40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 208 of 335  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  476   Wed May 14 13:14:19 2008 AndreySummaryComputersReflective Memory Network is restored

Reflective Memory Network is restored, all watchdogs and oplevs are returned to the "enabled" state.

In order to revive the computers, several things were done.

1) Following Mr. Adhikari's elog entry #353, I walked around the interferometer room, and switched off the power keys in all crates with computers whose names are contained in the MEDM Reflective Memory screen, including the rack with the framebuilder. By the way, it was nontrivial to find the switch in the 1Y4 crate that would shut off/on processors "c1susvme1" and "c1susvme2": the switch turned out to be located at the rear side of the crate, and it is not a key but it is a button.

2) I was trying to follow wiki-40 computer restart procedures, but every time that I was trying to run "startup.cmd" screen from the corresponding target subdirectory, I got the error message "Device or resource busy".
By the way, one more thing was learned: if you firstly open in terminal burtgooey, select the snap file, then reboot the processor, and then will try to burt-restore it, you will get the message "Status Not OK". In order to really burt-restore the processor which was recently rebooted, you need to close the terminal with burtgooey and open burtgooey in a new terminal window which should be opened after rebooting the processor.

Feeling that my activities according to wiki-40 procedures do not revive computers, I invited Alex Ivanov.

3) Alex tried to touch the memory card in "c1iovme" in rack 1Y2, because once before this card failed causing network problems, but this did not help.

4) We shutted off and restarted again (pressing the power-switching button) the black Linux machine "c1dcuepics" (located in the very bottom below the framebuilder). Alex says that this machine is responsible for all EPICS. It was not restarted for 182 days, and probably some process there went wrong.

After restarting this machine "c1dcuepics" we were able to follow wiki-40 procedures for restarting all other computers (whose names are on the MEDM RFM network). We ran correcponding "startup.cmd" files and burt-restored them without error messages.

Now all the computers work and communicate in a proper way.

Mr. Joseph Betzwiezer was helping me with all these activities (we decided that it is more important that cameras for now), thanks to him. But our joint skills turned out to be insufficient, so Alex Ivanov's contribution was the most important.
  2362   Mon Dec 7 19:02:22 2009 MottUpdateGeneralReflectivity Measurements

I have made some measurements of the R value for some coatings we are interested in.  The plots have statistical error bars from repeated measurements, but I would suspect that these do not dominate the noise, and would guess these should be trusted to plus or minus 5% or so.  They still should give some indication of how useful these coatings will be for the green light.  I plan to measure for the ITM as soon as possible, but with the venting and finals this may not be until late this week.

 

EDIT (12/9/09): I fixed the label on the y axis of the plots, and changed them to png format.

Attachment 1: Y1-45P_R.png
Y1-45P_R.png
Attachment 2: Y1-45S_R.png
Y1-45S_R.png
Attachment 3: Y1-50CC_R.png
Y1-50CC_R.png
  1520   Sat Apr 25 00:45:31 2009 YoichiConfigurationVACReflector for the cryopump temperature monitor changed
The temperature of the cryopump head is monitored by a photo switch looking at an aluminum foil reflector attached to the needle of the temperature gauge.
If the needle moves out of the 14K position, the photo switch will be triggered to close the cryopump gate valve.
However, this photo switch system has been touchy.
Tonight, the switch falsely tripped several times and closed the gate valve, which caused lock losses as the motion of the valve generates a lot of vibrations.
Seems to me, it was caused by the poor/irregular reflection from the wrinkled aluminum foil on the needle.
So I replaced the aluminum foil with a brand-new shiny one.
  1521   Sat Apr 25 02:54:25 2009 YoichiConfigurationVACReflector for the cryopump temperature monitor changed

Quote:
The temperature of the cryopump head is monitored by a photo switch looking at an aluminum foil reflector attached to the needle of the temperature gauge.
If the needle moves out of the 14K position, the photo switch will be triggered to close the cryopump gate valve.
However, this photo switch system has been touchy.
Tonight, the switch falsely tripped several times and closed the gate valve, which caused lock losses as the motion of the valve generates a lot of vibrations.
Seems to me, it was caused by the poor/irregular reflection from the wrinkled aluminum foil on the needle.
So I replaced the aluminum foil with a brand-new shiny one.


The photo switch still trips randomly. We need a better interlock.
  300   Wed Feb 6 16:50:47 2008 josephbConfigurationCamerasRegions of Interest and max frame rate
The Snap code has once again been modified such that setting the -l option to 0 will take images as fast as possible. Also, the -H and -W options set the height and width, while in principle the -Y and -X options set the position in pixels of the top edge and left edge of the image. It also seems possible to set these values such that the saved image wraps around. I'll be adding some command checking so that the user can't do this in the near future.

Doing some timed runs, using a -H 350 and -W 350 (as opposed to the full 752x480), 100 images can be saved in roughly 8 seconds, and 1000 images took about 73 seconds. This corresponds to a frame rate of about 12-13 frames per second (or a 12-13 Hz display). The size of this area was sufficient to cover the current PMC transmission beam.

The command line I used was

time ./Snap -l 0 -m 1000 -f 'test' -W 350 -H 350 -Y 50 -X 350 -E 2000

Interestingly enough, there would be bursts of failed frame saves if I executed commands in another terminal (such as using ls on the directory where the files were being stored).

As always, this code is available in /cvs/cds/caltech/target/Prosilica/40mCode/.
  301   Wed Feb 6 19:39:11 2008 ranaConfigurationCamerasRegions of Interest and max frame rate
We really need to look into making the 40m CDS network have an all GigE backbone so that we can have cooler cameras as well as collect multiple datastreams...
  5090   Tue Aug 2 10:53:03 2011 JenneOmnistructureSAFETYRegular door out of service. Use Control Room Door only!!

The hazardous waste people are moving chemicals around outside our door, and have roped off our regular front door. 

Please go around, and use the control room door to enter and exit.  It is currently unlocked, although I'll lock up when I leave for LIGOX.

  11214   Fri Apr 10 17:05:45 2015 ericqUpdateLSCRelative ETM calibration (Rough MC2 calibration)

I did a quick measurement get an idea of the ETM actuator calibration, relative to the ITMs. This will still hold if/when we revisit the ITM calibration via the Michelson. 

For the test masses, I locked the arms individually using MC2 as the actuator, and took transfer functions from the SUS-[OPTIC]_LSC_EXC point to the PO[X/Y]_I_ERR error signals. There were two points with coherence less than 99% that I threw away. I then took the fraction at each point, and am using the standard deviation of those fractions as the reported random error, since the coherence was super high for all points, making the error of each point negligible relative to their spread. 

This gives:

  • ETMX/ITMX: 2.765 +- 0.046
  • ETMY/ITMY: 2.857 +- 0.029

With the data from ELOG 8242, this implies:

  • ETMX: 13.00 +- 0.22 x 10 -9 / f2 m/counts
  • ETMY: 13.31 +- 0.15x 10 -9 / f2 m/counts

MC2 data was taken with the arms locked with the ETMs. The results are not so clean, the fractions don't line up; there is some trend with excitation frequency... The ratio is around the same as the ETMs, but I'm not going to quote any sort of precision, since I don't fully understand what's happening. Kind of a bummer, because it struck me that we could get an idea of the arm length mismatch by the difference in IMC frequency / arm FSR. I'll think about this some more...

Attachment 1: quickCal.png
quickCal.png
  11215   Fri Apr 10 18:39:39 2015 ericqUpdateLSCRelative ETM calibration (Rough MC2 calibration)

I didn't verify that the loop gain was low enough at the excitation frequencies. blush

I put a 1kHz ELP in both arm servos, and got cleaner data for both. The ETM numbers are pretty much consistent with the previously posted ones, and the MC2 data now is consistent across frequencies. However, the MC2 numbers derived from each arm are not consistent.

Now:

  • ETMX / ITMX: 2.831 +- 0.043
  • MC2 / ITMX: 3.260 +- 0.062
  • ETMY / ITMY: 2.916 +- 0.041
  • MC2 / ITMY: 3.014 +- 0.036

With the data from ELOG 8242, this implies:

  • ETMX: 13.31 +- 0.21 x 10-9 / f2 m/counts
  • ETMY: 13.59 +- 0.20 x 10-9 / f2 m/counts
  • MC2 in Xarm meters : 15.32 +- 0.30 x 10-9 / f2 m/counts
  • MC2 in Yarm meters : 14.04 +- 0.18 x 10-9 / f2 m/counts
This is, of course, pretty fishy. Each arm sees the same frequency fluctuation of the light coming out of the IMC, especially given that the MC2 to arm data was taken simultaneously for both arms. Now, one possible source of this kind of mismatch would be a mismatch of the arm lengths, but there is no way they differ by 10%, as they would have to in order to explain the above numbers. To me, it seems more likely that the ITM calibrations are off. 
Attachment 1: betterCal.png
betterCal.png
  15326   Tue May 12 18:16:17 2020 gautamUpdateLSCRelative importance of losses in the arm and PRC

Attachment #1 is meant to show that having a T=500ppm PR2 optic will not be the dominant contributor to the achievable recycling gain. Nevertheless, I think we should change this optic to start with. Here, I assume:

  • \eta_A denotes the (average) round trip loss per arm cavity (i.e. ITM + ETM). Currently, I guess this is ~100ppm.
  • Fixed 0.5% loss from mode mismatch between the CARM mode and the PRC mode (the x-axis does NOT include this number).
  • No substrates/AR coatings inside the cavity.
  • For the nominal case, let's say the intracavity loss sums to 100 ppm.
  • For the T=500ppm PR2, I assumed a total of 550 ppm loss in the PRC.

In relaity, I don't know how good the MM is between the PRC and the arms. All the scans of the arm cavity under ALS control and looking at the IR resonances suggest that the mode-matching into the arm is ~92%, which I think is pretty lousy. Kiwamu and co. claim 99.3% matching into the interferometer, but in all the locks, the REFL mode looks completely crazy, so idk

Attachment 1: armLossVSPRCloss.pdf
armLossVSPRCloss.pdf
  15327   Tue May 12 20:16:31 2020 KojiUpdateLSCRelative importance of losses in the arm and PRC

Is \eta_A the roundtrip loss for an arm?

Thinking about the PRG=10 you saw:
- What's the current PR2/3 AR? 100ppm? 300ppm? The beam double-passes them. So (AR loss)x4 is added.
- Average arm loss is ~150ppm?

Does this explain PRG=10?

 

  15328   Tue May 12 22:47:49 2020 gautamUpdateLSCRelative importance of losses in the arm and PRC

Yes, \eta_A is the (average) round-trip loss for an arm cavity. I'd estimate this is ~100ppm currently. I edited the original elog to fill in this omission.

The RC mirror specs require some guesswork - the available specs for the Laseroptik mirrors (PR3) are for a 48 degree angle of incidence, and could be as high as 0.5 %. According to the poster, the spec is 2.6% loss inside the recycling cavity but I don't know where I got the number for the AR surface of the G&H PR2, and presumably that includes some guess I made for the MM between the PRC and the arm. Previously, assuming ~1-2% loss inside the RC gave good agreement between model and measurement. Certainly, if we assume similar numbers, a recycling gain of ~11 (200 * T_P=5.637%) is reasonable. But I think we need more data to make a stronger statement.

Quote:

Is \eta_A the roundtrip loss for an arm?

Thinking about the PRG=10 you saw:
- What's the current PR2/3 AR? 100ppm? 300ppm? The beam double-passes them. So (AR loss)x4 is added.
- Average arm loss is ~150ppm?

Does this explain PRG=10?

  10848   Tue Dec 30 17:26:23 2014 ranaUpdatePSLRelaxation Osc and the NPRO Noise eater

I wonder if the variable bump around 100 kHz can be something about the NPRO and if the bump we see is the closed loop response due to the Noise Eater.

NE_Mephisto.png

This plot (from the Mephisto manual) shows the effect of the NE on the RIN, but not the frequency noise. I assume its similar since the laser frequency noise above 10 kHz probably just comes from the pump diode noise.

I went out to the PSL and turned off the NE at ~4:53 PM local time today to see what happened. Although the overall PCDRIVE signal looks more ratty, there is no difference in the spectra of ON/OFF when the PCDRIVE is low. When its noisy, I see a tiny peak around 1 MHz with NE OFF. Turned it back on after a few hours.

  11141   Fri Mar 13 23:49:28 2015 ranaUpdatePSLRelaxation Osc and the NPRO Noise eater

Another thought about the mystery PCDRIVE noise: we've been thinking that it could be some slow death inside the NPRO, but it might also be a broken and intermittent thing in the MC servo or MC REFL PD.

Another possibility is that its frequency noise in the old oscillator used to drive the pre-PMC EOM (which is the Pockel Cell for the FSS). To check this, we should swap in a low noise oscillator for the PMC. I have one for testing which has 36 and 37 MHz outputs.

  13952   Wed Jun 13 01:02:40 2018 gautamUpdateLSCReliable and repeatable 1f DRMI locking

[koji, gautam]

With Koji's help, I got repeatable and reliable DRMI locking going again tonight - this is with the AS path optics for the spectroscopy measurement in place, although the AUX laser remained shuttered tonight. Results + spectra tomorrow, but here's what I did:

  • Initial alignment procedure was as usual - use arms+ASS to align ITMs, and then PRMI carrier+ASS to align PRM and BS.
  • Found the appropriate gains and demod phases.
  • Measured loop TFs - PRCL is a big mystery. Used these to finalize loop gains.
  • Ran some sensing lines.
  • Whitened DRMI PDs for a calibrated "low-noise" spectrum (although the coils were not de-whitened).

As I have found before, it is significantly easier to get the locking going post 11pm - the wall Seis BLRMS don't look that much quieter at midnight compared to 10pm, but this might be a scaling issue. I'll do a quantitative assessment next time... Also, Foton takes between 25-45 secs to save an updated filter (timed twice today).

  13966   Thu Jun 14 18:09:24 2018 gautamUpdateLSCReliable and repeatable 1f DRMI locking

I finally analyzed the sensing measurement I ran on Tuesday evening. Sensing responses for the DRMI DOFs seems consistent with what I measured in October 2017, although the relative phasing of the DoFs in the sensing PDs has changed significantly. For what it's worth, my Finesse simulation is here

Attachment 1: DRMI1f_June14.pdf
DRMI1f_June14.pdf
  16838   Mon May 9 18:49:05 2022 TegaUpdateBHDRelocate green TRX and TRY PDs/cams/optics from PSL table to BS table

[Paco, Tega]

Started work on the relocating the green transmission optics, cameras and PDs. Before removing the any of the optics, we checked and confirmed that the PDs and Cams are indeed connected to the GRN TRX/Y medm channels. Then added labels to the cables before moving them.

Plumbing:

  • Moved all power and signal cables for the PDs and cameras from PSL table to BS table. See attachment #1

Relocated Optics & PDs & Cameras:

  • TRX and TRY cameras
  • TRX and TRY PDs
  • 1 BS, 2 lens for PDs and a steering mirror, see Atachement #2

 

Attachment 1: IMG_20220509_184439943.jpg
IMG_20220509_184439943.jpg
Attachment 2: IMG_20220509_184154722.jpg
IMG_20220509_184154722.jpg
  16842   Tue May 10 15:46:38 2022 JCUpdateBHDRelocate green TRX and TRY components from PSL table to BS table

[JC, Tega]

Tega and I cleaned up the BS OPLEV Table and took out a couple of mirrors and an extra PD. The PD which was removed is "IP-POS - X/Y  Reversed". In addition to this, the cable is zip-tied to the others located on the outside of the table in case this is required later on. 

Next, we placed the cameras and mirrors for the green beam into their postions. A beam splitter and 4 mirrors were relocated from PSL table and placed onto the BS Oplev table to complete this. I will upload the picture of the newly updated photo with arrows of the beam routes.

Attachment 1: IMG_0741.jpeg
IMG_0741.jpeg
Attachment 2: IMG_0753.jpeg
IMG_0753.jpeg
  12114   Tue May 10 03:44:59 2016 ericqUpdateLSCRelocked

ALSX noise is solidly within past acceptable performance levels. The DRFPMI was locked on four out of six attempts. 

Some housekeeping was done:

  • PMC aligned
  • Static alignment voltages of X end PZT mirrors offloaded by turning mount screws
  • Rough comissioning of AUX X dither alignment
  • Locking scripts reverted to AUX X Innolight voltage/temperature sign convention

The recombination of the QPD signals to common / differential is imperfect, and limited how well we could keep the interferometer aligned, since the QPD at X has changed. This needs some daytime work. 

Some sensing matrix measurements were made, to be meditated upon for how to 1F the DRMI.

Other to-dos:

  • Bandpass + notch combo for green refl PDs
  • SRCL, and to a lesser extant, MICH feedforward subtraction (See DARM vs. other length DOF coherence plot below)
  • Fiber couple AUX X light
  • Make IFO work good


As an aside, Gautam and I noticed numerous green beams coming from inside the vacuum system onto the PSL table. They exist only when green is locked to the arms. Some of them come out at very non-level angles and shine in many places. This doesn't make me feel very happy; I suppose we've been living with it for some time. 

Attachment 1: 2016-05-10_DARMcoherence.pdf
2016-05-10_DARMcoherence.pdf
  5271   Fri Aug 19 19:08:40 2011 JennyUpdatePSLRelocking NPRO to reference cavity.

I am trying again to measure a temperature step response on the reference cavity on the PSL table.

I have been working to relock the NPRO to the cavity. I unblocked the laser beam, reassembled the setup described in my previous elog entry: 5202. I then did the following:

1) Monitored error signal (from LB1005 PDH servo), transmitted signal, and control signal sent to drive PZT on oscilloscope.

2) With loop open, swept through 0,0-mode resonance, saw a peak in the transmission, saw an accompanying error signal similar to the signal shown in 5202.

3) Tried to lock. Swept the gain on the LB1005 and could not find a gain that would make it lock. Tried changing the PI-corner freq. from 10 kHz to 30 kHz and back and still could not lock.

4) Noticed that the open loop error signal displayed on the scope was DC-offset from zero. Changed the offset to zero the error signal.

5) Tried to lock again and succeeded.

6) Noticed that upon closing the loop, the error signal became offset from zero again. Turning on the integrator on the LB1005 increased DC-offset.

7) Reduced the gain on the SR560 being used as a low pass filter from 5 to 1. Readjusted the open loop error signal offset on the LB1005.

8) Closed the loop and locked. Closing the loop then caused a much smaller DC change in the signal than I had seen with the larger gain (now around 3mV). RMS fluctuations in error signal are now 1 mV (well within the linear region of the error signal).

9) Noticed transmission has a strange distorted harmonic oscillation in it a 1MHz. (Modulation freq is 230kHz, so it's not that). Checked reflected signal and also saw a strange oscillation--in a sawtooth-like pattern.

 

I intend to

1) Post oscilloscope traces here showing transmitted and reflected signal when locked.

2) Look upstream to see if the sawtooth-like oscillation is in the laser beam before it enters the cavity:

  • Sweep the temperature of the laser so that the beam is no longer resonating in the cavity.
  • Compare the reflected signal off the cavity to the signal detected before being directed into the cavity (using the PDA255 that I used for measuring the AM response of the PZT) both with and and without the frequency modulation.

3) At some point, try to close the slow digital loop, perhaps readjusting the gain.

4) Try to measure a temperature step response.

  5272   Fri Aug 19 23:41:20 2011 JennyUpdatePSLRelocking NPRO to reference cavity.

Quote:

I am trying again to measure a temperature step response on the reference cavity on the PSL table.

I have been working to relock the NPRO to the cavity. I unblocked the laser beam, reassembled the setup described in my previous elog entry: 5202. I then did the following:

1) Monitored error signal (from LB1005 PDH servo), transmitted signal, and control signal sent to drive PZT on oscilloscope.

2) With loop open, swept through 0,0-mode resonance, saw a peak in the transmission, saw an accompanying error signal similar to the signal shown in 5202.

3) Tried to lock. Swept the gain on the LB1005 and could not find a gain that would make it lock. Tried changing the PI-corner freq. from 10 kHz to 30 kHz and back and still could not lock.

4) Noticed that the open loop error signal displayed on the scope was DC-offset from zero. Changed the offset to zero the error signal.

5) Tried to lock again and succeeded.

6) Noticed that upon closing the loop, the error signal became offset from zero again. Turning on the integrator on the LB1005 increased DC-offset.

7) Reduced the gain on the SR560 being used as a low pass filter from 5 to 1. Readjusted the open loop error signal offset on the LB1005.

8) Closed the loop and locked. Closing the loop then caused a much smaller DC change in the signal than I had seen with the larger gain (now around 3mV). RMS fluctuations in error signal are now 1 mV (well within the linear region of the error signal).

9) Noticed transmission has a strange distorted harmonic oscillation in it a 1MHz. (Modulation freq is 230kHz, so it's not that). Checked reflected signal and also saw a strange oscillation--in a sawtooth-like pattern.

 

I intend to

1) Post oscilloscope traces here showing transmitted and reflected signal when locked.

2) Look upstream to see if the sawtooth-like oscillation is in the laser beam before it enters the cavity:

  • Sweep the temperature of the laser so that the beam is no longer resonating in the cavity.
  • Compare the reflected signal off the cavity to the signal detected before being directed into the cavity (using the PDA255 that I used for measuring the AM response of the PZT) both with and and without the frequency modulation.

3) At some point, try to close the slow digital loop, perhaps readjusting the gain.

4) Try to measure a temperature step response.

I decided to go forward and try to close the digital loop in spite of the unexplained oscillations in the transmission.

1) Plugged the 20dB attenuator into the slow port on the laser drive. This pushed the laser out of lock and, for some reason, made the laser temperature stop responding to sweeping the set point manually with the knob.

2) Plugged the output from the digital system into the slow port (with the attenuator still in place).

3) Displayed the beam seen by the camera on a monitor in the control room

4) Stepped the laser temperature using MEDM until finding the 0,1 mode. Locked to that mode.

5) Closed the digital loop (input to slow laser drive attenuated 20dB attenuator). Gain 0.010

6) Loop appeared stable for 30 minutes, then temperature began shooting off. I opened the loop, cleared history, reduced the gain to 0.008, and started it again. Loop appears stable after 15 minutes of watching. I'm going to leave it for a few hours, then come back to check on it and, if it's stable, step the can temperature.

  5468   Mon Sep 19 20:56:36 2011 PaulSummarySUSRemaining SRM and ITMY OSEMs calibrations

 

I've now taken data for the pitch and yaw calibrations for the OSEMs of SRM and ITMY. Until such time as I know what the calibrated oplev noise spectra are like, I'm leaving the servo gains at zero.

I estimate the length of the lever arm from SRM to measurement position to be 3.06m, and the length of the lever arm from the ITMY to the measurement position to be 3.13m.

From the fits shown on the attached plots, this gives the following calibration factors for the SRM and ITMY OSEMs pitch and yaw counts (i.e. counts from channels such as SUS-ITMY_ULSEN_SW2 multiplied by a matrix of 1s and -1s) to pitch and yaw angle:

 

SRM PITCH: 1 OSEMs pitch count = 11.74 microradians

SRM YAW: 1 OSEMs yaw count = 12.73 microradians

 

ITMY PITCH: 1 OSEMs pitch count = 13.18 microradians

ITMY YAW: 1 OSEMs yaw count = 13.52 microradians

 

Next step is to do some DC offsets with the oplev paths back in place to get the final calibration between OSEMs counts and oplev counts, thus finally getting a conversion factor from oplev counts to radians.

I noticed while taking these measurements that the DC offsets I put on ITMY caused around 5 times larger change in angle than those on the SRM. The different path length is not enough to account for this, so I propose that the actuation is working differently for the two. I guess this should be taken into account when designing the output matrices (unless the control is passed through a different output matrix than the DC offsets?). I'll quantify the difference shortly, and write a conversion factor between output alignment count (e.g. SUS-ITMY_PIT_COMM) and angle.

 

 

Attachment 1: SRM_PITCH_calib_curve.png
SRM_PITCH_calib_curve.png
Attachment 2: SRM_YAW_calib_curve.png
SRM_YAW_calib_curve.png
Attachment 3: ITMY_PITCH_calib_curve.png
ITMY_PITCH_calib_curve.png
Attachment 4: ITMY_YAW_calib_curve.png
ITMY_YAW_calib_curve.png
  16519   Fri Dec 17 12:32:35 2021 KojiUpdateSUSRemaining task for 2021

Anything else? Feel free to edit this entry.

- SUS: AS1 hanging

- SUS: PR3/SR2/LO2 3/4" thick optic hanging

v Electronics chain check (From DAC to the end of the in-air cable / From the end of the in-air cable to the ADC)
[ELOG 16522]

- Long cable installation (4x 70ft)

- In-air cable connection to the flange

- In-vac wiring (connecting LO1 OSEMs)

- LO1 OSEM insertion/alignment

- LO1 Damping test

 

  16522   Fri Dec 17 19:19:42 2021 KojiUpdateSUSRemaining task for 2021

I had the fear that any mistake in the electronics chain could have been the show stopper.

So I quickly checked the signal assignments for the ADC and DAC chains.

I had initial confusion (see below), but it was confirmed that the electronics chains (at least for LO1) are correct.

Note: One 70ft cable is left around the 1Y0 rack

 


There are a few points to be fixed:

- It looks like the ADC/DAC card # assignment has been messed up.

CDS ADC0 -> Cable label ADC1 -> AA A1 -> ...
CDS ADC1 -> Cable label ADC0 -> AA A0 -> ...
CDS DAC0 -> Cable label DAC2 -> AI D2 -> ...
CDS DAC1 -> Cable label DAC0 -> AI D0 -> ...
CDS DAC2 -> Cable label DAC1 -> AI D1 -> ...
(What is going on here... please confirm and correct as they become straight forward)

Once this puzzle was solved I could confirm reasonable connections from the end of the 70 cables to the ADC/DAC.

- We also want to change the ADC card assignment. The face OSEM readings must be assigned to ADC1 and the side OSEM readings to ADC0.
  My system wiring diagram needs to be fixed accordingly too.
  This is because the last channel of the first ADC (ADC0) is not available for us and is used for DuoTone.

Attachment 1: PXL_20211218_030145356.MP.jpg
PXL_20211218_030145356.MP.jpg
  16525   Sun Dec 19 07:52:51 2021 AnchalUpdateSUSRemaining task for 2021

The I/O chassis reassigns the ADC and DAC indices on every power cycle. When we moved it, it must have changed it from the order we had. We were aware of this fact and decided to reconnect the I/O chassis to AA/AI to relect the correct order. We forgot to do that but this is not an error, it is expected behavior and can be solved easily.

Quote:

I had the fear that any mistake in the electronics chain could have been the show stopper.

So I quickly checked the signal assignments for the ADC and DAC chains.

I had initial confusion (see below), but it was confirmed that the electronics chains (at least for LO1) are correct.

Note: One 70ft cable is left around the 1Y0 rack

 


There are a few points to be fixed:

- It looks like the ADC/DAC card # assignment has been messed up.

CDS ADC0 -> Cable label ADC1 -> AA A1 -> ...
CDS ADC1 -> Cable label ADC0 -> AA A0 -> ...
CDS DAC0 -> Cable label DAC2 -> AI D2 -> ...
CDS DAC1 -> Cable label DAC0 -> AI D0 -> ...
CDS DAC2 -> Cable label DAC1 -> AI D1 -> ...
(What is going on here... please confirm and correct as they become straight forward)

Once this puzzle was solved I could confirm reasonable connections from the end of the 70 cables to the ADC/DAC.

- We also want to change the ADC card assignment. The face OSEM readings must be assigned to ADC1 and the side OSEM readings to ADC0.
  My system wiring diagram needs to be fixed accordingly too.
  This is because the last channel of the first ADC (ADC0) is not available for us and is used for DuoTone.

 

  16534   Wed Dec 22 18:16:23 2021 KojiUpdateSUSRemaining task for 2021

The in-vacuum installation team has reported that the side OSEMs of ITMX and LO1 are going to be interfering if place LO1 at the planned location.
I confirmed that ITMX has the side magnet on the other side (Attachment 1 ITMX photo taken on 2016/7/21). So we can do this swap.

The ITMX side OSEM is sticking out most. By doing this operation, we will recover most of the space between the ITMX and LO1. (Attachment 2)

Attachment 1: ITMX_2016_07_21.jpg
ITMX_2016_07_21.jpg
Attachment 2: Screen_Shot_2021-12-22_at_18.03.42.png
Screen_Shot_2021-12-22_at_18.03.42.png
  2074   Fri Oct 9 03:53:56 2009 JenneUpdateAdaptive FilteringRemaking the ASS

The c1ass computer, which is now used for the OAF system, has many remnants from the days when it was actually used as an ASS.  These PIT and YAW filter banks and other things were taking up a lot of unnecessary space, so I deleted them in the ass.mdl file.  These files are all backed up, so we can always revert back to an older version when we want some Alignment Stabilization again someday.  I then did a make ass, following the instructions on the 40m Wiki -> Computers and Scripts -> Simulink to Front-End Code page.  Rana moved some things around, most notably all of the things (like the ASS screens) which were only in ...../users/alex/.... are now in ....../caltech/cds/advLigo/..... .  This required a few restarts of the c1ass machine (after a couple different versions of the simulink diagram....one to make sure we knew how to do it, and then again actually deleting the unused portions).

The big lesson of the night was that there are 2 signal paths for the PEM channels.  As is shown in Figure 3 in the mevans document, the PEM channels get the matching filters when they go to the adaptation algorithm, but when they go to the FIR filter, they do not get the matching filters. This is implemented by taking the output of the giant PEM matrix, and having a duplicate of each of the channels "selected for adaptation", one which gets filtered through the PEM_N_ADPT banks, and one which goes straight (in code-land) to the FIR filter.  So, it seems like all the filters which we had been including in the input side of the matrix for matching purposes need to be put in the output side.  One of the AA32 filters needs to stay in the input side, for actual anti imaging of the PEM channels, then we put the AA32 and AI32 which are for matching the ERR_EMPH and CORR filter banks up in the PEM_N_ADAPT banks.  Rana and I made these filters, and they are now turned on appropriately with the OAF down script (so that all the filters are ready and waiting for the OAF to be turned on).

A little success with getting the 3Hz peak reduced, but not a lot beyond that.  Tomorrow I'll put the accelerometers back where they used to be to see if they help out at all.

  11563   Thu Sep 3 00:45:25 2015 IgnacioUpdateIOORemeasured MC2 to MCL TF + Improved subtraction performance

Today, I remeasured the transfer function for MC2 to MCL in order to improve the subtraction performance for MCL and to quantify just how precisely it needs to be.

Here is the fit, and the measured coherence. Data is also attached here: TF.zip

 

OMG, I forgot to post the data and any residuals. LOL!

The transfer function was fitted using vectfit with a weighting based on coherence being greater than 0.95.

I then used the following filters to do FF on MCL online:

Here are the results:

Performance has definelty increased when compared to previous filters. The reason why I think we still have poor performance at 3 Hz, is 1) When I remeasured the transfer function, Eric and I were expecting to see a difference on its shape due to the whitening filters that were loaded a couple days ago. 2) Assuming the transfer function is correct, there is poor coherence at 3 Hz 3) The predicted IIR subtraction is worst at this frequency.

Attachment 1: TF.zip
  8498   Fri Apr 26 20:43:51 2013 JenneUpdateLSCRemeasuring the Schnupp asymmetry

[Jenne, Annalisa, with guidance from Koji]

We took data to remeasure the Schnupp asymmetry, using the Valera method that Jamie described in elog 4821

1  First, we locked the arms each with their PO(X,Y) signals, to get the alignment of each arm. 

2.  Then, we locked the Xarm with AS55I (Yarm optics, and PRM very misaligned, more than the misalign script).  Since AS55 was saturating, I changed the analog gain from 24dB to 21dB. (After work was completed, the analog gain was put back to the nominal 24dB for both I&Q.)

3.  We set up the Lockin similar to Jamie's description, with a few differences.  We used the same f = 103.1313, but used ampl=10cts.  Sin and cos gain were each 100.  We changed the lowpass filter from 0.1Hz to 0.05Hz (so each measurement had a settling time of at least 20sec).  We were using LSC-Lockin4, so the Lockin matrix was set so Lockin4 was reading from AS55Q, and the LSC output matrix was such that we were actuating on the ETM (X, then Y when we switched arms later).

4.  By hand, we roughly found the zero crossing of the lockin-q output (which corresponded also to zero of the lockin-I, since this is the place where all of the PDH signal was in AS55I, and the lockin was reading AS55Q). 

5.  We took points separated by 0.2 degrees, plus and minus 1 degree from the zero-crossing phase we had found (i.e., for the Xarm, we roughly found the zero crossing at -14.39 deg, so took data from -15.39 to -13.39degrees).  For each phase, we took 5 measurements (using ezcaread), at least 20 seconds apart.  After moving the phase, we waited at least ~40 seconds (watching the lockin outputs on striptool, they had completely settled after 30 or 40 seconds).

6.  We then repeated steps 2, 4 and 5 for the Y arm.  The lockin setup didn't change, except that now we actuate on ETMY.

We did a quick estimate calculation, from our rough zero-crossings to get a rough measurement of the Schnupp asymmetry.  DeltaPhi = (-14.39 -   -19.79) = 5.40 . This gives us (using F_sideband = 5*11066134, the current 11MHz marconi freq) a rough Schnupp asymmetry of 4 cm. 

Analysis to follow.

EDIT, JCD:  The Xarm gain at this time was -0.160, and the Yarm gain was -0.170

  8528   Fri May 3 17:32:59 2013 JenneUpdateLSCRemeasuring the Schnupp asymmetry

I have looked at / analyzed the Schnupp data that Annalisa and I took last week, as well as some more Yarm data that I took this week.

I only have one set of Xarm data, but 3 sets of Yarm data.  I had intended to do careful error analysis of the data, but from the 3 sets of Yarm data, the variance in the answer I get using any one of the Yarm sets is much larger than the error in a single measurement.

 Xarm_SchnuppData_April2013.png

Yarm_SchnuppData_April2013.png

Using the central Yarm zero crossing, I get a Schnupp asymmetry of 3.9cm.  The other 2 Yarm data points give Schnupp asymmetries of 3.7cm and 4.1cm, so I'm claiming a value of 3.9 +\- 0.2cm . This is within error of Jamie's measurement of 3.64 ± 0.32 cm (elog 4821).

  1738   Mon Jul 13 15:48:05 2009 ranaOmnistructureEnvironmentRemoval of the cold air deflection device for the MOPA chiller
Around 2 PM today, I removed the blue flap which has been deflecting the cold air from the AC down into the laser chiller.
Let's watch the laser trends for a few days to see if there's any effect.
  1740   Mon Jul 13 23:03:14 2009 rob, albertoOmnistructureEnvironmentRemoval of the cold air deflection device for the MOPA chiller

Quote:
Around 2 PM today, I removed the blue flap which has been deflecting the cold air from the AC down into the laser chiller.
Let's watch the laser trends for a few days to see if there's any effect.


Alberto has moved us to stage 2 of this experiment: turning off the AC.

The situation at the control room computers with the AC on minus the blue flap is untenable--it's too cold and the air flow has an unpleasant eye-drying effect.
  1741   Tue Jul 14 00:32:46 2009 rob, albertoOmnistructureEnvironmentRemoval of the cold air deflection device for the MOPA chiller

Quote:

Quote:
Around 2 PM today, I removed the blue flap which has been deflecting the cold air from the AC down into the laser chiller.
Let's watch the laser trends for a few days to see if there's any effect.


Alberto has moved us to stage 2 of this experiment: turning off the AC.

The situation at the control room computers with the AC on minus the blue flap is untenable--it's too cold and the air flow has an unpleasant eye-drying effect.


I turned the AC back on because the temperature of the room was going up so also that of the laser chiller.
  1745   Tue Jul 14 17:48:20 2009 JenneOmnistructureEnvironmentRemoval of the cold air deflection device for the MOPA chiller

Quote:

Quote:

Quote:
Around 2 PM today, I removed the blue flap which has been deflecting the cold air from the AC down into the laser chiller.
Let's watch the laser trends for a few days to see if there's any effect.


Alberto has moved us to stage 2 of this experiment: turning off the AC.

The situation at the control room computers with the AC on minus the blue flap is untenable--it's too cold and the air flow has an unpleasant eye-drying effect.


I turned the AC back on because the temperature of the room was going up so also that of the laser chiller.


I reinstalled the blue-flap technology on the AC, because the MOPA power was dropping like a rock. A light-ish rock since it wasn't going down too fast, but the alarms started going a little while ago because PMC trans was too low, because the power was getting a little low. The laser water chiller is reading 21.97C, which is higher than it normally does/did before the AC shenanigans (It usually reads 20.00C).

Attached is a look-back of 18 hours, during which you can see in the AMPMON the time that Rana removed the blue flap around 2pm yesterday and the AMPMON changes a little bit, but not drastically, the time around 11pm when the AC was turned off, and AMPMON goes down pretty fast, and about 12:30am, when Alberto turned the AC back on, and AMPMON starts to recover. I think that the AMPMON starts to go down again in the morning because it's been crazy hot here in Pasadena, so the room might be getting warmer, especially with the laser chiller-chiller not actively chilling the laser chiller (by not being pointed at the water chiller), so the water isn't getting as cold, and the HTEMP started to go up.

In the last few minutes of having put the blue flap back on the AC, the laser chiller is already reading a lower temperature, and the AMPMON is starting to recover.
Attachment 1: ACeffectonLASER2.png
ACeffectonLASER2.png
  572   Thu Jun 26 10:56:15 2008 Max JonesUpdatePEMRemoved Magnetometer
I removed the Bartington Magnetometer on the x arm to one of the outside benches. I'll be trying to determine if and how it works today. It makes a horrible high pitched sound which is due to the fact that the battery is probably 16 yrs old. It still works with ac power though and I want to see if it is still operating correctly before I ask to buy a new battery. Sorry for the bother.
  7246   Tue Aug 21 22:54:47 2012 JenneUpdateLockingRemoved beam dump from POY path

POY was looking funny, and the YARM wasn't locking.  It looked like POY wasn't seeing any light at all.  I went to check, and it looks like a beam dump got accidentally placed in the POY path during oplev adjustments this morning.  POY is back, locking continues.

  16676   Wed Feb 23 15:08:57 2022 AnchalUpdateGeneralRemoved extra beamsplitter in MC WFS path

As discussed in the meeting, I removed the extra beam splitter that dumps most of the beam going towards WFS photodiodes. This beam splitter needs to be placed back in position before increasing the input power to IMC at nominal level. This is to get sufficient light on the WFS photodiodes so that we can keep IMC locked for more than 3 days. Currently IMC is unlocked and misaligned. I have marked the position of this beam splitter on the table, so putting it back in should be easy. Right now, I'm trying to align the mode cleaner back and start the WFS loops once we get it locked.

  4561   Fri Apr 22 12:07:38 2011 josephb, steveUpdateCDSRemoved hanging D-sub to SCSI in 1X2

Problem:

Way back, Jay had D-sub to SCSI adapters made to adapt our existing Sander box AA filters to the new SCSI based IO chassis.  However, these did not fit inside the box.

At the time, we simply left the cards outside hanging, which was a hack and needed to be replaced.

Solution:

Steve modified a black AA filter box so that it could fit the D-sub to SCSI adapter board on it, plus strain relief the SCSI cable, rather than let it hang.  The back of the box was cut, and an extending piece of metal attached to the bottom of the box.  The adapter board was screwed into the box, the SCSI plugged in, then the SCSI cable is clamped to the extending metal as well.

This modification will be propagated to the 3 remaining AA filter boards using the D-sub to SCSI adapter.

  4590   Fri Apr 29 14:36:36 2011 josephb, steveUpdateCDSRemoved hanging D-sub to SCSI in 1X5

Quote:

Problem:

Way back, Jay had D-sub to SCSI adapters made to adapt our existing Sander box AA filters to the new SCSI based IO chassis.  However, these did not fit inside the box.

At the time, we simply left the cards outside hanging, which was a hack and needed to be replaced.

Solution:

Steve modified a black AA filter box so that it could fit the D-sub to SCSI adapter board on it, plus strain relief the SCSI cable, rather than let it hang.  The back of the box was cut, and an extending piece of metal attached to the bottom of the box.  The adapter board was screwed into the box, the SCSI plugged in, then the SCSI cable is clamped to the extending metal as well.

This modification will be propagated to the 3 remaining AA filter boards using the D-sub to SCSI adapter.

 The same modification was carried out at 1X5 for PRM & SRM.

Note:  D68L8EX-850Hz  are removed  and bypassed in 7 channels.

Attachment 1: P1070621.JPG
P1070621.JPG
  3080   Wed Jun 16 11:31:19 2010 josephbSummaryComputersRemoved scaling fonts from medm on Allegra

Because it was driving me crazy while working on the new medm screens for the simulated plant, I went and removed the aliased font entries in /usr/share/X11/fonts/misc/fonts.alias that are associated with medm.  Specifically I removed the lines  starting with widgetDM_.  I made a backup in the same directory called fonts.alias.bak with the old lines.

Medm now behaves the same on op440m, rosalba, and allegra - i.e. it can't find the widgetDM_ scalable fonts and defaults to a legible fixed font.

  2806   Mon Apr 19 07:38:07 2010 ranaHowToElectronicsRepair and Calibration of SR560: s/n 59650

Frank noticed that this particular SR560 had an offset on the output which was unzeroable by the usual method of tuning the trim pot accessible through the front panel.

I tried to zero the offset using the trimpots inside, but it became clear that the offset was due to a damaged FET, so Steve ordered ~20 of the (now obsolete*) NPD5564.

I replaced this part and adjusted the offsets and balanced the CMRR of the differential inputs mostly according to the manual (p. 17). There are a few notes that should be added to the procedure:

  1. It can sometimes be that the gain proscribed by the manual is too high and saturates the output for large offsets. If that's the case, simply lower the gain, trim the offset, then return the gain to the specified value and trim again.
  2. The limit in trimming the offset is the stick slip resolution in the trim pot. This can potentially leave the whole preamp in an acoustically sensitive state. I tapped the pots with a screwdriver after tuning to make sure it was in more of a 'sticky' rather than 'slippy' region of the knob. A better design would allow for more filtering of the pot.
  3. In the CMRR tuning procedure it says to 'null sine wave output' but it should really say 'null the sine wave component at the drive frequency'. The best CMRR tuning uses a 1 kHz drive and leaves a residual 2 kHz signal due to the distortion imbalance (of the FETs I think).
  4. The CMRR tuning upsets the DC offset trim and vice versa. The best tuning is gotten by iterating slightly (go back and forth once or twice between the offset and CMRR tuning procedures).

It looks like its working fine now. Steve's ordering some IF3602 (low-noise, balanced FET pair from Interfet) to see if we can drop the SR560's input noise to the sub-nV level.

Noise measured with the input terminated with a BNC short (not 50 Ohms) G=100, DC coupled, low-noise mode:

Input referred noise (nV/rHz)
f e_n

0.1

200
1 44
10 8
100 5
1000 5
10000 4
  9560   Thu Jan 16 21:38:13 2014 ericqUpdateLSCRepeat of PRC length measurement

[ericq,Jenne]

Since we don't have agreement between the measurements we made the other day and the earlier estimations, I wanted to repeat the demodulation angle measurement. We had to do a few things to keep the PRMI locked, since in the last few days, it hasn't been stable enough.

The mode cleaner had been very fussy lately; the WFS were pushing in a way that caused fast oscillations of the transmission and reflection powers. I turned off the servos, manually aligned the mode cleaner to transmission of about 15k and refl of about .4, centered the beams on the WFS QPDs, and turned the loops back on. Things were much stable after that. Also, Jenne noticed that the PMC loop had walked the laser PZT temperature to a bad place, and fixed it.

After aligning the carrier locked PRMI, the last piece needed to get things stable enough for sideband locking was turning off the angular damping on the PRM suspension screen (this was turned back on when we were done). Waiting until evening noise levels probably helped too. We used a 1000 count MICH excitation in the PRMI case, and recorded data for about a minute in one degree steps around the demodulation phase that looked to put the excitation entirely within the Q of the PD. Also, we notched out the excitation frequency in the MICH servo bank for today's measurement; I think it's outside of the loop bandwidth anyways, but it's good to be sure. 

Jenne and I pondered a bit whether changing the AS55 demodulation phase while it (AS55 Q) is being used as the MICH control signal introduces subtleties that we haven't anticipated, but couldn't come up with anything concrete. Changing the angle from the what maximizes the Q just looks like a slight change in MICH gain, and shouldn't affect the phase of the excitation signal on the PD...

In any case, the data have been recorded, and the results will follow soon. 

  15966   Thu Mar 25 16:02:15 2021 gautamSummarySUSRepeated measurement of coil Rs & Ls for PRM/BS

Method

Since I am mainly concerned with the actuator part of the OSEM, I chose to do this measurement at the output cables for the coil drivers in 1X4. See schematic for pin-mapping. There are several parts in between my measurement point and the actual coils but I figured it's a good check to figure out if measurements made from this point yield sensible results. The slow bias voltages were ramped off under damping (to avoid un-necessarily kicking the optics when disconnecting cables) and then the suspension watchdogs were shutdown for the duration of the measurement.

I used an LCR meter to measure R and L - as prescribed by Koji, the probe leads were shorted and the readback nulled to return 0. Then for R, I corroborated the values measured with the LCR meter against a Fluke DMM (they turned out to be within +/- 0.5 ohms of the value reported by the BK Precision LCR meter which I think is reasonable).

Result

                   PRM
Pin1-9 (UL)   / R = 30.6Ω / L=3.23mH  
Pin2-10 (LL)  / R = 30.3Ω / L=3.24mH
Pin3-11 (UR) / R = 30.6Ω / L=3.25mH
Pin4-12 (LR) / R = 31.8Ω / L=3.22mH
Pin5-13 (SD) / R = 30.0Ω / L=3.25mH

                       BS
Pin1-9 (UL)   / R = 31.7Ω / L=3.29mH
Pin2-10 (LL)  / R = 29.7Ω / L=3.26mH
Pin3-11 (UR) / R = 29.8Ω / L=3.30mH
Pin4-12 (LR) / R = 29.7Ω / L=3.27mH
Pin5-13 (SD) / R = 29.0Ω / L=3.24mH

Conclusions

On the basis of this measurement, I see no problems with the OSEM actuators - the wire resistances to the flange seem comparable to the nominal OSEM resistance of ~13 ohms, but this isn't outrageous I guess. But I don't know how to reconcile this with Koji's measurement at the flange - I guess I can't definitively rule out the wire resistance being 30 ohms and the OSEMs being ~1 ohm as Koji measured. How to reconcile this with the funky PRM actuator measurement? Possibilities, the way I see it, are:

  1. Magnets on PRM are weird in some way. Note that the free-swinging measurement for the PRM showed some unexpected features.
  2. The imbalance is coming from one of the drive chain - could be a busted current buffer for example.
  3. The measurement technique was wrong.
  9335   Mon Nov 4 12:07:55 2013 DmassOmnistructureGeneralReplaced Broken Drill Bits

I broke a small bit while using the 40m drill press to vent some 1/4-20 screws for the cryo experiment.

I replaced it and refilled the small bit row in the bit index I was using; there were ~10 missing sizes

  9202   Fri Oct 4 12:33:27 2013 MasayukiUpdateSUSReplaced the laser for Optical Lever of ETMY

[Steve, Masayuki]

We replaced the laser for optical lever of ETMY. And also we aligned the path so that beam spot hits the center for each optics. I attached the spectrum of the SUS-ETMY_OPLEV_SUM, the red curve is with old laser, and blue curve is with the new laser. We also measured without laser so as to measure the QPD dark noise (green curve). The change is significant, and seems much closer to other oplev spectrum.(Brown curve is the oplev spectrum of ITMY)

The new laser is:

Manufacture name: JDSU, Model number: 1103P, Serial number: PA892324

The injection power is 3.7 mW and the out coming power is 197 uW (measured just before the QPD). The output value of the SUS-ETMY_OPLEV_SUM is about 8500.

First we measure 2 spectrum ( including the dark noise). After that we replace the laser and align the optical lever path. We changed the post of one of the mirror (just before the QPD) because the hight was too low. Inside of the chamber is darker than before - actually we had scattering light inside the chamber before. We dumped the reflected light from QPD. And then we measured the spectrum of the oplev output. I also aligned oplev of ETMY after restoring the YARM configuration using IFO configure screen.

We don't know actually what was the problem, laser quality or the scattering light or some clipping. But the oplev seems to be better.

Steve:  Atm2 shows increased gains correction later for UGF elog 9206

Attachment 1: OPLEV_SUM.pdf
OPLEV_SUM.pdf
Attachment 2: ETMYoplev.png
ETMYoplev.png
  9203   Fri Oct 4 14:36:44 2013 ranaUpdateSUSReplaced the laser for Optical Lever of ETMY

  That's good, but please no more Oplev work. We want to do all of it at once and to make no more changes until we have all the parts (e.g. dumps and correct lenses) in hand and then talk over what the new design will be. I don't want to tune the beam size and loop shape every week.

  9206   Sun Oct 6 18:37:43 2013 ranaUpdateSUSReplaced the laser for Optical Lever of ETMY

I centered the ETMY OL today and found that the UGF was around 3-4x too LOW after the laser swap and re-alignment. That's why the Y arm has been shaking so much today.

NO more OL work without loop measurements and noise measurements.

web-burnt-toast.jpg

  9212   Mon Oct 7 10:51:18 2013 SteveUpdateSUSReplaced the laser for Optical Lever of ETMY

 Just plot.

RA: I'm not sure how to interperet this; I think that the SUM channel is divided by the SUM so that this is supposed to be RIN, but not sure. Can someone please take a look into the SUS model and then explain in the elog what the SUM normalization algorithm is?

Attachment 1: ETMXoplevETMY.png
ETMXoplevETMY.png
Attachment 2: oplevSettings.png
oplevSettings.png
  8125   Wed Feb 20 23:25:50 2013 ZachSummaryElectronicsReplacement for the AD743: OPA140 and OPA827

I have found two great FET input chips that rival the storied, discontinued AD743. In some ways, they are even better. These parts are the OPA140 and the OPA827.

Below is a plot of the input-referred voltage noise of the two op amps with Rsource = 0, along with several others for comparison. The smooth traces are LISO models. The LT1128 and AD797 are BJT-input parts, so their voltage noise is naturally better. However, the performance you see here for the FET parts is the same you would expect for very large source impedances, due to their extremely low current noise by comparison. I have included the BJTs so that you can see what their performance is like in an absolute sense. I have also included a "measured" trace of the LT1128, since in practice their low-frequency noise can be quite higher than the spec (see, for example, Rana's evaluation of the Busby Box). The ADA4627 is another part I was looking into before, the LT1012 is a less-than-great FET chip, and the AD797 a less-than-great BJT.

As you can see, the OPA140 actually outperforms the AD743 at low frequencies, though it is ~2x worse at high frequencies. The OPA827 comes close to the AD743 at high frequencies, but is a bit worse at low ones. Both the OPA140 and OPA827 have the same low-frequency RMS spec, so I was hoping it would be a better all-around part, but, unfortunately, it seems not to be.

The TI chips also have a few more things on the AD743:

  • Input current noise @ 1kHz
    • AD743: 6.9 fA/rtHz
    • OPA827: 2.2 fA/rtHz
    • OPA140: 0.8 fA/rtHz (!)
  • Input bias (offset) current, typ
    • AD743: 30 pA (40 pA) --- only for Vsupply = ±5 V
    • OPA827: ±3 pA (±3 pA) --- up to ±18V
    • OPA140: ±0.5 pA (±0.5 pA) (!) --- up to ±18V
  • Supply
    • Both OPA140 and OPA827 can be fed single supplies up to 36V absolute maximum
    • The OPA140 is a rail-to-rail op amp

These characteristics make both parts exceptionally well suited for very-high source impedance applications, such as very-low-frequency AC-coupling preamplifiers or ultra-low-noise current sources.

 ULN_opamp_comparison_2_20_13.png

(Apologies---the SR785 I was using had some annoying non-stationary peaks coming in. I verified that they did not affect the broadband floor).

R.I.P., AD743

  8151   Sat Feb 23 18:01:38 2013 ZachSummaryElectronicsReplacement for the AD743: OPA140 and OPA827

Rana suggested that I measure the OPA827 and OPA140 noise with high source impedance so as to see if we could find the low-frequency current noise corner. Below is a plot of both parts with Rs = 0, 10k, and 100k.

As you can see, both parts are thermal noise limited down to 0.1 Hz for up to Rs = 100k or greater. Given that the broadband current noise level for each part is ~0.5-1 fA/rtHz, this puts an upper limit to the 1/f corner of <100 Hz. This is where the AD743 corner is, so that sounds reasonable. Perhaps I will check with even higher impedance to see if I can find it. I am not sure yet what to make of the ~10-20 kHz instability with high source impedance.

OPA140_OPA827_noise_vs_Rs.png

EDIT: The datasheets claim that they are Johnson noise limited up to 1 Mohm, but this is only for the broadband floor, I'd guess, so it doesn't really say anything about the low frequency corner.

Screen_Shot_2013-02-24_at_12.12.23_PM.png Screen_Shot_2013-02-24_at_12.12.43_PM.png

Quote:

I have found two great FET input chips that rival the storied, discontinued AD743. In some ways, they are even better. These parts are the OPA140 and the OPA827.

 

ELOG V3.1.3-