55, REFL165, POX11, POP22, POP110).

The NA swept over a frequency range of 1-500 MHz. Data was collected using NWAG4395A (from the netgpibdata directory). It should be noted that the command line options -a 16 -x 15 (averaging=16 and excitation amplitude=15 dBm[the max]), in addition to the usual command line options described in the help file, were used to minimize noise. 

The data is located in /users/alex.cole. The file names are in the format [PDNAME]DemodFilt_1000000.dat (e.g. REFL11DemodFilt_1000000.dat). Results for POP110 are shown below.

  15433   Fri Jun 26 16:53:38 2020 gautamUpdateElectronicsRFPD characterization

Summary:

While the vacuum system was knocked out, I measured the RF transimpedance (using the AM laser setup, didn't do the shot noise intercept current measurement for now) of all the RFPDs (except PMC REFL). At the very least, the following photodiodes are suspect:

  1. WFS heads - expected transimpedance is 50 kohm unattenuated, and 5 kohm attenuated. I measure values that are x10 lower than this, and the segments are significantly imbalanced. Morover, the attenuators for some quadrants appear to do nothing. This could be a problem with the Acromag system I guess, but the measured transimpedance is nowhere close to the "expected" value. See Attachments #1 and #2. You can also see that the response at 55 MHz is significantly attenuated, so I'm guessing trying to measure the AS port ASC sensing response is going to be difficult.

    Note that I assumed a 1kohm DC transimpedance, which is what I expect from the schematic and also is consistent with the DC voltage I measured, knowing the approximate optical power incident on the photodiode.
  2. POP 22/ POP 110 - this is a Thorlabs PDA10CF diode. It should have a flat gain profile out to ~100 MHz, but I measure some weird features. The other PDA10CF we use, at AS110, shows a more reasonable response. See Attachment #3. I don't know what kind of failure mode this is? Anyway I'll try testing another PDA10CF and if it looks more reasonable, I'll switch out this diode. FWIW, the measured AS110 gain is ~3kohms, whereas the datasheet tells us to expect 5 kohms.

For the remaining photodiodes, I measure a transimpedance that is within ~20% of what is on the wiki page. The notches may benefit from some retuning. While I have the data, I will fit this and post a more complete report on the wiki.

Update July 6 1145am: WFS response plots now have legends mapping quadrants, and I've also added the response of a spare PDA10CF (which is now the new POP22/POP110 photodiode).

  15439   Mon Jun 29 15:56:02 2020 gautamUpdateElectronicsRFPD characterization

A more comprehensive report has been uploaded here. I'll zip the data files and add them there too. In summary:

  1. There are several problems with the WFS heads
    • Some attenuators don't seem to work. This could be a problem with the Acromag BIO, or with the relay on the head itself.
    • The measured transimpedance at 29.5 MHz is much lower than expected. We expect ~50 kohms with no attenuation, and 5 kohms without. I measure 100 ohm - 2 kohm with the attenuation disabled, and ~200 ohms with it enabled.
    • Quadrant #3 on both WFS heads behaves differently from the others. There is also evidence of a 200 MHz oscillation for quadrant 3.
    • For some reason, there is a relative minus sign between the TFs measured for the WFS and for the RFPDs. I don't understand where this is coming from - all the OpAmps in the LSC PDs and WFS heads are configured as non-inverting, so why should there be a minus sign? Is this indicative of the polarity of the LEMO output being somehow flipped?
  2. POX 11 photodiode does not have a notch at 22 MHz.
  3. AS55 resonance appears to have shifted closer to 60 MHz, would benefit from a retuning. But the notches appear fine.
  4. PDA10CF photodiode used as the POP22/POP110 readback appears broken in some strange way. As shown in the linked document, a spare PDA10CF in the lab has a much more reasonable response, so I am going to switch out the POP22/POP110 diode with this spare.

I'll upload the data and analysis notebook + liso fit files to the wiki as well shortly. The data, a Jupyter notebook making the plots, and the LISO fit files have been uploaded here.

I didn't do it this time but it'd be nice to also do the noise measurement and get an estimate for the shot-noise intercept current.

Quote:

While I have the data, I will fit this and post a more complete report on the wiki.

  11003   Wed Feb 11 17:31:11 2015 ericqUpdateLSCRFPD spectra

For future reference, I've taken spectra of our various RFPDs while the PRMI was sideband locked on REFL33, using a 20dB RF coupler at the RF input of the demodulator boards. The 20dB coupling loss has been added back in on the plots. Data files are attached in a zip.

Exceptions: 

  • The REFL165 trace was taken at the input of the amplifier that immediately preceeds the demod board. 
  • The 'POPBB' trace was taken with the coupler at the input of the bias tee, that leads to an amplifier, then splitter, then the 110 and 22 demod boards. 

I also completely removed the cabling for REFLDC -> CM board, since it doesn't look like we plan on using it anytime in the immediate future. 

  11004   Wed Feb 11 18:07:42 2015 ericqUpdateLSCRFPD spectra

After some discussion with Koji, I've asked Steve to order some SBP-30+ bandpass filters as a quick and cheap way to help out REFL33. (Also some SBP-60+ for 55MHz, since we only have 1*fmod and 2*fmod bandpasses here in the lab). 

  11008   Thu Feb 12 01:00:18 2015 ranaUpdateLSCRFPD spectra

The nonlinearity in the LSC detection chain (cf T050268) comes from the photodetector and not the demod board. The demod board has low pass or band pass filters which Suresh installed a long time ago (we should check out what's in REFL33 demod board). 

Inside the photodetector the nonlinearity comes about because of photodiode bias modulation (aka the Grote effect) and slew rate limited distortion in the MAX4107 preamp.

  16765   Thu Apr 7 20:41:15 2022 TommyUpdateElectronicsRFSoC 2x2 Board -- Gain Plotter

In this file (under Tommy), we have a notebook which runs through a spectrum of frequencies and determines the gain response of the attached filter. Below we have the output of a high pass filter. We use IQ demodulation to change IQ componets to DC. Then using a butterworth filter, we read out the DC components and determine the gain's magnitude and phase. However, the phase seems very noisy. This is because the oscillators in the different tiles are independent and a random phase is introduced by changing the mixer frequency in individual tiles. To resolve this we need Multi Tile Synchronization or "MTS". 

Original Pynq Support Forum Query: https://discuss.pynq.io/t/rfsoc-2x2-phase-measurement/3892

We also have the code to fit a resposne function using IIRregular, but this is not as useful without proper phase data.

  16764   Thu Apr 7 20:37:06 2022 TommyUpdateElectronicsRFSoC 2x2 Board -- Simple Tone Generator

In the "Tommy" sub folder, I created a new notebook called "SimpleToneGenerator". This tunes the DAC and ADC mixers to a single frequency and reads off the Time Series and Fourier components. We can alos easily check the demodulation scheme and implement butterworth filters to check their function.

  17104   Thu Aug 25 15:24:06 2022 PacoHowToElectronicsRFSoC 2x2 board -- fandango

[Paco, Chris Stoughton, Leo -- remote]

This morning Chris came over to the 40m lab to help us get the RFSoC board going. After checking out our setup, we decided to do a very basic series of checks to see if we can at least get the ADCs to run coherently (independent of the DACs). For this I borrowed the Marconi 2023B from inside the lab and set its output to 1.137 GHz, 0 dBm. Then, I plugged it into the ADC1 and just ran the usual spectrum analyzer notebook on the rfsoc jupyter lab server. Attachment #1 - 2 shows the screen captured PSDs for ADCs 0 and 1 respectively with the 1137 MHz peaks alright.

The fast ADCs are indeed reading our input signals.


Before this simple test, we actually reached out to Leo over at Fermilab for some remote assistance on building up our minimally working firmware. For this, Chris started a new vivado project on his laptop, and realized the rfsoc 2x2 board files are not included in it by default. In order to add them, we had to go into Tools, Settings and add the 2020.1 Vivado Xilinx shop board repository path to the rfsoc2x2 v1.1 files. After a little bit of struggling, uninstalling, reinstalling them, and restarting Vivado, we managed to get into the actual overlay design. In there, with Leo's assistance, we dropped the Zynq MPSoC core (this includes the main interface drivers for the rfsoc 2x2 board). We then dropped an rf converter IP block, which we customized to use the right PLL settings. The settings, from the System Clocking tab were changed to have a 409.6 MHz Reference Clock (default was 122.88 MHz). This was not straightforward, as the default sampling rate of 2.00 GSPS was not integer-related so we had to also update that to 4.096 GSPS. Then, we saw that the max available Clock Out option was 256 MHz (we need to be >= 409.6 MHz), so Leo suggested we dropped a Clocking Wizard block to provide a 512 MHz clock input for the rfdc. The final settings are captured in Attachment # 3. The Clocking Wizard was added, and configured on its Output Clocks tab to provide a Requested Output Freq of 512 MHz. The finall settings of the Clocking wizard are captured in Attachment #4. Finally, we connected the blocks as shown in Attachment #5.

We will continue with this design tomorrow.

  16763   Thu Apr 7 20:33:42 2022 TommyUpdateElectronicsRFSoC 2x2 board -- setup for remote work

To access the board remotely through the 40m lab ethernet port, use

ssh -N -L localhost:1137:localhost:9090 xilinx@<ip_address>

Then in the browser go to

localhost:1137/lab

Other SSH commands using different ports or without the -N -L seemed to fail to open Jupyter. This way has been successful thereafter.

Quote:

[Tommy, Paco]

Since last week I've worked with tommy on getting the RFSoC 2x2 board to get some TFs from simple minicircuits type filters. The first thing I did was set up the board (which is in the office area) for remote access. I hooked up the TCP/IP port to a wall ethernet socket (LIGO-04) and the caltech network assiggned some IP address to our box. I guess eventually we can put this behind the lab network for internal use only.

After fiddling around with the tone-generators and spectrum analyzer tools in loopback configuration (DAC --> ADC direct connection), we noticed that lower frequency (~ 1 MHz) signals were hardly making it out/back into the board... so we looked at some of the schematics found here and saw that both RF data converters (ADC & DAC) interfaces are AC coupled through a BALUN network in the 10 - 8000 MHz band (see Attachment #1). This is in principle not great news if we want to get this board ready for audio-band DSP.

We decided that while Tommy works on measuring TFs for SHP-200 all the way up to ~ 2 GHz (which is possible with the board as is) I will design and put together an analog modulation/demodulation frontend so we can upconvert all our "slow" signals < 1MHz for fast, wideband DSP. and demodulate them back into the audio band. The BALUN network is pictured in Attachment #2 on the board, I'm afraid it's not very simple to bypass without damaging the PCB or causing some other unwanted effect on the high-speed DSP.

 

  16689   Tue Mar 1 16:01:14 2022 PacoUpdateElectronicsRFSoC 2x2 board -- setup for remote work & BALUN saga

[Tommy, Paco]

Since last week I've worked with tommy on getting the RFSoC 2x2 board to get some TFs from simple minicircuits type filters. The first thing I did was set up the board (which is in the office area) for remote access. I hooked up the TCP/IP port to a wall ethernet socket (LIGO-04) and the caltech network assiggned some IP address to our box. I guess eventually we can put this behind the lab network for internal use only.

After fiddling around with the tone-generators and spectrum analyzer tools in loopback configuration (DAC --> ADC direct connection), we noticed that lower frequency (~ 1 MHz) signals were hardly making it out/back into the board... so we looked at some of the schematics found here and saw that both RF data converters (ADC & DAC) interfaces are AC coupled through a BALUN network in the 10 - 8000 MHz band (see Attachment #1). This is in principle not great news if we want to get this board ready for audio-band DSP.

We decided that while Tommy works on measuring TFs for SHP-200 all the way up to ~ 2 GHz (which is possible with the board as is) I will design and put together an analog modulation/demodulation frontend so we can upconvert all our "slow" signals < 1MHz for fast, wideband DSP. and demodulate them back into the audio band. The BALUN network is pictured in Attachment #2 on the board, I'm afraid it's not very simple to bypass without damaging the PCB or causing some other unwanted effect on the high-speed DSP.

  16767   Fri Apr 8 16:03:58 2022 ranaUpdateElectronicsRFSoC 2x2 board -- setup for remote work & BALUN saga

Seems like it should be possible to just remove the transformer (aka as a BALUN ... BALanced, UNbalanced), or replace it with a lower frequency part. Its just a usual mini-circuits part. Maybe you can ask Chris Stoughton about this and ask Tommy to checkout some of the RFSoC user forums for how to go to DC.

Quote:
 

After fiddling around with the tone-generators and spectrum analyzer tools in loopback configuration (DAC --> ADC direct connection), we noticed that lower frequency (~ 1 MHz) signals were hardly making it out/back into the board... so we looked at some of the schematics found here and saw that both RF data converters (ADC & DAC) interfaces are AC coupled through a BALUN network in the 10 - 8000 MHz band (see Attachment #1). This is in principle not great news if we want to get this board ready for audio-band DSP.

We decided that while Tommy works on measuring TFs for SHP-200 all the way up to ~ 2 GHz (which is possible with the board as is) I will design and put together an analog modulation/demodulation frontend so we can upconvert all our "slow" signals < 1MHz for fast, wideband DSP. and demodulate them back into the audio band. The BALUN network is pictured in Attachment #2 on the board, I'm afraid it's not very simple to bypass without damaging the PCB or causing some other unwanted effect on the high-speed DSP.

 

  16790   Wed Apr 20 14:56:06 2022 TommyUpdateElectronicsRFSoC 2x2 board -- setup for remote work & BALUN saga

Here are a few options for replacement BALUNs from Mini Circuits and specs:

Current. TCM1-83X+, 10-8000 MHz, 50 Ohms, Impedance Ratio 1, Configuration K

1. Z7550-..., DC-2500 MHz (some DC-2300), 50/75 Ohms, Impedance Ratio 1.5, Configuration Q. There are various types of the Z7550 which have different connectors (SMA and BNCs). These have much larger dimensions than the TCM1-83X. Can handle up to 5A DC current with matching loss 0.6 dB.

2. SFMP-5075+, DC-2500 MHz, 50/75 Ohms, Impedance Ratio 1.5, Configuration D. This is an SMA connected BALUN. It can handle 350mA, has a matching loss 0.4 dB, and has 1W power handling.

Quote:

Seems like it should be possible to just remove the transformer (aka as a BALUN ... BALanced, UNbalanced), or replace it with a lower frequency part. Its just a usual mini-circuits part. Maybe you can ask Chris Stoughton about this and ask Tommy to checkout some of the RFSoC user forums for how to go to DC.

Quote:
 

After fiddling around with the tone-generators and spectrum analyzer tools in loopback configuration (DAC --> ADC direct connection), we noticed that lower frequency (~ 1 MHz) signals were hardly making it out/back into the board... so we looked at some of the schematics found here and saw that both RF data converters (ADC & DAC) interfaces are AC coupled through a BALUN network in the 10 - 8000 MHz band (see Attachment #1). This is in principle not great news if we want to get this board ready for audio-band DSP.

We decided that while Tommy works on measuring TFs for SHP-200 all the way up to ~ 2 GHz (which is possible with the board as is) I will design and put together an analog modulation/demodulation frontend so we can upconvert all our "slow" signals < 1MHz for fast, wideband DSP. and demodulate them back into the audio band. The BALUN network is pictured in Attachment #2 on the board, I'm afraid it's not very simple to bypass without damaging the PCB or causing some other unwanted effect on the high-speed DSP.

 

model_no case_style single2single single2bal bal2bal center_tap dc_iso freq_low freq_high impedance imped_ratio interface tech config
SFMP-5075+ FF1891 Y N N N N DC 2500 50/75 1.5 CON CORE & WIRE D
TCM1-83X+ DB1627 N Y Y N N 10 8000 50 1 SMT CORE & WIRE K
Z7550-BFNF+ H795-14 Y N N N N DC 2500 50/75 1.5 CON CORE & WIRE Q
Z7550-BMBF+ QP1876-1 Y N N N N DC 2300 50/75 1.5 CON CORE & WIRE D1
Z7550-BMNF+ QP1876 Y N N N N DC 2500 50/75 1.5 CON CORE & WIRE Q
Z7550-FFNM+ H795-1 Y N N N N DC 2300 50/75 1.5 CON CORE & WIRE Q
Z7550-FFSF+ H557-1 Y N N N N DC 2500 50/75 1.5 CON CORE & WIRE Q
Z7550-FMSF+ H795-3 Y N N N N DC 2300 50/75 1.5 CON CORE & WIRE Q
Z7550-FMSFDC+ H795-3 Y N N N Y 1 2500 50/75 1.5 CON CORE & WIRE Q
Z7550-NFNF+ H795-10 Y N N N N DC 2500 50/75 1.5 CON CORE & WIRE D1
Z7550-NMNF+ H795-4 Y N N N N DC 2300 50/75 1.5 CON CORE & WIRE Q
  16588   Fri Jan 14 14:04:51 2022 PacoUpdateElectronicsRFSoC 2x2 board arrived

The Xilinx RFSoC 2x2 board arrived right before the winter break, so this is kind of an overdue elog. I unboxed it, it came with two ~15 cm SMA M-M cables, an SD card preloaded with the ARM processor and a few overlay jupyter notebooks, a two-piece AC/DC adapter (kind of like a laptop charger), and a USB 3.0 cable. I got a 1U box, lid, and assembled a prototype box to hold this board, but this need not be a permanent solution (see Attachment #1). I drilled 4 thru holes on the bottom of the box to hold the board in place. A large component exceeds the 1U height, but is thin enough to clear one of the thin slits at the top (I believe this is a fuse of some sort). Then, I found a brand new front panel, and drilled 4x 13/32 thru holes in the front for SMA F-F connectors.

I powered the board, and quickly accessed its tutorial notebooks, including a spectrum analyzer and signal generators just to quickly check it works normally. The board has 2 fast RFADCs and 2 RFDACs exposed, 12 and 14 bit respectively, running at up to 4 GSps.

  16857   Mon May 16 14:46:35 2022 TommyUpdateElectronicsRFSoC MTS Work

We followed the manual's guide for setting up MTS to sync on external signal. In the xrfdc package, we update the RFdc class to have RunMTS, SysRefEnable, and SysRefDisable functions as prescribed on page 180 of the manual. Then, we attempted to run the new functions in the notebook and read the DAC signal outputs on an oscilloscope. The DACs were not synced. We were also unable to get FIFOlatency readings. 

  16879   Fri May 27 15:53:17 2022 TommyUpdateElectronicsRFSoC MTS Work

With some help from the forums, we printed the status of the DAC MTS sync and were able to determined that our board's vivado design does not have MTS enabled on each tile. To fix this, we will need to construct a new Vivado desgin for the board. We were also warned to "make sure to generate correctly a PL_clock and a PL_sysref with your on board clock synthesizers and to capture them in the logic according to the requirements in PG269" of the RF Manual. From this we should be able to sync the DAC and ADC tiles as desired.

Quote:

We followed the manual's guide for setting up MTS to sync on external signal. In the xrfdc package, we update the RFdc class to have RunMTS, SysRefEnable, and SysRefDisable functions as prescribed on page 180 of the manual. Then, we attempted to run the new functions in the notebook and read the DAC signal outputs on an oscilloscope. The DACs were not synced. We were also unable to get FIFOlatency readings. 

 

  16876   Thu May 26 15:55:10 2022 TommyUpdateElectronicsRFSoC Power Spectrum

Finished building power spectrum analyzer for the RFSoC. There are two things that I would like to address down the road. First is that there is an oscillation between positive and negative voltages at the ADC sampling frequency. This creates an undesirable frequency component at the sampling rate. I have not yet figured out the cause of this positive to negative oscillation and have simply removed half of the samples in order to recover the frequency. Therefore, I would like to figure out the root of this oscillation and remove it. Also, we have a decimation factor of 2 as default by the board which we would like to remove but have been unable to do so.

Example: 8 MHz Square Wave from SRL signal generator.

  16813   Tue Apr 26 16:23:22 2022 TommyUpdateElectronicsRFSoC2x2 MTS

We connected a 8 MHz signal generator to the device in order to sync up the ADCs and DACs and hopefully get phase data. 

Some things to note:

  • RF Manual (143)- Need to use XRFDC SYSREF for update event
  • RF Manual (171)- Synchronization steps require us to first enable all clocks and sysref generators (via xrfdc package)
  • RF Manual (173)- Sysref requirments, not clear if PL is syncing as needed.
  • RF Manual (181)- XRFDC example code, see also https://github.com/Xilinx/embeddedsw/blob/master/XilinxProcessorIPLib/drivers/rfdc/examples/xrfdc_mts_example.c

Xilinx RF Manual: https://docs.xilinx.com/v/u/2.4-English/pg269-rf-data-converter

  12086   Thu Apr 21 15:12:38 2016 SteveUpdateVACRGA is not working

 

Quote:

Steve pointed out that in the aftermath of the Nitrogen running out a couple of times last week, the RGA had shut itself off thinking that there was a leak and so it was not performing the scheduled scans once a day. So the data files from the scheduled scans were empty in the /opt/rtcds/caltech/c1/scripts/RGA/logs directory. The wiki page for getting it up and running again is up-to-date, but the script RGAset.py did not exist on the c0rga machine, which the RGA is communicating with via serial port. I copied over the script RGAset.py from rossa to c0rga and ran the script on that machine - but the error flags it returned were not all 0 (indicating some error according to the manual) - so I edited the script to send just the initialize command ('IN0') and commented out the other commands, after which I got error flags which were all 0. After this, I ran a manual scan using 'RGAlogger.py', and it appears that the RGA is now able to take scans again - I'm attaching a plot of the scan results. We've saved this scan as a reference to compare against after a few days. 

Our last RGA scan is from February 14, 2016  We had a power outage on the 15th

Gautom has not succeded  reseting it. The old c0rga computer looks dead. Q may resurrect it, if he can?

  16820   Fri Apr 29 08:34:40 2022 JCUpdateVACRGA Pump Down

Jordan and I, in order to start pumpig down the RGA Volume, we began by opening V7 and VM. Afterwards, we started RP1 and RP3. After this, the pressure in the line between RP1, RP3, and V6 dropped to 3.4 mTorr. Next, we tried to open V6, although an error message popped up. We haven't been able to erase it since. But we were able to turn on TP2 with V4 closed. The pressure in that line is reporting 1.4 mTorr.

 

PRP on the sitemap is giving off an incorrect pressure for the line between RP1, RP3, and V6. This is verified by the pressure by the control screen and the physical controller as well. 

  16825   Tue May 3 13:18:47 2022 JCUpdateVACRGA Pump Down

Jordan, Tega, JC

Issue has been resolved. Breaker on RP1 was tripped so the RP1 button was reporting ON, but was not actually on which continuously tripped the V6 interlock. Breaker was reset, RP1 and RP3 turned on. The V6 was opened to rough out the RGA volume. Once, pressure was at ~100mtorr, V4 was opened to pump the RGA with TP2. V6 was closed and RP1/3 were turned off.

RGA is pumping down and will take scans next week to determine if a bakeout is needed

Quote:

Jordan and I, in order to start pumpig down the RGA Volume, we began by opening V7 and VM. Afterwards, we started RP1 and RP3. After this, the pressure in the line between RP1, RP3, and V6 dropped to 3.4 mTorr. Next, we tried to open V6, although an error message popped up. We haven't been able to erase it since. But we were able to turn on TP2 with V4 closed. The pressure in that line is reporting 1.4 mTorr.

 

PRP on the sitemap is giving off an incorrect pressure for the line between RP1, RP3, and V6. This is verified by the pressure by the control screen and the physical controller as well. 

 

  16777   Thu Apr 14 09:04:30 2022 JordanUpdateVACRGA Volume RGA Scans

Prior to venting the RGA volume on Tuesday (4/12/2022) I took an RGA scan of the volume to be vented (RGA+TP1 volume+Manual Gate Valve) to see if there was a difference after replacing the manual gate valve. Attached is the plot from 4/12/22, and an overlay plot to complare 4/12/22 to 12/10/2021, when the same volume was scanned with the old (defective) manual gate valve.

There is a significant drop in the ratio O2 compared the the nitrogen peak and reduced Argon (AMU 40) which indicates there is no longer a large air leak.

12/10/21 N2/O2 ratio ~ 4 (Air 78%N2 / 21%O2)

4/12/22 N2/O2 ratio ~ 10      

There is one significant (above noise level) peak above AMU 46, which is at AMU 58. This could possibly be acetone (AMU 43 and 58) but overall the new RGA Volume scans look significantly better after the manual gate valve replacement. Well done!

  12116   Thu May 12 14:29:58 2016 gautamUpdateVACRGA back up and running

It looks like the hardware reset did the trick. Previously, I had just tried ssh-ing into c0rga and rebooting it. At the time, however, Steve and I noticed that the various LEDs on the RGA unit weren't on, as they are supposed to be in the nominal operating state. Today, Steve reported that all LEDs except the RS232 one were on today, so I just tried following the steps in this elog again, looks like things are back up and running. I'm attaching a plot of the scan generated using plotrgascan MATLAB script, it looks comparable to the plot in elog 11697, which if I remember right, was acceptable.

Unless there is some reason we want to keep this c0rga machine, I will recommission one of the spare Raspberry Pis lying around to interface with the RGA scanner when I get the time...

Quote:
Quote:

Our last RGA scan is from February 14, 2016  We had a power outage on the 15th

Gautom has not succeded  reseting it. The old c0rga computer looks dead. Q may resurrect it, if he can?

The c0rga computer was off, I turned it on via front panel button. After running RGAset.py, RGAlogger.py seems to run. However, there are error messages in the output of the plotrgascan MATLAB script; evidiently there are some negative/bogus values in the output. 

I'll look into it more tomorrow.

This is a cold scan.

  8963   Mon Aug 5 10:50:48 2013 SteveUpdateVACRGA background

 RGA background at day 12 of this vent . The maglev is pumping on the rga through VM2

 

  7939   Thu Jan 24 14:40:09 2013 SteveUpdateVACRGA backgroung

 RGA background with VM2 open to Maglev at day 37

 

Note: The PAN gauge of the  annulos is at atm.  Please do not vent this 200 ft long annulos line when you venting the annulos of a chamber. The chamber annulos should be closed off to this long 2"  OD. pipe before you vent the annulos of a chamber.

 

  10548   Mon Sep 29 10:29:25 2014 SteveUpdateVACRGA is not running

 

 The RGA time stamp was correct last at 20140527

 

  Rga stopped scanning at 20140530

  12530   Tue Oct 4 11:02:31 2016 SteveUpdateVACRGA is out of order

The last good rga scan at vent 78  day 38

Quote:

 

Quote:

RGA background scan

Quote:

Vacuum Status: Chamber Open

All chamber annuloses are vented.  Vac Monitor screen is not communicating with gauges. The valve position indicator are working.

RGA is pumped by Maglev through VM2

 

 

 

 

  12589   Mon Oct 31 16:20:50 2016 SteveUpdateVACRGA is reinstalled

Quad rods and  ionizer kit: consisting of repeller cage, anode grid, focus plate and  filament were replaced....... under repair # RGA200/12 ECA 100416-12967

The electronic ECU is not connected. It is beeing pumped at IFO ITcc 9.7E-6 Torr vacNormal

Quote:

The RGA is removed for repaire. It's volume at atmophere and sealed.. P4 reading of 38 Torr is not correct.

 

 

  12633   Tue Nov 22 11:31:52 2016 SteveUpdateVACRGA is running again

The Rga was turned on yesterday.

Quote:

The RGA is removed for repaire. It's volume at atmophere and sealed.. P4 reading of 38 Torr is not correct.

 

 

  1674   Mon Jun 15 16:31:36 2009 steveConfigurationVACRGA is scanning new Maglev

Quote:

Quote:

Joe and Steve

 

The retrofitted Osaka 390 was installed on the pumpspool yesterday.

V1 gate valve is disabled for safety by disconnected pneumatic power plug.

The foreline of this maglev now have a KF25 size viton o-ring directly on the turbo.

This is bad for leak hunting.

Joe is ready with new interface cable. Power supply and cables are in place.

The maglev was pumped down this morning.

All new gas kits and metal hose were leak checked by sprayed methanol.

There is no obvious sign of leak. I was expecting the pressure to drop below 1e-5 Torr in one hour.

TP2 is drying out the levitating coils of the turbo at ~7 l/s for N2

We'll start the pump as soon as Joe is in.

 

 

 Joe and Steve

 

The Maglev is running at 680 Hz, 40,800 RPM with V1 gate valve  closed and  valve disabled to change position. C1vac2 was rebooted before starting.

Interlocks are not tested yet, but the medm COVAC_MONITOR.adl screen is reading correctly. RGA scan will determine the need for baking on Monday

The foreline pressure is still  ~2e-5 Torr

Acceleration takes 3 minutes 30sesconds without load. There is no observabale temp effect on the body of the turbo during braking and acceleration.

 

The IFO is still pumped by the CRYO only

 The new Maglev fore line pressure is at 4e-6 torr at day 3

Valve VM1 was closed to isolate IFO from RGA and valve VM2 was opened so the RGA can scan the Maglev only.

 

  4133   Tue Jan 11 11:39:45 2011 steveUpdateVACRGA is turned on

Joe updated the rga procedure in the wiki and we turned on the filament. It will take a few days to reach thermal equilibrium.

TP2 dry fore pump was replaced at 910mTorr

  1448   Wed Apr 1 10:22:13 2009 steveUpdateVACRGA logging is working

Thanks to Joe B who made the SRS RGA working with linux

Last data file logged at 2008 Oct 24 with old Dycor unit

First data file logged at  2009 Feb 10 with SRS

 

  16701   Fri Mar 4 18:12:44 2022 KojiUpdateVACRGA pumping down

1. Jordan reported that the newly installed Pirani gauge for P2 shows 850Torr while PTP2 show 680 Torr. Because of this, the vacuum interlock fails when we try to open V4.

2. Went to c1vac. Copied the interlock setting file interlock_conditions.yaml to interlock_conditions_220304.yaml
3. Deleted diffpressure line and pump_underspeed line for V4
4. Restarted the interlock service

controls@c1vac:/opt/target/python/interlocks$ sudo systemctl status interlock.service  
controls@c1vac:/opt/target/python/interlocks$ sudo systemctl restart interlock.service
controls@c1vac:/opt/target/python/interlocks$ sudo systemctl status interlock.service

5. The above 2~4 was unnecessary. Start over.


Let RP1/3 pump down TP1 section through the pump spool. Then let TP2 pump down TP1 and RGA.

1. Open V7. This made P2 a bit lower (P2 is alive) and P3.
2. Connected the main RP tube to the RP port.
2. Started RP1/3. PRP quickly reaches 0.4Torr.
3. Opened V6 this made P3 and O2 below 1Torr.
4. Close V6. Shutdown RP1/3. Disconnect the RP tube.
5. Turn on auxRP at the wall powe
6. Turn on TP2. Wait for the starting up.
7. Open V4. Once the pressure is below Pirani range, open VM3.
8. Keep it running over the weekend.

9. Once TP2 reached the nominal speed, the "StandBy" button was clicked to lower the rotation speed (for longer life of TP2)

  12537   Fri Oct 7 10:29:57 2016 SteveUpdateVACRGA removed

The RGA is removed for repaire. It's volume at atmophere and sealed.. P4 reading of 38 Torr is not correct.

 

  13233   Mon Aug 21 14:53:32 2017 gautamUpdateVACRGA reset

[gautam, steve]

In the aftermath of the accidental vent, it looks like the RGA was shutdown.

We followed the instructions in this elog to restart the RGA.

Seems to be working now, Steve says we just need to wait for it to warm up before we can collect a reliable scan.

Quote:

We have good RGA scan now. There was no scan for 3 months.

 

  2137   Fri Oct 23 09:13:45 2009 steveSummaryVACRGA scan

Pump down #66 is 435 days old. RGA scan is normal. New maglev is fine. New UPS is in place but not hooked up to communicate.

V1 has bare minimum interlock. Pirani vacuum gauges  PTP1 and PRP do not communicate with readout system.

There is no emergency dial out in case of vacuum loss.  Our existing vacuum dedicated desk top computer is dead.

New cold cathodes, Pirani gauges and gauge controller should be added.

In general: vacuum system needs an upgrade !

 

  4273   Fri Feb 11 09:27:03 2011 steveConfigurationVACRGA scan

The RGA scan is normal at day 52 of this pump down.

Light power BS 1064nm ~25mW, ETMX 532nm ~5mW

  5497   Wed Sep 21 11:35:07 2011 steveUpdateVACRGA scan

RGA scan with maglev pumping speed at day 14 of the pump down.

The larger inserted box contains the tuning parameters of the SRS  200 amu RGA

  13075   Tue Jun 20 16:28:23 2017 SteveUpdateVACRGA scan
  13918   Wed Jun 6 10:02:52 2018 SteveUpdateVACRGA scan
  13260   Mon Aug 28 10:28:07 2017 SteveUpdateVACRGA scan 20 day after 17 Torr

The RGA was turned on 7 days ago.  It's 46 C now.   The X-arm room tem ~20 C

IFO pressure 6.5e-6 Torr at IT-Hornet gauge. Valve configuration vacuum normal.

  13588   Tue Jan 30 10:22:20 2018 SteveUpdateVACRGA scan at day 175

pd80b rga scan at 175 day.  IFO pressure 7.3e-6 Torr-it

Condition: vacuum normal, annuloses not pumped. Rga turned on yesterday.

The rga was not on since last poweroutage Jan 2, 2018 It is warming up and outgassing Atm2

  13685   Fri Mar 16 09:36:56 2018 SteveUpdateVACRGA scan at day 511,218d

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrees

Quote:

pd80b rga scan at 175 day.  IFO pressure 7.3e-6 Torr-it

Condition: vacuum normal, annuloses not pumped. Rga turned on yesterday.

The rga was not on since last poweroutage Jan 2, 2018 It is warming up and outgassing Atm2

 

  9757   Fri Mar 28 16:26:20 2014 steveUpdateVACRGA scan after power failure

Quote:

 Out gassing plus leak rate   0.15  mTorr / hour

 The pressure rose to 2.5 mTorr in 17 hours

 V1 was opened at 1:56pm

 VM2 opened at 2:10 so the RGA region is back to 1e-5 torr

 

 

  7491   Fri Oct 5 14:40:55 2012 SteveUpdateVACRGA scan after power outage

Quote:

All the front end machines are back up after the outage.  It looks like none of the front end machines came back up once power was restored, and they all needed to be powered manually.  One of the things I want to do in the next CDS upgrade is put all the front end computers in one rack, so we can control their power remotely.

c1sus was the only one that had a little trouble.  It's timing was for some reason not syncing with the frame builder.  Unclear why, but after restarting the models a couple of times things came back.

There's still a little red, but it mostly has to do with the fact that c1oaf is busted and not running (it actually crashes the machine when I tried to start it, so this needs to be fixed!).

 The RGA was not effected by the short power outage.

  12853   Mon Feb 27 15:33:10 2017 SteveUpdateVACRGA scan at day 130

Valve configuration: vacuum normal

Vacuum envelope: 23.5 C

RGA head: 46.6 C

 

  12681   Thu Dec 22 09:37:20 2016 SteveUpdateVACRGA scan at day 63

Valve configuration: vacuum normal

RGA head temp: 43.5 C

Vac envelope temp: 23 C

 

  12698   Tue Jan 10 14:24:09 2017 SteveUpdateVACRGA scan at day 82

Valve configuration: vacuum normal

Vacuum envelope: 23C

Rga head: 44C

 

  9795   Thu Apr 10 16:09:29 2014 SteveUpdateVACRGA scan at 75% pumping speed

Quote:

 

 The loaner controller is swapped in. It has  520 Hz rotation speed.  This speed use to be 680 Hz with our old one.

 

ELOG V3.1.3-