40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 189 of 341  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  7835   Fri Dec 14 16:35:38 2012 AyakaUpdateLSCHigh frequency sensitivity improved

Since I found that the the AS sensitivity seems to be limited by circuit noise, I inserted a RF amplifier just after the AS RF output.
Now, the sensitivity is improved and limited by the dark noise of the PD.

ASspe_noise_amp.pdf

(Note: I did not apply the open loop TF on this xml file.)
REF3: dark noise + circuit noise + WT filter noise + ADC noise
REF4: circuit noise + WT filter noise + ADC

With this situation, I injected the acoustic noise:

ASspe_acoustic_amp.pdf

REF5, 6, 7: with acoustic excitation
no reference: without acoustic excitation

We could see the coherence only at the same frequencies, around 200 Hz as we saw before (elog).

Attachment 3: ASnoise.tar.gz
  7836   Fri Dec 14 17:12:19 2012 Evan HallUpdatePSLPMC yaw tune-up (from Wednesday night)

Wednesday night, there was ~0.4 V on the PMC transmission PD. I adjusted the steering mirrors into the PMC and got the transmission up to 0.81 V.

  7837   Mon Dec 17 11:20:58 2012 JenneUpdateSUSBeam dumps on vertex oplevs removed

I'm not sure when this was done, but there were beam dumps in front of the lasers for BS/PRM oplevs as well as ITMY/SRM oplevs.  MICH wasn't holding lock very nicely, so I poked around, and the Sum values for all of these optics' oplevs seemed too low, so I went to look, and found dumps.  I have removed these, and now BS and ITMY oplevs are back to normal.  (PRM and SRM are still misaligned right now, so I'll check those later, but they should be fine).

BS's oplev has been enabled while non-existant, at least for the whole weekend, since I found it enabled.  ITMY I found misaligned, so it's oplev servos were off.

In other news, we should get back in the habit of restoring all optics before we leave for the night / whenever locking activities are finished. 

  7838   Mon Dec 17 14:13:55 2012 JenneUpdateSUSPRM oplev gains restored

Quote:

PRM oplev gains set to zero from PIT 0.15 and YAW -0.3 and damping restored

 Put them back to normal.

  7839   Mon Dec 17 14:45:01 2012 JenneUpdateAlignmentVideos with PRMI locked

[Jamie, Jenne]

Koji and Jamie locked the PRMI, and then Jamie and I took some videos. 

Video 1:   https://www.youtube.com/watch?v=jszTeyETyxU shows the face of PR2.

Video 2:   https://www.youtube.com/watch?v=Tfi4I4Q3Mqw shows the back of PR3, the face of PR2, as well as REFL and AS.

Video 3:   https://www.youtube.com/watch?v=bLHNWHAWZBA is the camera looking at the face of PRM and (through a viewing mirror) BS.

 

If you watch video 1, you'll see how large the beam gets on the face of PR2.  The main spot, where the straight-through, no-cavity beam is, is a little high of center.  The rest of the inflated beam swirls around that point.

Video 2 shows the same behavior, but you also see that we're much too high on PR3, and too close to the right (as seen on the video) side.

Video 3 is very disconcerting to me.  The main, stationary beam spot seems nicely centered, but the resonant beam, since it inflates and gets big, is very close to the right side of the PRM (as seen on the video). 

It wouldn't surprise me if, were we able to quantify the beam clipping loss on PR3 and PRM, the clipping were the reason we have a crappy PRC gain.  This doesn't explain why we have such a weird inflated beam though.

  7840   Mon Dec 17 18:39:02 2012 JenneUpdateIOOIPPOS centered, no IPANG beam

I centered IPPOS.  I do not find any IPANG beam on the ETMY table, even waving the IR card in the black beam tube.

I took photos of the PZT2 HV supplies with the new camera, but I can't figure out how to get the pictures off the camera.  I guess the camera is smarter than I am.

  7841   Mon Dec 17 19:47:15 2012 ranaUpdatePEMSeismic StripTool config updated

I have updated the Seismic Striptool display which is plotted on the wall in the control room. Please take a look and make comments. We should finalize it and not change it anymore.

By having an unchanging display, we can get used to small changes in the seismic environment which disrupt our locking.

  1. y-scale is now linear; the log-scale was suppressing the factor of 2-3 variations which are important to us.
  2. Just as the rainbow does, the colors now go from red to purple to represent the noise from 0.1 - 30 Hz: the red traces are 0.1-0.3 Hz, the green/yellow traces are 0.3-3 Hz, and the blue/purple traces are 3-30 Hz.
  3. This is just showing GUR1. Let's try to keep this seismometer working so that we can have some long term record of the seismicity here. This means don't click off the buttons, disconnect the sensor, reboot the machine, etc. When you do do these things, elog them.
Attachment 1: SeismicRainbow.png
SeismicRainbow.png
  7842   Mon Dec 17 20:22:07 2012 JamieUpdateGeneralVent plan: WE VENT TOMORROW

We will vent tomorrow (12/18)

After lengthy discussion, I have determined that we should vent now, with the primary goal of this vent to replace the input steering PZTs with the new active tip-tilts.  Since we still don't understand exactly what's going on with the PRC, it's unclear what we would do to attack the problem.  We need to do more modeling and measurements first.  We should limit the goal of this vent to replacing the PZTs, and then close up and do more measurements with better modeling and improved input point in hand.

There is limited time this week before everyone leaves for two-week holidays on Thursday or Friday.  The reason to not vent would be that we don't want to leave the IFO at air during the two week holiday.  People seem to think that this is not a problem, so we don't gain anything by waiting.  Therefore we vent now and do what we can before people take off.

The goal for this week is to replace PZT1 only:

Now: Jenne and Manasa are doing vent prep.  Manasa is lowering the input power and preparing the mode cleaner.  Jenne centered IPPOS and IPANG.  This will allow us to check how the input alignment changed during the vent.

12/18: Steve is going to start the vent as soon as he gets back from the dentist, at around 10am.  He will regulate the vent such that we are ready to lock the mode cleaner by 4pm.  At that time we will lock the MC and recheck the input alignment with IPPOS/ANG, with the idea being to see if anything moves during the vent.

12/19: First thing in the morning we take off the access connector ONLY.  The access connector is all we'll need to replace PZT1.    Put light door on the OMC chamber side immediately, since we won't need to get in there at all.  We won't need the light access connector.

For the rest of Wednesday we'll remove PZT1 and install the new active TT.  We'll be using the current out-of-vac cable for PZT1 for the new TT.  We should only have to modify the rack end of the cable to accommodate the coil driver.  This should be a small modification.  Given that we have no wiring diagrams we'll have to pin it out in situ.

12/20: Hopefully finish up TT installation.

Jenne leaves 12/20, Manasa and Jamie leave 12/21.  We will either leave light doors on access connector holes, or possibly Rana, Koji, and Steve will replace access connector on Friday so that we can pump down to 1 Torr or something so that we leave it there over the holiday.

After we return from vacation:

PZT2/TT2 installation.  This will be less straight forward since the new TT has a bigger foot print than PZT2 and will block the PRM optical levers.  We'll need one additional steering mirror to redirect the oplev around the TT.  See elog 7815.

Once the new TTs are installed, we'll reevaluate where we're at.  If PRC modeling has progressed and we have an idea of something to work on with the PRC, we can.  Otherwise, we'll just button up, pump down, and get on with some better PRC measurements.

  7843   Mon Dec 17 21:33:45 2012 ManasaUpdateGeneralVent plan: WE VENT TOMORROW

Quote:

Manasa is lowering the input power and preparing the mode cleaner.

I aligned the PSL angle and position QPDs...then attenuated the input laser power using HWP-PBS-HWP combo from 1.28W to 100mW following instructions from elog 6892 and elog 7299.

To enable MC locking, I replaced the 10% BS before the MC_REFL PD with Y1 mirror. I tweaked the steering mirrors at the PSL table a teeny tiny bit to enable MC locking. MC is now locked at low power with 1.0 transmission.

  7848   Tue Dec 18 07:03:40 2012 ManasaUpdateGeneralVent plan: WE VENT TOMORROW

Quote:

 

12/19: First thing in the morning we take off the access connector ONLY.  The access connector is all we'll need to replace PZT1.    Put light door on the OMC chamber side immediately, since we won't need to get in there at all.  We won't need the light access connector.

 The access connector is all we'll need to replace PZT1.

Really? Can you be sure of the input pointing this way?

 

 

 

 

 

 

  7849   Tue Dec 18 10:43:20 2012 SteveUpdateVACvent has completed

 The 40m vacuum envelope is at atm    It took 4.5 hours at ~3 Torr/min speed. Atm1

 

What I did:

Turned PZT voltages off: 84.1V at OMC-rack location

                                           -  99V at 1Y3 location as PZT_pitch,

                                             56.6V KEPCO at 1Y3 location as PZT_yaw                                           

Took screen shuts of SUS_SUMMARY, yesterday,  Atm3

Turned off OPLEV _SERVOs, today , Atm2

Closed PSL_SHUTTER and green shutters at the ends

 

Set vacuum valves for vent position and opened VM2 for the RGA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attachment 1: vent74.png
vent74.png
Attachment 2: bvent.png
bvent.png
Attachment 3: befVent.png
befVent.png
  7850   Tue Dec 18 15:32:29 2012 JenneUpdateSUSTT angle of incidence

Quote:

At least, we don't want to use Al-coated mirrors. We should use multilayer dielectric mirrors.

 I popped into the cleanroom earlier today, and all 4 active TTs have dielectric coatings.  I'm not sure why the mirror in this photo looks funny, but the actual mirrors installed are correct, at least in type of coating. 

I'm not sure if Den wrote down what mirrors are actually in there, and I didn't look carefully - I don't know if they are G&H, CVI, other mystery company?

  7851   Tue Dec 18 15:51:33 2012 JenneUpdateIOOOld G&H TT mirrors' phase maps measured

I took the 2 G&H mirrors that we de-installed from PR3 and SR3 over to GariLynn to measure their phase maps. Data is in the same place as before, http://www.ligo.caltech.edu/~coreopt/40MCOC/Oct24-2012/ .  Optic "A" is SN 0864, and optic "B" is SN 0884, however I'm not sure which one came from which tip tilt.  It's hard to tell from what photos we have on picasa.

Both are astigmatic, although not lined up with the axes defined by where the arrow marks the HR side.  Both have RoCs of -600 or -700m. RMS of ~10nm.

  7852   Tue Dec 18 16:37:17 2012 JamieUpdateAlignmentPost vent, pre door removal alignment

[Jenne, Manasa, Jamie]

Now that we're up to air we relocked the mode cleaner, tweaked up the alignment, and looked at the spot positions:

mcspot_post_vent.pdf

The measurements from yesterday were made before the input power was lowered.  It appears that things have not moved by that much, which is pretty good.

We turned on the PZT1 voltages and set them back to their nominal values as recorded before shut-down yesterday.  Jenne had centered IPPOS before shutdown (IPANG was unfortunately not coming out of the vacuum).  Now we're at the following value: (-0.63, 0.66).  We need to calibrate this to get a sense of how much motion this actually is, but this is not insignificant.

 

  7853   Tue Dec 18 16:37:40 2012 SteveUpdateVAClast RGA scan before vent

 

 

Attachment 1: pd74m36d.png
pd74m36d.png
Attachment 2: 36d_vacuum_normal.png
36d_vacuum_normal.png
  7854   Tue Dec 18 16:44:00 2012 rijuUpdate Photodiode transimpedance

Today I measured the dark current of the PDA10CF. The output of the PD was connected to the A channel of the network analyzer, when there was no light falling on it. The response is collected using GPIB.

I will upload the result shortly.

  7855   Wed Dec 19 11:14:25 2012 SteveUpdateSUSBeCu wire in stock

Quote:

Just in case we want to retrofit the Tip/Tils with Beryllium Copper wire, here are links to a few sources which have a supply of the right composition and temper:

http://www.lfa-wire.com/Tempered-Alloy-25_C17200.htm

http://www.alloywire.com/beryllium_copper_CB_101.html

http://www.ngk.co.jp/english/products/electronics/berylliumcopper/wire/index.html

http://www.goodfellow.com/E/Copper-Beryllium-Wire.html

 

I don't think its worth it to do something to modify them unless we get a real reduction in the hysteresis - need a benchtop test setup ASAP.

 Be Copper in the lab is from Ca Fine Wire :  alloy 10 CDA 17 in sizes .008"  &  0.002"  There are other sus wire choices in the Drever lab

  7856   Wed Dec 19 11:53:23 2012 SteveUpdateVACAC removed

 Koji, Manasa, Jenne, Jamie, Bob and Steve

Access connector removed this morning and work has began in the IOO chamber.  BE WARE OF ANTS !

 

Attachment 1: workingatatm.png
workingatatm.png
  7857   Wed Dec 19 18:40:00 2012 JenneUpdateIOOPZT1 removed, TT1 in place

[Manasa, Jamie, Jenne]

PZT1 has been removed, and is wrapped in foil and stored in a (labeled) plastic box.

We beeped the cable between the cable holder bracket on the in-vac table, and the outside of the feedthrough.  Things are mirrored, so pins 1,14 (one edge on the feedthrough) go to pins 13,25 on the in-vac cable bracket.

Tip Tilt, serial number ### (Manasa will get the serial number and put it in the elog) was taken out of the cleanroom, for use as TT1.

We checked the epics controls from the TT screen that Jamie made a while back (accessible from the ASC tab on the sitemap) to the output of the AI board.  Things were very weird, but Jamie fixed them up in the model, then rebuilt and restarted the ASS model so that now the epics channel corresponding to, say, UL actually actuates on the UL output of the boards.

We tested the cables from the rack to the feedthrough, and discovered that they are also mirrored, to undo the mirroring between the feedthrough and the in-vac bracket.

Jamie made an adapter cable to take the pinout of the coil driver boards correctly to the pinout of the quadrupus cable, through this double-mirroring (i.e. no net mirror effect).

We set up a laser pointer on a tripod outside the door of the MC chamber (where the access connector usually is), and pointed it at the back of the TT.  Den or whomever put the cable on the TT didn't follow the diagram (or something got messed up somewhere), because when we actuate in pitch (+ on the uppers, - on the lowers), we see the TT move in yaw, and vice versa. 

We are in the process of removing the quadrupus from the TT, figuring out which connector goes where, putting it on correctly, and re-testing.

Depending on how far things get tonight, Jamie and Manasa may ask Steve to help them remove the BS door, so they can get started on replacing PZT2 with TT2.

  7858   Wed Dec 19 19:28:12 2012 ManasaUpdateIOOPZT1 removed, TT1 in place

Quote:

Tip Tilt, serial number ### (Manasa will get the serial number and put it in the elog) was taken out of the cleanroom, for use as TT1.

 

Depending on how far things get tonight, Jamie and Manasa may ask Steve to help them remove the BS door, so they can get started on replacing PZT2 with TT2.

Tip-Tilt TT1

 

I have fixed TT1 close to what it's position looks like in the CAD drawing. Only 2/3 of TT1 rests on the table...so we need to be extra careful when we will move it for alignment.

Serial Number:  SN 027

dcc number: D1001450-V2

 We are still in the process of removing the quadrupus from the TT, figuring out which connector goes where, putting it on correctly, and re-testing.

We closed the IMC chamber with light doors calling it a day!

 

  7859   Wed Dec 19 20:18:51 2012 ranaUpdateComputersWe are Changing the Passwerdz next week----

Be Prepared

http://xkcd.com/936/

  7861   Thu Dec 20 10:11:12 2012 ManasaUpdateIOOTT1 connections

[Jamie,Manasa]

We've been trying to figure out the connector for the TTs. Since, we found the cables were plugged in wrong in TT1; when triggered in pitch, the mirror moves in yaw and viceversa.

Referring to the cabling diagram, D1000234-v10, we infer that connectors go as J2 - LR, J3 - UR, J4 - LL, J5 - UL and the connections are made looking at the mirror from behind.

  7862   Thu Dec 20 10:35:27 2012 SteveUpdateIOOTT1 connections

Quote:

[Jamie,Manasa]

We've been trying to figure out the connector for the TTs. Since, we found the cables were plugged in wrong in TT1; when triggered in pitch, the mirror moves in yaw and viceversa.

Referring to the cabling diagram, D1000234-v10, we infer that connectors go as J2 - LR, J3 - UR, J4 - LL, J5 - UL and the connections are made looking at the mirror from behind.

 The view looking at the optic from the back:  

UL    UR

LL    LR

 

 

  7863   Thu Dec 20 12:14:19 2012 JamieUpdateGeneralproblem with in-vac wiring for TTs

Nic and I discovered a problem with the in-vac wiring from the feed-thru to the top of the table.  Pin 13 at the top of the stack, which is one of the coil pins on the tip-tilt quadrapus cables, is *the* shield braid on the cable that goes to the feed-thru.  This effectively shorts one of our coil signals.

There are three solutions as we see it:

* swap pin 13 for something else at the top of the stack, and then swap it back somewhere else outside of the vacuum.

* swap *all* the pins at the top of the table to be the mirror.  We would then need to mirror our cables on the outside, but that's less of an issue.

* make a mirror adapter that sits at the top.  This would obviously need to be cleaned/baked.

None of these solutions is particularly good or fast.

  7864   Thu Dec 20 17:13:56 2012 JamieUpdateGeneralhow to deal with problem with in-vac wiring for TTs

So this is obviously a general problem for all the TTs.  Our in-vacuum wiring is unfortunately mirrored relative to that of aLIGO, or at least:

  • aLIGO: in-vacuum pin 1 tied to shield (T1200131)
  • 40m: in vacuum pin 13 tied to shield

And again, the problem is that pin 13 on the TT quadrapus cables is the one of the coil pins for one of the OSEMs.

I think the right solution is to make mirroring adapter cables for the TTs.  Modifying the pins on the stack-top brackets for just the TTs would leave us with a bunch of brackets that are different than all the rest, which I think is a bad idea.  Therefore we leave all the feed-thru-->bracket wiring the same, and make adapters.  I'll describe the adapters in a follow-up post.

The silver lining to this whole thing, if there is one, is that I wired the polarity on the out-of-vac adapter cable at the coil driver in such a way that the drive/send signal went to the grounded in-vac pin.  If I had by chance wired the polarity oppositely everything would probably have worked, except that the return for one of the coils would have gone through the cable shield and the chamber, rather than the return pin to the coil driver.  I'll let you image the problems that would have caused.

Making new adapters will take a little while, but I think we can proceed with the installation and alignment with a temporary setup in the mean time by taking advantage of the polarity I mention above.  We can temporarily swap the polarity so that we can drive current to the coil using pin 13.  This will allow us to complete the installation and do all the alignment.  Once the in-vac adapter cable arrives, we just put it in, fix the out-of-vac polarity, check that everything works as expected, and button up.

We'll pick up all this when we're back on Jan 7.  Steve will put in an order for the in-vac adapter cables ASAP.

I take full responsibility for this fuck up.  We've been unable to find any in-vac wiring diagrams, but I should have checked all of the wiring during the last vent so that we could have prepared for this ahead of time.  Sorry.

  7865   Thu Dec 20 18:33:52 2012 JamieUpdateGeneralin-vac adapter cables for TTs

We need short cables that mirror the pins:

invac-adapter-cable.pdf

The male side will plug into the 25-pin female on the stack-top bracket.  The tip-tilt quadrapus cable will plug into the female side. This will match up pin 1 on the tip-tilt cable, which is connected to it's shield, to pin 13 on the bracket, which is the shield of the cable that runs to the stack.

They need to be vacuum compatible.  Shorter length is preferred, and there is no minimum length (something like an all-in-one gender changer would be ideal, but probably expensive to have made).


 

  7868   Fri Dec 21 09:55:23 2012 SteveUpdateGeneralin-vac adapter cables for TTs

 

 Accu-Glass is closed till Jan 2, 2013

Atm2 would be the ideal solution Gender Adaptor Special with male - female sides and vented D-sub. How many are we getting 2 or 6 ?

Attachment 1: extensioncable.pdf
extensioncable.pdf
Attachment 2: genderchanger.pdf
genderchanger.pdf
  7869   Fri Dec 21 16:50:30 2012 RanaUpdateSUSTT in vac DB25 pin swapping

[Koji, Rana, Nic, Steve]

We went to the 25-pin D cable which connects to the TT1 quadropus and succeeded eventually in swapping pins 12/24 into the 13/25 positions.

  1. The D-sub connector is a custom made LIGO part and so it doesn't at all work to use the standard pin extractor tools to move the pins out; we should have investigated this before spending all this time poking at and possibly damaging the existing connector.
  2. To move the pins, we have to partially dis-assemble the connector and fish the pins/wires through the appropriate holes. Unfortunately, the design is such that we nearly lose all of the pins when trying to do this. Pictures describe the story better than words.
  3. After the swap we tried to test the TT, but again wasted some time because the vac feedthrough was incorrectly labeled. The 25-pin feedthrough labeled as "PZT1" does not, in fact, connect to the TT. Instead, its the one slightly above it that is labeled "Pico". I have moved the PZT1 sticker up to match the actual connector. In order to discover this, we beeped through several stages of the coil driver, cable system. WE need to order some in-line D-sub breakouts for 25pin, 37pin, and 9pin which are similar to the ones we have now for 15pin. These are better than the green terminal block breakouts.
  4. After this, we were able to see the TT move, but elected to leave the final piece of the work (determining which microD goes with which coil) to when Jamie gets back.
  5. The TT screen is not good: it needs to be just like the usual sus screen so that we can put in offsets, excitations, etc. Perhaps also the ASC-TT screen can link to the TT:SUS screens. We can just copy the eLIGO TT screens to get going.
  7870   Fri Dec 21 19:49:39 2012 RijuUpdate Photodiode transimpedance

I have repeated the transimpedance measurement of PDA10CF. Also made the dark current noise measurement by connecting the PDA10CF output to the A channel of network analyzer.  The results are as follows. I I started to take the reading for shot noise intercept current using a light bulb in front of the PD, changing the current through the bulb, but at higher current the bulb filament got broken, so the experiment is incomplete.

Attachment 1: PDA10CFrepeat.pdf
PDA10CFrepeat.pdf
Attachment 2: darknoiseVpda10cf.pdf
darknoiseVpda10cf.pdf
Attachment 3: darknoiseApda10cf.pdf
darknoiseApda10cf.pdf
Attachment 4: PDA10CF_z.pdf
PDA10CF_z.pdf
  7871   Wed Jan 2 06:52:50 2013 KojiUpdateSUSTT in vac DB25 pin swapping

[Koji, Rana, Nic, Steve]

I recalled that we used an optical lever to check if the TT is moving or not.
We used a laser pointer on a tripod, which was prepared by Steve.

I should also note that we stepped back the eddy current dampers from the magnets
in order to enhance the motion of the suspension. They should be restored in the end.

The mini-D connectors on the OSEMs are loosened so that we can plug the cables in.
This requires a specific metric allen key
that is stored in a clean tool box with an aluminum foil.

  7874   Thu Jan 3 20:34:43 2013 RijuUpdate Photodiode transimpedance

Today I have measured the transimpedance and dark-noise of the MC-REFL PD.

For transimpedance measurement I first collected the data of the reference Newfocus PD connecting it at channel B of Network-analyzer using the set-up of Jenne's laser. The data for the MC-REFL PD had been collected by connecting it to the A channel of Network Analyzer. To do that I shifted the Jenne's Laser to the table of MC-REFL PD, I moved the laser output on the table and fixed a lens and a mirror on the table. Taking the ratio of the two sets of datas I got the required trans-impedance.

Dark-noise readings were taken keeping the laser off.

I will upload the corresponding plots tomorrow.

  7875   Fri Jan 4 13:23:10 2013 ranaUpdateElectronicsPhotodiode transimpedance

You have to correct this transimpedance ratio by correcting for the different levels of DC photocurrent in the two devices.

For the dark noise, you must always include a trace showing the noise of the measurements device (i.e. the analyzer noise must be less than the dark PD noise) with the same input attenuation setting.

  7876   Fri Jan 4 15:11:28 2013 JenneUpdate TT

[Jenne, Koji]

D - UL

B - UR

A - LR

C - LL

The sensor card on the bottom of the chamber was not salvaged yet.

  7878   Mon Jan 7 16:45:30 2013 JenneUpdateAlignmentRisers to bring TTs to correct beam height are wrong

[Jenne, with backup from Koji and Steve]

Short version:

TT1 was installed without a riser, optic is too low, riser we have doesn't fit, cannot proceed with alignment.  Sadface.

Long version:

I had gotten to the point of checking that the beam coming out of the Faraday was hitting the center of TT1, when I realized that we had forgotten to install the risers.  The TTs are designed for 4" beam height, but we have a beam height of 5.5" in-vac.  This means that the beam out of the Faraday was hitting the top of the optic / the optic holder.

Steve showed me where all of the active TT equipment is stored (down the X arm, almost all the way to the flow bench...there is a plastic tub full of baked items (individually wrapped and bagged)), and I got one of the 1.5" risers.

Upon opening the riser package, and comparing it with the base plate of the active tip tilt, the screw holes don't match!

TT1_7Jan2013_BasePlateAndRiserHoleMismatch.JPG

It looks like for the passive tip tilts, we had holes machined at the far corners of the base plate, then had these risers made.  You can see in the photo of SR3 below that the original holes are there, but we are using 1/4-20 holes at the far corners of the base plate.

SR3_7Jan2013_ExtraHoleMachinedAtCorner.JPG

Unfortunately, without checking the base plate, I had asked Steve to get 4 more of the same risers we used for the passive tip tilts.  So, now the base plate holes and the riser holes don't match up.  In a perfect world, we would have installed the risers on the TTs as soon as they were baked and ready, and would have discovered this a while ago....but we don't live in that world.

 The reason we had originally chosen to put the new 1/4-20 holes on the corners of the passive tip tilts was so that when we tightened the screws, we wouldn't bend the base plate, due to the groove at the bottom of the base plate being directly under the screws.  Since the new aLIGO TT base plates have the groove underneath going the opposite direction, we didn't need to move the holes to the corners.

Also, you can't really see this from the photos, but the active TT base plate is slightly longer (in the beamline direction) than the riser, but only by a little bit.  Koji is currently trying to measure by how much from the CAD drawings.

Also, also, because of the way TT1 will hang off the table, I'm concerned about the underneath groove on the riser being the direction it is.  I'm concerned that the grooved part will be what wants to touch down on the back corner of the table, such that either the TT is insufficiently supported, or it is tilting backwards.  Neither of these will be acceptable.

I propose that we re-make the risers quickly.  We will have the holes match the active TT base plate, the size of the riser should match the size of the active TT base plate, and the underneath groove should be perpendicular to the way it is in the current version.

  7879   Mon Jan 7 19:23:19 2013 ranaUpdateElectronicsJamie's 1811 PS from 1998

  1. Front Panel switch supplies power, but does not light up - its unsafe as is. Needs new switch.
  2. Output has current limiting (which is nice) and schematic inside the box (which is very nice).
  3. Output voltage is not filtered or regulated ? LM7812 / 7912 would do the trick - or pick a PS with 18V outputs to reg down to 15 V.
  4. Box needs rubber feet.
  5. Overall B-

Also, we still need to get a 32GB SD card for the new camera. It only has an 8GB one.

Attachment 1: SOLA-1021-1026.pdf
SOLA-1021-1026.pdf SOLA-1021-1026.pdf SOLA-1021-1026.pdf SOLA-1021-1026.pdf SOLA-1021-1026.pdf SOLA-1021-1026.pdf
Attachment 2: jamie98.jpg
jamie98.jpg
  7880   Tue Jan 8 14:01:21 2013 RijuUpdate Photodiode transimpedance

 Here I upload the plots corresponding to my last day's measurements.

 

Attachment 1: TFreflpd.pdf
TFreflpd.pdf
Attachment 2: REFL_z.pdf
REFL_z.pdf
Attachment 3: darknoiseVreflpd.pdf
darknoiseVreflpd.pdf
Attachment 4: darknoiseAreflpd.pdf
darknoiseAreflpd.pdf
  7881   Tue Jan 8 14:07:04 2013 RijuUpdateElectronicsPhotodiode transimpedance

Quote:

You have to correct this transimpedance ratio by correcting for the different levels of DC photocurrent in the two devices.

For the dark noise, you must always include a trace showing the noise of the measurements device (i.e. the analyzer noise must be less than the dark PD noise) with the same input attenuation setting.

 Hi,

The correction for different levels of DC photocurrent in the two devices had been taken care by one MATLAB code, the code that originally was made by Koji.

The analyzer noise I had not recorded; today I am going to record it.

Riju

  7882   Tue Jan 8 15:28:41 2013 RijuUpdateElectronicsPhotodiode transimpedance

Quote:

Quote:

You have to correct this transimpedance ratio by correcting for the different levels of DC photocurrent in the two devices.

For the dark noise, you must always include a trace showing the noise of the measurements device (i.e. the analyzer noise must be less than the dark PD noise) with the same input attenuation setting.

 Hi,

The correction for different levels of DC photocurrent in the two devices had been taken care by one MATLAB code, the code that originally was made by Koji.

The analyzer noise I had not recorded; today I am going to record it.

Riju

 Here is the data for AG4395A network/spectrum analyzer noise data. I collected the data by putting 50ohm terminator on channel A with same input attenuation setting (0dB attenuation).

Attachment 1: analyzernoiseV.pdf
analyzernoiseV.pdf
  7883   Tue Jan 8 17:54:34 2013 JenneUpdateAlignmentRisers to bring TTs to correct beam height are in use

 

 [Jenne, EricQ, Nic, MattA]

* TT1 is in place, aligned so beam hits center of TT1, hits center of MMT1 (used pitch biases to finish pitch).

      * Riser installed, dogged down with 1 dog.

      * TT1 sitting on top of riser, 3 dogs holding TT to table, with riser squished in between.

* IOO table leveled.

      * Almost all of the weights on the IOO table were just sitting there, not screwed down!  One didn't even have a screw, 3 had screws, but they were totally loose.  2 of those screws were in as far as they could go, but they weren't holding the weight.  This means the screw was too long, and should have been replaced (which I did today).  Just because the existing screw was too long, doesn't mean it should be left as-is.  Everything in the chambers must be tightly clamped down, as soon as work on that item is complete!  Anyhow, after finalizing the leveling, I tightened down all of the weights on the IOO table.

* MMT1 tweaked so beam hits center of MMT2. 

* MMT2 tweaked so beam hits center of PZT2.

* Light access connector installed.

 

Sadface notes:

* I dropped a Class B golden-colored 3/16 allen key to the bottom of the IOO chamber.  I can't see it, but Nic thinks he might be able to see it with a mirror, from the BS chamber.  We should look for it when we look for the IR card that is still down there.

* We have an ant in the IOO chamber.  Unfortunately my hands were on the TT1 optic holder ring when I saw it, so I couldn't dash quickly enough to grab it.  I saw it run over the side of the table, and down, but looked under the table and couldn't find him.  Not so good, but I don't know what to do about it right now.  If anyone sees it, get it out please.

  7884   Tue Jan 8 18:10:41 2013 JenneUpdateSUSPRM, SRM, BS oplevs off

I don't know why (I'm just leaving the lab right now....) but BS, PRM, SRM all have no light on their oplev PDs. I have turned off the oplev servos for now, and will get back to them tomorrow, before redoing the BS table oplev layout.

  7886   Wed Jan 9 18:59:01 2013 JenneUpdateAlignmentTT2 installed, PRM oplev layout changed

[Jenne, Manasa]

PZT2 was removed from the BS table, and packed away in a foil-lined plastic box.

PRM oplev path has been altered, including installation of a 3rd mirror, to accommodate TT2, which is larger than PZT2.

      * Unfortunately, PR3 is a few mm more north than is indicated in the CAD drawing, so I wasn't able to place the oplev mirrors exactly as Manasa indicated in elog 7815

      * We came up with a different layout. Photos were taken.  We will need to confirm that the IPPOS, AS, and GreenX beams all clear past the oplev mirrors, but by imagining straight lines between mirrors for those beams, I think we should be okay.  but we must confirm when we have real beams.

TT2 was installed, according to the placement in the diagram.   Dogged down just as TT1 - one dog for the riser, 3 dogs for the TT base which also squish the riser.  You should be able to see this in the photos. Without having installed the PRM target, it looks like the input beam is hitting pretty close to the PRM's center.  Tomorrow Jamie The Tall can install the PRM target for us so we can confirm.

 

Photos - I'm posting them on Picasa here.  The new camera, and the fact that you can rotate the viewfinder, is amazing for overhead in-chamber photos.  Seriously, it's much easier to take useful photos.  It's great.

 

Tomorrow:

We remove the ITMX door first thing.  If Steve isn't here, we'll ask Koji or Bob to help us with the crane. 

First thing on the alignment list is to finalize TT2's pointing.  Put a target in front of PR2, put on the PRM target, etc, etc.  We're basically back to the same alignment procedure as we've been doing the last few vents.

 

Item for meditation:

Do we trust ourselves, or do we want to think about installing a 'bathroom mirror' so we can see the face of PR3 while we are pumped down?

  7887   Wed Jan 9 19:32:24 2013 RijuUpdate Photodiode transimpedance

Summary:

Today I have tested the MC transmission-end RF photodiode PDA255 for transimpedance and dark noise using Jenne's Laser and AG4395A network/spectrum analyzer. The dark noise voltage distribution for the transmission and reflection PDs of MC and the analyzer has been compared.

Motivation:

I am to do the input mode cleaner cavity mode scan. The electronic and shot noise of the components used , particularly photodiode noise, will affect the peak position  of the modes, indicating the uncertainty in the measured frequencies of the modes. That will in turn give the uncertainty in the measured change of radius of curvature of the mirrors in presence of the laser beam, from which we will be able to calculate the uncertainty in the mirror-absorption  value.

Method:

For PD transimpedance measurement I used Jenne's laser along with AG4395 network analyzer. The RF out signal of AG4395A had been divided by splitter with one output of the splitter going to R channel of the network analyzer and the other to the laser. The splitted laser beams - splitted with beam splitter - fall on two photodiodes - one reference(Newfocus1617? PD, the DC and RF transimpedance values were taken from its datasheet ) and the other on PDA255. The outputs of these two photodiodes go to channel B and A respectively of the network analyzer. The measured transimpedance data had been collected using the GPIB connection. It had been ensured that the PD under test is not going to saturation, for that the source power level was kept to -40dBm. transimpedance measurements were compensated by the ratio of DC photocurrent.

For dark noise measurement the output of the PD was connected to the A channel of the AG4395A, when there was no light falling on it. The response is collected using GPIB. The attenuation of channel A was made 0dB. ( AG4395A was kept in Spectrum analyzer mode in Noise Format).

Results:

The plots corresponding to the measurements are attached.

Discussion:

The comparison for the dark noise voltage levels of the MC transmission PD (PDA255) with MC REFL PD has been made with analyzer dark noise voltage. It is shown in the attachment (I will upload the dark noise current comparison too....since the output darknoise depends on the gain of the circuit, it is important to divide this voltage spectra by transimpedances.)

Attachment 1: PDA255.pdf
PDA255.pdf
Attachment 2: PDA255_z.pdf
PDA255_z.pdf
Attachment 3: darknoiseVpda255.pdf
darknoiseVpda255.pdf
Attachment 4: darknoiseApda255.pdf
darknoiseApda255.pdf
Attachment 5: darknoise_comparison.pdf
darknoise_comparison.pdf
  7888   Thu Jan 10 12:22:36 2013 JenneUpdateAlignmentTT matrix is funny

Quote:

* TT1 is in place, aligned so beam hits center of TT1, hits center of MMT1 (used pitch biases to finish pitch).

 I had asked Q to write this down on a piece of paper, but then I forgot to transcribe it into the elog....

The TT screen matrix, at least for TT1, is flipped or something.  When Eric moved the pit slider, the optic moved in yaw, and vice versa. 

We need to fix this, but for now, here's the situation when TT1 was pointed correctly at MMT1:

                       PIT    YAW

TT1 Pit slider     |  1000   1000  | --->   700 UL

     0             | -1000   1000  | --->   700 LL

TT1 Yaw slider     |  1000  -1000  | --->  -700 UR

    0.7            | -1000  -1000  | --->  -700 LR

 

The confusing thing is that Koji and I confirmed (by plugging in the correct cable to the correct sensor) that "UL" on the screen goes to the UL coil, and the same for the other 3 coils.  This needs investigation / fixing.

  7890   Thu Jan 10 15:30:33 2013 JenneUpdateAlignmentTT2 pins swapped, ITMX door open

 

[Bob, Manasa, Jenne]

We opened the ITMX heavy door.  Before getting too far, we realized that we had to do the fancy pin swapping before we can activate TT2.  So....

[Nic, Jenne]

We followed the instructions in elog 7869, and the associated Picasa album, and swapped the pins for the in-vac connector that will go to TT2.  Pretty easy, since the procedure was already well documented.

We then looked at the beam location on PR2, and the beam is ~2 inches up and to the left (as viewed from the front) from the center of the optic.  This is very easily correctable with the actuators, so we're leaving TT2 as it is.

  7891   Fri Jan 11 11:07:04 2013 ManasaUpdateGeneralIFO status update - PMC problems

I came in this morning to see that the PMC was down. The PZT voltage had drifted to below 50V. I adjusted the FSS slow controls to 0V and PZT was back at 126V.

PMC and IMC could eventually be locked.

History of PZT voltage behaviour in dataviewer over the last 24 hours shows it has been drifting everytime after it has been fixed.

  7892   Fri Jan 11 16:13:47 2013 JenneUpdateGeneralIFO status update - PMC fixed

Quote:

I came in this morning to see that the PMC was down. The PZT voltage had drifted to below 50V. I adjusted the FSS slow controls to 0V and PZT was back at 126V.

PMC and IMC could eventually be locked.

History of PZT voltage behaviour in dataviewer over the last 24 hours shows it has been drifting everytime after it has been fixed.

 FSS was saturating.  Fixed.

  7893   Fri Jan 11 17:32:10 2013 ManasaUpdateAlignmentTT2 connections

 

 Manasa, Jenne

We started off to try and get TT2 working. We used the cables Jamie had already prepared while working on TT1 and used them to connect TT to the channels in 1Y3.

There were sma cable connectors already running between the channels 5-8 on the board to the UL,LL,UR and LR. Triggering the UL LL UR LR matrix on epics did not show any analog voltage at the output analog channels on the board. Talking to Jamie over phone, we inferred  that the  SMA cables that were already left connected corresponded to channels assigned for TT4 in epics.  So we set the connections right and could see analog voltage outputs corresponding to epics triggers.

We connected the ribbon cables running from the board to the TT. But changing pitch and yaw did not do anything to the TT2 mirror. We opened the BS door and checked if  the tt cables were connected to the post. We beeped the cable running from the board to TT (we also traced the cable's trail through the cable rack pile from 1Y3 to BSC). Using a function generator at the board end of the cable, we could not observe anything at the TT end of the cable.

We ran out of options on what can be done next and closed the doors. We hope Jamie can fix the problem once he returns next week.

  7894   Fri Jan 11 19:12:20 2013 KojiUpdateAlignmentTT2 connections

Was the connection between the feedthrough (atmosphere side) and the connector on the optical table confirmed to be OK?

We had a similar situation for the TT1. We found that we were using the wrong feedthrough connector (see TT1 elog).

  7895   Mon Jan 14 09:08:37 2013 SteveUpdatePSLPMC is only ok short term

 

 The PMC PZT voltage slider seemed sticky.  First it would not do anything, than after moving slider back an forth a few times, it had a range of 60V and later it had full range and it locked

Attachment 1: pmc8d.png
pmc8d.png
  7896   Mon Jan 14 10:12:09 2013 JenneUpdateAlignmentTT2 connections

Quote:

Was the connection between the feedthrough (atmosphere side) and the connector on the optical table confirmed to be OK?

We had a similar situation for the TT1. We found that we were using the wrong feedthrough connector (see TT1 elog).

 The major problem that Manasa and I found was that we weren't getting voltage along the cable between the rack and the chamber (all out-of-vac stuff).  We used a function generator to put voltage across 2 pins, then a DMM to try to measure that voltage on the other end of the cable.  No go.  Jamie and I will look at it again today.

ELOG V3.1.3-