40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 189 of 344  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  119   Tue Nov 20 18:02:54 2007 JohnSummaryComputersPSL_Main screen
I've updated the PSL_MAIN screen. The old version may be found in cvs/cds/caltech/medm/old/medm/psl.
  5259   Thu Aug 18 00:53:48 2011 jamie, kiwamu, suresh, jenneUpdateGeneralPUMP PLAN ABORTED; need to work more on IFO alignment

We have decided that the IFO alignment is bad enough that we're not ready to pump down.  PUMP ABORTED.

The IFO alignment is somewhat OK, in that the green and IR beams are flashing in the arms, and the return beams are overlapping at the BS.  However the beams appear to be not centered on any of the optics at the moment.  They are all displaced in yaw by ~0.5 to 1 cm or so in various directions.

From this we have decided that we need to step back and reattack the IFO alignment from square one.  Here is our current suggested procedure:

  1. check ETM positions relative to what we think they should be on the drawings.  This is to verify that the ETMs were not placed in the wrong places laterally.
  2. translate Y green axis north, centering green on ETMY and ITMY (by looking at cards).  North is the opposite direction from how the beams are displaced from the TM centers.
  3. steer input pointing to overlap IR on green beam at BS, ITMY, and ETMY.  IR should visibly overlap green at both BS and ITMY, and we should be able to see IR on target in front of ETMY with ETMY face camera, and in ETMY trans camera.
  4. center IR on ETMX by steering BS with DC bias.
  5. align Y arm cavity for green resonance by adjusting ITMY.
  6. adjust ITMX to achieve michelson fringes at AS
  7. adjust PRM lateral translation to center beam on PRM, if needed
  8. adjust SRM lateral translation to center beam on SRM, if needed
  9. align PRC to see fringes
  10. align SRC to see fringes
  11. extract AS (no clipping)

 Once this is done, we will need to check the following:

  • IPANG/IPPOS extraction
  • pick-off extraction
  • OPLEVs
  • OSEMs
  • green periscopes and green beam extraction at PSL

We've decided to stop for the night, get a good nights rest, and attack all of this tomorrow morning.


  5354   Wed Sep 7 00:47:51 2011 JenneUpdateVACPUMP is a GO!

Steve and Jamie:  After Jamie checks the ITM free swingings, please put on the ITM heavy doors and start the pump!  For real this time!!! Yeah!

  10304   Thu Jul 31 11:54:54 2014 AkhilSummaryElectronicsPZT Calibration

 Koji asked me to get the calibration of the PZT counts to Volts for the the X and Y ends. Yesterday, I went inside the lab and took some measurements from the digital readout of the PZT by giving in a DC offset(-5 to +5 volts) to PZT_Out and read out from these channels:

For X-end:  C1:ALS-X-SLOW_SERVO1_IN1

For Y-end:  C1:ALS-Y-SLOW_SERVO1_IN1

Since a 20dB attenuator was placed in the path of X-arm readout while taking the Transfer functions(Detail), I did the calibration measurements without removing it from the path. However, for the Y arm there was no attenuator in the readout path.

The obtained calibration values are :

X- arm PZT : [146.3 +/- 2.37 ]  counts/Volt 

Y- arm PZT :  [ 755.1 +/- 3.6]    counts/Volt

The attached are the fit and data plots for the above calibration.

  10306   Thu Jul 31 12:23:38 2014 KojiSummaryElectronicsPZT Calibration

1) Don't be brainless. Redo the fitting of the Y arm. Obviously the fit is not good.

2) How can you explain the value from the ADC bit and range?

e.g. +/-10V range 16bit ADC => 2^16/20 = 3276.8 count/V

  10307   Thu Jul 31 14:23:28 2014 AkhilSummaryElectronicsPZT Calibration


 The PZT seems to saturate at around +/- 3500 counts. So for the Y arm, I excluded the saturated points and fitted the data points again.

As for the calibration number, we expect the 3276.8 count/V for +/- 10 V range of a 16 bit ADC but the number is ~800 count/V. I couldn't figure out a reason why the number is so different.

The new calibration values are :

X- arm PZT : [146.3 +/- 2.37 ]  counts/Volt   (with a 20 dB attenuator included in the path)

Y- arm PZT :  [ 797 +/- 3.6]    counts/Volt  

I will get the calibration in MHz/V of PZT actuation and check whether these numbers make any sense.

  10324   Fri Aug 1 18:48:46 2014 AkhilSummaryElectronicsPZT Calibration


 The PZT actuation on the laser frequency in MHz/V ( assuming the previous calibration here of the PZT count/V) is :

X- arm: 33.7 MHz/V

Y- arm: 14.59 MHz/V

This number seems to be wrong by a factor of 10. 

So we[I and EricQ] decided to trace the cables that run into the ADC from the PZT Out. We found a black LEMO box in the path to ADC,which is  an anti-aliasing filter for each input channel. However,in theory the response of this filter should be flat up until a few kHz i.e. for  the DC gain it should be 1. But we will manually test it and look at the DC gain of the LEMO box.



  8823   Wed Jul 10 22:41:06 2013 gautamConfigurationendtable upgradePZT Driver Board

 I did the following with the PZT Driver Board: 


  •  With an expansion card attached to the driver board, I used an Agilent E3620A power supply to verify that the 15V and 24V supplies were reaching the intended ICs. It turns out that the +24 V supply was only meant to power some sort of on-board high voltage supply which provided the 100V bias for the PZTs and the MJE15030s. This device does not exist on the board I am using, jumper wires have been hooked up to an SMA connector on the front panel that directly provides 100V from the KEPCO high voltage supply to the appropriate points on the circuit.

  •  All the AD797s as well as the LT1125CS ICs on the board were receiving the required +15V.


The next step was to check the board with the high-voltage power supply connected.


  •  The output from the power supply is drawn from the rear output terminal strip of the power supply via pins TB1-2 (-OUT) and TB1-7 (+OUT). I used a length of RG58 coaxial cable from the lab and crimped a BNC connector on one end, and stripped the other to attach it to the above pins.

  •  There are several options that can be configured for the power supply. I have left it at the factory default: Local sensing (i.e. operating the power supply using the keypad on the front of it as opposed to remotely), grounding network connected (the outputs of the power supply are floating), slow mode, output isolated from ground.

  • I was unsure of whether the grounding network configuration or the 'positive output, negative terminal grounded' configuration was more appropriate. Koji confirmed that the former was to be used so as to avoid ground loops. When installed eventually, the eurocrate will provide the ground for the entire system.
  • I then verified the output of the HV power supply using a multimeter from 2V up to 150V.
  • I then connected the high voltage supply to the PZT driver board with a BNC-SMA adaptor, set, for a start, to output 30V. Ensured that the appropriate points on the circuit were supplied with 30V.


I then hooked up a function generator in order to simulate a control signal from the DAC. The signal was applied to pin 2 of the jumpers marked JP1 through JP4 on the schematic, one at a time. The signal applied was a 0.2 Vpp, 0.1 Hz sine wave.




  •  The output voltage was monitored both using a DMM at the SMB output terminals, and at the monitor channels using an oscilloscope. The outputs at both these points were as expected.
  • There are 4 potentiometers on the board, which need to be tuned such that the control output to the piezos are 50V when the input signal is zero (as this corresponds to no tilt). The gain of the amplifier stage (highlighted in the attached figure) right now is ~15, and I was using 30V in place of 100V, so an input signal of 2V would result in the output saturating. This part of the circuit will have to be tuned once again after applying the full 100V bias voltage. 
  • Koji suggested decreasing the gain of the amplifier stage by switching out resistor R43 (and corresponding resistor in the other 3 stages on the board) after checking the output range of the DAC so that possibility of unwanted saturation is minimised. I need to check this and will change the resistors after confirming the DAC output range. 
  • The potentiometers will have to be tuned after the gain has been adjusted, and with 100V from the high-voltage DC power supply. 


To Do:


  • Switch out resistors
  • Tune potentiometers with 100V from the HV supply
  • Verify that the output from the board after all the tuning lies in the range 0-100V for all possible input voltages from the DAC.
  • Once the output voltage range has been verified, the next step would be to connect a PZT to the board output, affix a mirror to the tip/tilt, and perform some sort of calibration for the PZT. 








  8832   Thu Jul 11 23:50:57 2013 gautamConfiguration PZT Driver Board-changes made


Continued with tests on the PZT driver board. I made a few changes to replace defective components and also to modify the gain of the HV amplifier stage. I believe the board has been verified to be satisfactory, and is now ready for a piezo to be connected, tested and calibrated.

Changes made:

  • I tested the board with the full 100V bias voltage today, working my way up from 30V in steps of about 20V and verifying the output at each stage.
  • In order to deliver 100V to the board, it was necessary to change the maximum current limit on the KEPCO supply, which is set at default at ~1.6 mA. The KEPCO power supply placed near rack 1X2 (which I believe was used to power a piezo driver board) is labelled 150V, 12 mA, though I found that the board only drew 7mA of current when the power supply output 100V. I have set the limit to 10 mA for the time being.
  • The potentiometer in the third stage (R44 in the schematic) was faulty so I replaced it with another 100K potentiometer, which was verified to work satisfactorily.
  • We expect the DAC output to supply a voltage to the input of the PZT driver board in the range -10V to 10V. Today, I verified this by using my temporary break-out cable. I hooked this up to the DAC at 1Y4 and output a 3 Hz sine wave with amplitude of 32000 counts (the maximum) on channel 9. The output as observed on an oscilloscope (image attached) was a 10Vpp sinusoid, confirming the above hypothesis. As mentioned in my previous elog, the gain of the high-voltage amplifier stage is ~15, which would mean the output would saturate if the input were to be >6V. I have changed the gain of all 4 stages (M1-pitch, M1-yaw, M2-pitch and M2-yaw) to ~4.85 by swapping the 158k resistors (R43, R44, R69 and R70 in the schematic) for 51k resistors. 
  • It was necessary to change the value of the biasing potentiometers after the change in gain so that 0 input voltage once again provided 50V at the output, as required by the PZTs for there to be no tilt. This was done and verified. This biasing voltage now is ~10.4V in all four stages.
  • Having adjusted the gain, I tested the circuit over the expected full range of the input voltage from the DAC (from -10V to 10V) from the DS345 function generator (0.05Hz sinusoid). I monitored the output using a multimeter, as the monitor channels were peaking at ~7V, which was above the limit for the oscilloscope I was using. It was verified for all four channels that the output was between 0 V and 100 V (the safe range quoted in the datasheet for the tip-tilts, for this range of input voltages. So I think we are ready to connect a PZT to the board and conduct further tests, and calibrate the PZT. 

Pending Issues:

  • Koji pointed out that there has to be an anti-imaging filter stage between the DAC output and the filter stage, which I had not considered till this point.Another subtle point is that the DAC output is differential while the driver boards have a single-ended input, which means we effectively lose half the range of the PZTs. 
  • A suitable candidate is the D000186-rev D. Some information about the present state of this board is detailed in this elog. This board also solves the problem of the differential vs single input as the input to the AI board is differential while the output is single-ended. Koji has given me one of the boards he had collected. 
  • Some changes will have to be made to this version of the board in order to make it compatible with the existing DAC. I will first have to measure the power spectrum of the DAC output to verify that the AI boards need notches at 64k and 128k. The existing notches are at 16k and 32k, and once the DAC power spectrum has been verified, I hope to affect the necessary changes by switching out the appropriate capacitors on the existing board. 
  • The AI board is an extra element which I have now added to an updated wiring diagram, attached.

Revised Wiring Diagram:



DAC Max. Output Trace on Oscilloscope






  8932   Mon Jul 29 13:39:25 2013 gautamConfigurationendtable upgradePZT Driver Board-further changes



I have updated the schematic of the D980323 PZT driver boards to reflect the changes made. The following changes were made (highlighted in red on the schematic):

  • Gain of all four HV amplifier stages changed from ~15 to ~5 by swapping 158k resistors R43, R44, R69 and R70 for 51k resistors.
  • Electrolytic 10 uF capacitors C11, C12, C29 and C31 swapped for 470pF, 500V mica capacitors.
  • Fixed resistor in voltage divider (R35, R40, R59 and R64) replaced with 0 ohm resistors so as to be able to apply a bias of -10V to the HV amplifier
  • The DC-DC Series components, which I think were originally meant to provide the 100V DC voltage, have been removed.
  • The path between the point at which +100V DC is delivered and jumpers J3 and J6 has been shorted (bypassing R71 and R11 for J3, R73 and R12 for J6).
  • Tantalum capacitors C38 and C39 have been replaced with electrolytic capacitors (47 uF, 25V). One of the original tantalum capacitors had burned out when I tried installing the board in the eurocrate, shorting out -15V to ground. At Koji's suggestion, I made this switch. The AD797s do not seem to be oscillating after the switch.

I have also changed the routing of the 100V from the HV power supply onto the board, it is now done using an SMA T-connector and two short lengths of RG58 cable with SMA connectors crimped on.

The boards are functional (output swings between 0 and 100V as verified with a multimeter for input voltages in the range -10V to +10V applied using a function generator.


Revised schematics:






  4096   Thu Dec 23 22:13:50 2010 KojiUpdateGeneralPZT HV turned on

The four IOO PZTs have been turned on in order to confirm the alignment of the IFO.

Once they are turned on, the spots (ITMX/ITMY/PRM/SRM) on the REFL CCD have been easily found.

When the X-arm was aligned to the green beam, it is easily locked to TEM00. Also some LG modes were visible.
i.e. There is some room to improve the mode matching.
The transmitted green at the PSL table is a bit too high and clipped by the first mirror on the table.

No IR flashes were found in either arms.


The below are the range and the set values of the strain gauge readback for the PZTs.
When the closed loop buttons are activated the PZTs are fixed at those values, if no one touches the set point dials.

            Min   Max   SetP | Display on the module
PZT1 Yaw    2.20  9.95  6.08 | Broken
PZT1 Pitch -0.011 8.89  4.40 | 1.58

PZT2 Yaw    0.737 9.94  5.37 | 2.17
PZT2 Pitch  0.010 9.42  4.71 | 1.89

  14095   Sat Jul 21 01:14:02 2018 gautamUpdateOMCPZT Jena driver board check

[Aaron, gautam]

We did a quick check of this board today. Main takeaways:

  • There are two voltages (HV pos and HV neg) that are output from this unit.
  • Presumably, these goto different piezoelectric elements, referenced to ground. Are there any spec sheets for these describing the geometry/threshold voltages?
  • The outputs are:
    • \mathrm{HV_{+}} = 10(V_{\mathrm{DAC}}+V_{\mathrm{offset}}), \mathrm{HV_{-}} = 10(-V_{\mathrm{DAC}}+V_{\mathrm{offset}})
    • So with V_{\mathrm{offset}} = 7.5 \mathrm{V}, we expect to be able to use +/- 7.5 V of DAC range.
  • The trim pot had to be adjusted to realize V_{\mathrm{offset}} = 7.5 \mathrm{V}​.
  • I assume 150V is some kind of damage threshold of the PZT, so there is no benefit to using 10V offset voltage (as this would result in 200 V at full range DAC voltages).

With the correct V_{\mathrm{offset}} = 7.5 \mathrm{V}, we expect 0V from the DAC to result in 0 actuation on the mirror, assuming that an equal 75V goes to 2 PZTs mounted diametrically opposite on the optic. Hopefully, this means we have sufficient range to scan the input pointing into the OMC and get some sort of signal in the REFL signal (while length PZT is being scanned) which indicates a resonance. 

We plan to carve out some IFO time for this work next week.

  12545   Mon Oct 10 18:34:52 2016 gautamUpdateGeneralPZT OM Mirrors

I did a quick survey of the drive electronics for the PZT OM mirrors today. The hope is that we can correct for the clipping observed in the AS beam by using OM4 (in the BS/PRM chamber) and OM5 (in the OMC chamber).

Here is a summary of my findings.

  • Schematic for (what I assume is) the driver unit (located in the short electronics rack by the OMC chamber/AS table) can be found here
  • This is not hooked up to any HV power supply. There is a (short) cable on the back that is labelled '150V' but it isn't connected to anything. There are a bunch of 150V KEPCO power supplies in 1X1, looks like we will have to lay out some cable to power the unit
  • The driver is also not connected to any fast front end machine or slow machine - according to the schematic, we can use J4, which is a Dsub 9 connector on the front panel, to supply drive signals to the two PZTs X and Y axes. Presumably, we can use this + some function generator/DC power supply to drive the PZTs. I have fashioned a cable using a Dsub9 connector and some BNC connectors for this purpose.

I hope these have the correct in-vacuum connections. We also have to hope that the clipping is downstream of OM4 for us to be able to do anything about it using the PZT mirrors. 

  8   Mon Oct 22 19:27:14 2007 pkpOtherOMCPZT calibration/ transfer function.
We measured the PZT transfer function by comparing the PZT response of the circuit with the cavity in the loop, with that of the circuit without the cavity in the loop. Basically measure the transfer function of the whole loop with the laser/PZT and Op-amps in it. Then take another measurement of the transfer function of everything else besides the PZT and from both these functions, we can calculate the PZT response.

The calibration was done by using the error signal response to a triangular wave of volts applied to the PZT. A measurement of the slope of the error signal , which has three zero-crossings as the cavity sweeps through the sidebands, gives us the Volts/Hz response. In order to derive a frequency calibration of the x axis, we assume that the first zero crossing corresponds to the first side band (-29.5 MHz) and the third one corresponds with the other sideband (+29.5 MHz). And then by using the fact that we know the response of the cavity to a constant frequency shift, we can use the Volts/Hz measurement to calculate the Volts/nm calibration. The slope that was calculated was 3.2e-6 V/Hz and using the fact that the cavity is 1 m in length and the frequency is 1064 nm, we get a calibration of 0.9022 V/nm.

  9   Tue Oct 23 09:01:00 2007 ranaOtherOMCPZT calibration/ transfer function.
Are you sure that the error signal sweep is not saturated on the top ends? This is usually the downfall
of this calibration method.
  7463   Tue Oct 2 15:14:54 2012 jenne, jamieUpdateIOOPZT diagnosis

pzt2 mod signals matched slider vals for both pitch and yaw

  pzt2 yaw mon output = 6
  pzt2 pitch mon output = 11.3

From the PZT connector-converter board we determined the following pin-outs:

  X=Yaw:  red=1, white=14, black=3 
  Y=Pitch:  red=2, white=15, black=16

We believe that red is signal, white/black/shield are all ground.  We also believe (although this is from the PMC PZT) that the expected capacitance of the PZTs should be in the 100's of nF range.

Here are the readings from the two PZT dsub connectors:

  pin 1:14   PZT1 = ".003" on 2uF scale
             PZT2 = ".184"
  pin 2:15   PZT1 = ".002" on 2uF scale
             PZT2 = ".202"

So we think this means (given this crappy capacitance meter) that PZT2 is showing roughly 200nF, which sounds ok, but that PZT1 is indeed bad.

So next we investigate the PZT2 driver.

  7465   Tue Oct 2 16:32:43 2012 JenneUpdateIOOPZT diagnosis

[Koji, Jenne]

Jamie and I pulled the whole PZT driver for both PZT1 and PZT2. 

Koji and I found that each HV power supply (the left-most module) has 2 fuses.  Both HV supplies (PZT1 and PZT2) have one blown fuse.  The "T2L250A" measures low resistance for both HV supplies, but the "T250mAL250V" measures Open for both HV supplies.

I have ordered 10 pieces of each kind of fuse, Next Day shipping, from DigiKey.

  7475   Thu Oct 4 01:06:52 2012 JenneUpdateIOOPZT diagnosis

[Koji, Jenne]

We naively hoped that just replacing the fuses would fix the problem with the PZT HV drivers.  Alas, this was not the case. 

All of our investigations (other than visual inspections) today have been of the PZT2 module.  We have not applied any electricity to any PZT1 components/modules today.

After blowing a few more fuses (not good, we know, but we really didn't know what was going on at the time and were convinced that our changes between fuse installations should prevent fuse-blowing, including removing all modules except the HV driver), we found that the YAW driver for both PZT1 and PZT2 has severe discoloration on the PCB, and several resistors and other solder joints are damaged near some high voltage regulators. Pitch on PZT1 looks a tiny bit discolored, but doesn't look totally cooked like the 2 YAW modules do.  So, at least PZT1's Yaw was cooked before we started replacing fuses, since we haven't plugged it in yet today.

We then began some more methodical checks:

We bypassed the fuses by applying 10 Vpp = ~7.2 Vrms to the input side of the big transformer on the PZT2 HV driver board.  (This usually sees the 120 Vrms from the wall AC, so we were looking at things with a factor ~16 attenuation from what they normally see.)  We then measured things on the other side of the transformer, and made sure that they made some sense (one path for 5V stuff, one path for 15V stuff, one path for 180V stuff).  One of the rectifying diode bridges (the one for HV) didn't seem to be working, and didn't seem to have all of its pins connected, as if perhaps one or more diodes inside was destroyed.

When I went home for dinner, Koji continued looking at the low voltage supply capability of the PZT2 driver.  He removed the diode bridge from the HV path, and also removed the FET that lives on the output side of the HV driver board.  He was then able to energize the HV driver and the non-burnt pitch module.  So the +\-5 V and +\-15 V paths have been confirmed okay for PZT2's driver stuff.

What I will do tomorrow (when there is someone here to rescue me if I crispy-fry myself) is solder a wire to the now open pin of the backplane connector on the HV driver board, so that we can supply an external 180V to the pitch / yaw modules (although, obviously we won't be using the burnt yaw modules as-is).  Tomorrow I'll start by applying a nice small voltage, check that things still look okay, no shorts, and then I'll slowly increase the voltage until I get to the nominal 180V.

Since the low voltage stuff on the driver board is working, once we supply an external 180V (if successful), we should be able to re-install the PZT driver and drive PZT2. 

Since both Yaw modules that we have are burnt, I am proposing that we use the PZT2 HV board (which has been checked and modified this evening) with the 2 pitch modules.  Since we are not actively utilizing the strain gauge sensors, the fact that the calibrations on these modules are not exactly the same (rather, that PZT1's pitch is not the same as PZT2's yaw) should not matter at all.  This means that we will not be able to energize PZT1 at all, but that shouldn't be a problem.  Even when PZT 2 was working, PZT1 had very, very, very limited motion through the full range of applied voltage, so having no driver connected shouldn't have an impact.


  7504   Mon Oct 8 14:19:17 2012 JenneUpdateIOOPZT diagnosis - not fixed yet


What I will do tomorrow (when there is someone here to rescue me if I crispy-fry myself) is solder a wire to the now open pin of the backplane connector on the HV driver board, so that we can supply an external 180V to the pitch / yaw modules (although, obviously we won't be using the burnt yaw modules as-is).  Tomorrow I'll start by applying a nice small voltage, check that things still look okay, no shorts, and then I'll slowly increase the voltage until I get to the nominal 180V.

 I connected a thick wire to pin 22 of the backplane connector of the transformer / power supply module of the PZT box.  This is the pin that +180V is supposed to go on, to be distributed to the other boards in the crate.  Last week I had drilled a hole in the front panel so the wire can come out (since no one on campus seems to have HV panel mount connectors in stock). 

While the transformer module was isolated, not touching anything else, I applied (slowly ramping up) 180V DC, and it all looked good.

When I plugged the module back into the crate (first turning off and disconnecting the HV), I blew the 250mA fuse again.  No HV yet, just the low voltage stuff that Koji had fixed last week.  :( 

We're now out of 250mA fuses, we're supposed to get a box of them tomorrow.

  7505   Mon Oct 8 18:45:48 2012 JenneUpdateIOOPZT diagnosis - not fixed yet, possible solution

After the fuse-blowing fiasco earlier this afternoon, Koji and I took another look at the PZT controllers.

We put an ammeter in place of the fuse, and watched the current as we turned on the transformer module.  The steady-state current with no other modules plugged in is ~15mA.  However, there is a surge current right when you turn on the box which sometimes goes as high as 330mA.  Since the fuse is 250mA, this explains the fuse blowing, even though Koji had already checked out the low voltage path.

The high voltage line was connected, with +180V to the HV out pin of the backplane connector, and the (-) terminal of the power supply connected to signal ground on the board.

We inserted the PITCH module for PZT2, and we started with ~10V as our "high" voltage, and slowly increased the value (current at this time was ~60mA).  We also had a function generator plugged into the "MOD" input, which is where the epics slider goes, so that we should see a changing output voltage.  We never saw a changing output voltage.  Increasing the HV power supply didn't help. 

When Koji spun the "DC offset" knob really fast and then stopped, sometimes the output voltage as measured on the connector-converter board between the white and red wires would jump up, and then settle back down. It came back to the same value that it always was, but it was bizzarre that it would jump like that.  We suspect that that knob is an offset for use with the closed loop setting, so it isn't relevant for us anyway.  Watching the MON output, the value never changed, even when Koji did his fancy knob twirling.

We switched to the other PITCH module, and watched the output voltage on the MON output.  This time, with the function generator unplugged, so no modulation input (so we were expecting a steady DC output voltage) the number on the LCD and the MON output fluctuated wildly.  We plugged in the function generator, and the fluctuations did not change in approximate amplitude or DC offset.  They kind of looked the same. 

So, we have concluded that (a) the PZT drivers don't work, and (b) we don't understand why.  Therefore, we don't know how to fix them.

With that in mind, we are thinking of totally circumventing the PZT drivers. 

I plugged in the PZT1 connector converter board, which has Koji's circuit that he made last time when PZT1 died.  I plugged the ribbon cable which goes to the PZT, and the +\- 30V power supply, and the PZT responded!  Just plugging in the power supply puts the PZTs near the center of their nominal range.  I then put a function generator on the epics inputs for pitch and yaw (one at a time), and saw the spot move around at the ~1Hz that I was applying.  Yay!

What I think I'll do for tonight - modify the other connector converter board so that I can just use 2 HV power supplies (current limited) to steer the PZT.  I set up a TV monitor next to the PZT electronics (1Y3? 1Y4?  I forget), and it's connected to output 20 of the video switch, so I can watch the AS camera and move the PZTs by hand.  Then maybe I can try to align some stuff. (Evan is coming to work tonight, so if I electrocute myself, someone will be here to call 5000)  Koji suggested buying 2 single-channel thorlabs piezo drivers, like we have on the PSL table for the FSS loop.  These take in 0-10V and output either 0-75V, 0-100V or 0-150V (depending on which setting you choose).  These cost $712 each. This would be a more permanent solution than me just sitting out there, since we could once again control PZT2 via epics.

  7506   Mon Oct 8 21:42:17 2012 JenneUpdateIOOPZT diagnosis - not fixed yet, possible solution

Note to self:

The ENV-40 amplifiers that we have supply -10V through +150V .... so don't exceed those limits.

piezojena link

  14218   Thu Sep 27 14:02:55 2018 yukiConfigurationASCPZT driver board verification

[ Yuki, Gautam ]

I fixed the input terminal that had been off, and made sure PZT driver board performs as we expect. 

At first I ran a simulation of the PZT driver circuit using LTspice (Attached #1 and #2). It shows that when the bias is 30V the driver performs well only with high input volatage (bigger than 3V). Then I measured the performance as following way:

  1. Applied +-15V to the board with an expansion card and 31.8V to the high voltage port which is the maximum voltage of PS280 DC power supplier C10013.
  2. Terminated input and connectd input bias to GND, then set offset to -10.4V. This value is refered as elog:40m/8832.
  3. Injected DC signal into input port using a function generator.
  4. Measured voltage at the OUT port and MON port.

The result of this is attached #3 and #4. It is consistent with simulated one. All ports performed well.

  • V(M1_PIT_OUT) = -4.86 *Vin +49.3 [V]
  • V(M1_YAW_OUT) = -4.86 *Vin +49.2 [V]
  • V(M2_PIT_OUT) = -4.85 *Vin +49.4 [V]
  • V(M2_YAW_OUT) = -4.86 *Vin +49.1 [V]
  • V(M1_PIT_MON) = -0.333 *Vin +3.40 [V]
  • V(M1_YAW_MON) = -0.333 *Vin +3.40 [V]
  • V(M2_PIT_MON) = -0.333 *Vin +3.40 [V]
  • V(M2_YAW_MON) = -0.333 *Vin +3.40 [V]

The high voltage points (100V DC) remain to be tested.

  14220   Mon Oct 1 12:03:41 2018 not yukiConfigurationASCPZT driver board verification

I assume this QPD set is a D1600079/D1600273 combo.

How much was the SUM output during the measurement? Also how much were the beam radii of this beam (from the error func fittings)?
Then the calibration [V/m] is going to be the linear/inv-linear function of the incident power and the beam radus.

You mean the linear range is +/-50mV (for a given beam), I guess.


  3195   Mon Jul 12 13:16:53 2010 kiwamuUpdateGreen LockingPZT feedback at X end

The feedback signal going to the laser PZT at the X end station was measured in the daytime and the nighttime.

It's been measured while the laser frequency was locked to the arm cavity with the green light.



The red curve was measured at 3pm of 8/July Friday. And the blue curve was measured at 12am of 9/July Saturday. 

As we can see on the plot, the peak-peak values are followers

              daytime:  ~ 4Vpp

       nighttime:  ~1.8Vpp

It is obvious that the arm cavity is louder in the daytime by a factor of about 2.

Note: the feedback signal is sent to the PZT only above 1Hz because the low frequency part is stabilized mostly by the crystal temperature (see this entry)


 What we care about is the peak-peak value of the PZT feedback signal measured on a scope for ~30 seconds.

  7456   Mon Oct 1 13:11:43 2012 JenneUpdateIOOPZT inspection elogs

I'll come back to the PZTs later, but I want to write down all the elogs I have found so far that look relevant.




  14224   Tue Oct 2 18:50:53 2018 yukiConfigurationASCPZT mirror calibration

[ Yuki, Gautam ]

I calibrated PZT mirrors. The ROUGH result was attached. (Note that some errors and trivial couplings coming from inclination of QPD were not considered here. This should be revised and posted again.) 

The PZT mirrors I calibrated were:

  • A 2-inch CVI mirror (45 degree, HR and AR for 532nm)
  • A 1-inch Laseroptik mirror (45 degree, HR and AR for 532nm)

I did the calibration as follows:

  • +-15V was supplied to PZT driver circuit, +100V to PZT driver bias, and +-18V to QPD amplifier.
  • Optical path length was set to be same as that when I calibrated QPD, which is 36cm.
  • The full range of CVI mirror is 3.5mrad according to its datasheet and linear range of QPD is 0.2mm, so I set the distance between PZT mirrors and QPD to be about 6cm. (I realized it was wrong. When mirror tilts 1 deg, the angle of beam changes 2 deg. So the distance should be the half.)
  • After applying 0V to PZT driver input (at that time 50V was applied to PZT mirror), then centered beam spot on QPD using steering mirror, which was confirmed by monitored Pitch and Yaw signals of QPD that were around zero.  
  • In order to avoid hysteresis effect, I stared with an input signal of -10V. I then increased the input voltage in steps of 1V through the full range from -10V to +10V DC. The other input was kept 0V.
  • Both the X and Y coordinates were noted in the plot in order to investigate pitch-yaw coupling.

The calibration factor was

CVI-pitch: 0.089 mrad/V

CVI-yaw: 0.096 mrad/V

Laseroptic-pitch: 0.062 mrad/V

Laseroptic-yaw: 0.070 mrad/V


  • I made sure that PZT mirrors move linearly in full input range (+-10V).
  • PZT CH1 input: Yaw, CH2: Pitch, CH3: +100V bias
  • The calibration factor of PZT mirrors [mrad/V] are not consistent with previous calibration (elog:40m/8967). I will check it again.
  • I measured the beam power in order to calibrate QPD responce with a powermeter, but it didn't have high precision. So I used SUM output of QPD to the calibration.
  • Full range of PZT mirrors looks 2 times smaller.

Previous calibration of the same mirrors, elog:40/8967

  2746   Thu Apr 1 00:43:33 2010 MottUpdateGeneralPZT response for the innolight

Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.


**EDIT**: As Koji pointed out, the calibration factor on this plot is WRONG.  See my more recent update for the correctly calibrated plot.

  2747   Thu Apr 1 07:17:15 2010 KojiUpdateGeneralPZT response for the innolight

The shape of the TF looks nice but the calibration must be wrong.

Suppose 1/f slope with 10^-4 rad/V at 100kHz. i.e. m_pm = 10/f rad/V
This means m_fm = 10 Hz/V. This is 10^6 times smaller than that of LWE NPRO.

(Edit: Corrected some numbers but it is not significant)


Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.


  2748   Thu Apr 1 10:21:58 2010 MottUpdateGeneralPZT response for the innolight


The shape of the TF looks nice but the calibration must be wrong.

Suppose 1/f slope with 10^-4 rad/V at 10kHz. i.e. m_pm = 1/f rad/V
This means m_fm = 1 Hz/V. This is 10^7 times smaller than that of LWE NPRO.


Kiwamu and I measure the PZT response of the Innolight this evening from 24 kHz to 2MHz.  

We locked the PLL at ~50 MHz offset using the Lightwave NPRO and and swept the Innolight with the network analyzer (using the script I made; it has one peculiar property, but it does work correctly).  

We will post the plot of the Lightwave PZT response tomorrow morning.


 Koji is absolutely right.  I just double checked my matlab code, and saw that I divided when I should have multiplied.  The correctly calibrated plots are attached here for the Innolight and the lightwave.  Kiwamu and I will measure the amplitude and the jitter today.

  2749   Thu Apr 1 10:47:48 2010 KojiUpdateGeneralPZT response for the innolight

Innolight: 100rad/V @ 100kHz  => 1e7/f rad/V => 10MHz/V

LWE: 500rad/V @ 100kHz =>  5e7/f rad/V => 50MHz/V

They sound little bit too big, aren't they?

  2750   Thu Apr 1 12:07:22 2010 ranaUpdateGeneralPZT response for the innolight

The Lightwave NPRO should be around 5 MHz/V. 

The Innolight PZT coefficient is ~1.1 MHz/V.

(both are from some Rick Savage LHO elog entries)

  2754   Thu Apr 1 18:05:29 2010 MottUpdateGeneralPZT response for the innolight


 We realized that we had measured the wrong calibration value; we were using the free-running error signal with the marconi far from the beat frequency, which was very small.  When we put the Marconi right at the beat, the signal increased by a factor of ~12 (turning our original calibration of 10 mV/rad into 120 mV/rad).  The re-calibrated plots are attached. 

  2755   Thu Apr 1 18:44:40 2010 KojiUpdateGeneralPZT response for the innolight

Innolight 10 rad/V @ 100kHz => 1e6/f rad/V => 1MHz/V

LWE 30 rad/V @ 100kHz => 3e6/f rad/V => 3MHz/V


BTW, don't let me calculate the actuator response everytime.

The elog (=report) should be somewhat composed by the following sections

Motivation - Method - Result (raw results) - Discussion (of the results)


  We realized that we had measured the wrong calibration value; we were using the free-running error signal with the marconi far from the beat frequency, which was very small.  When we put the Marconi right at the beat, the signal increased by a factor of ~12 (turning our original calibration of 10 mV/rad into 120 mV/rad).  The re-calibrated plots are attached. 


  2756   Thu Apr 1 19:59:32 2010 MottUpdateGeneralPZT response for the innolight


 We measured the Amplitude Modulation response of the PZTs, to find regions with large phase modulation but small amplitude modulation.

We did this by blocking 1 arm of the PLL, feeding the source output of the Network Analyzer into the PZT input of the laser in question, and reading the output of the PD on the NA.  We calibrated by dividing by the DC voltage of the PD (scaled by the ratio of the AC gain to DC gain of the New Focus PD).

The AM response of the Innolight looks fairly smooth up to ~1MHz, and it is significantly below the PM response for most of its range.  The region between 20 and 30 kHz shows very good separation of about 10^3 rad/RIN (and up to 10^5 rad/RIN at ~21.88 kHz, where there is the negative spike in the AM response). The region between 1.5 MHz and 2MHz also looks viable if it is desirable to actuate at higher frequencies.

The Lightwave offers very good AM/PM separation up to about 500 kHz, but becomes quite noisy about 1MHz.

  2788   Mon Apr 12 14:20:10 2010 kiwamuUpdateGreen LockingPZT response for the innolight

I measured a jitter modulation caused by injection of a signal into laser PZTs.

The measurement has been done by putting a razor blade in the middle way of the beam path to cut the half of the beam spot, so that a change of intensity at a photodetector represents the spatial jitter of the beam.

However the transfer function looked almost the same as that of amplitude modulation which had been taken by Mott (see the entry).

This means the data is dominated by the amplitude modulation instead of the jitter. So I gave up evaluating the data of the jitter measurement.

  2799   Tue Apr 13 19:53:06 2010 MottUpdateGreen LockingPZT response for the innolight and lightwave


 I redid the PZT Phase Modulation measurement out to 5 MHz for both the Innolight and the Lightwave.  The previous measurement stopped at 2MHz, and we wanted to see if there were any sweet spots above 2MHz.  I also reduced the sweep bandwidth and increased the source amplitude at high frequency to reduce the noise (the Lighwave measurement, especially, was noise dominated above 1MHz).  I also plotted the ratio of PM/AM in rad/RIN, since this is the ultimate criterion on which we want to make a determination.

It looks like there is nothing extremely useful above 2MHz for either laser.  There are several candidates for the lightwave at about 140 kHz and again at about 1.4 MHz.  The most compelling peak, however, is in the innolight at 216 kHz, where the peak is about 2.3e5 rad/RIN.

Below about 30kHz, the loop suppresses the measurement, so one should focus on the region above there.

  63   Mon Nov 5 14:44:39 2007 waldmanUpdateOMCPZT response functions and De-whitening
The PZT has two control paths: a DC coupled path with gain of 20, range of 0 to 300 V, and a pair of 1:10 whitening filters, and an AC path capacitively coupled to the PZT via a 0.1 uF cap through a 2nd order, 2 kHz high pass filter. There are two monitors for the PZT, a DC monitor which sniffs the DC directly with a gain of 0.02 and one which sniffs the dither input with a gain of 10.

There are two plots included below. The first measures the transfer function of the AC monitor / AC drive. It shows the expected 2 kHz 2d order filter and an AC gain of 100 dB, which seems a bit high but may be because of a filter I am forgetting. The high frequency rolloff is the AA and AI filters kicking in which are 3rd order butters at 10 kHz.

The second plot is the DC path. The two traces show the transfer function of DC monitor / DC drive with and with an Anti-dewhitening filter engaged in the DC drive. I fit the antidewhite using a least squares routine in matlab constrained to match 2 poles, 2 zeros, and a delay to the measured complex filter response. The resulting filter is (1.21, 0.72) : (12.61, 8.67) and the delay was f_pi = 912 Hz. The delay is a bit lower than expected for the f_pi = 3 kHz delay of the AA, AI, decimate combination, but not totally unreasonable. Without the delay, the filter is (1.3, 0.7) : (8.2, 13.2) - basically the same - so I use the results of the fit with delay. As you can see, the response of the combined digital AntiDW, analog DW path is flat to +/- 0.3 dB and +/- 3 degrees of phase.

Note the -44 dB of DC mon / DC drive is because the DC mon is calibrated in PZT Volts so the TF is PZT Volts / DAC cts. To calculate this value: there are (20 DAC V / 65536 DAC cts)* ( 20 PZT V / 1 DAC V) = -44.2 dB. Perfect!

I measured the high frequency response of the loop DC monitor / DC drive to be flat.
  5149   Tue Aug 9 02:34:26 2011 JennyUpdatePSLPZT transfer function measurement

Using a PDA255 on the PSL table, I measured the amplitude response of the NPRO PZT, sweeping from 10kHz to 5 MHz.

I took a run with the laser beam blocked. I then took three runs with the beam unblocked, changing the temperature of the laser by 10 mK between the first two runs and by 100mK between the second and third runs.

At the end of the night I turned off the network analyzer and unplugged the inputs. I'm leaving it near the PSL table, because I'd like to take more measurements tomorrow, probing a narrow bandwidth where the amplitude response is low.

On the PSL table, I'm still monitoring the reflected light from the cavity and the transmitted light through the cavity on the oscilloscope. I'm no longer driving the NPRO temperature with the lock-in.

I closed the shutter on the NPRO laser at the end of the night.

I'll log more details on the data tomorrow morning.

  179   Fri Dec 7 11:33:24 2007 waldmanOmnistructureOMCPZT wiring
The 2 pin LEMO connector has got an unmarked pin and a pin marked by a white half-circle.
The unmarked pin is connected to the side of the PZT attached to the mirror.
The marked pin is connected to the side of the PZT attached to the tombstone.
  6351   Mon Mar 5 03:50:49 2012 kiwamuUpdateIOOPZT1 PITCH railing

PZT1 started railing in the pitch direction and because of this TRY doesn't go more than 0.7. I will leave it as it is for tonight.

Tomorrow I will shift the alignment of the MC to make the PZT1 happier.

Quote from #6300

PZT1, the one with Koji's custom mid-HV driver (#5447), is getting degraded.


  7323   Thu Aug 30 20:31:35 2012 JenneUpdateIOOPZT1 and PZT2 set to center of their ranges

[Koji, Jenne]

Jamie and Koji pointed out that we need to be doing the in-vac alignment with the PZTs at the center of their ranges.  Also, we confirmed that they were set to "closed loop off", so the strain gauges were not supplying any feedback.

PZT1 was set to 0 for both pitch and yaw, since it has a very limited range of motion right now, so 0 is close enough.

For PZT2, Koji and I moved the slider in pitch and yaw, and watched the LCD output monitor on the PZT driver at the bottom of 1Y3.  We saw the value on the LCD change between slider values +4 to -6 for PZT2 yaw, so it is set to -1 as the center.  We saw the value on the LCD change between slider values -4 to +5 for PZT2 pitch, so it is set to +0.5 as the center.   Beyond these slider values (the sliders all go -10 to +10), the LCD value didn't change, either at 0, or at the maximum. 

Since PZT1 doesn't really move, this shouldn't affect any of the alignment work that Suresh and I did last night, although we should quickly confirm tomorrow. On the agenda for tomorrow is adjusting PZT2 such that we hit the center of PR2 (and hopefully that will also put us through the center of the PRM target, if the alignment was done well enough last time), so it's okay that we have only now set it to the center of its range.

  6410   Wed Mar 14 04:03:37 2012 kiwamuUpdateIOOPZT1 and associate extra works

As the PZT1 has not been functional, I have been aligning the Y arm to the input beam instead of aligning the beam to the Y arm.

It turned out that this procedure leads to two extra works everytime after alignments of the Y arm:

  1. The Y green beam must be always aligned to the Y arm
    • The amount of the misalignment was found to be relatively big compared with how it used to be.
  2. The PSL beat note setup must be always realigned because the Y green path is determined by the orientation of the Y arm.
    • In the past I didn't often realign the beat note path, but currently it needs to be pay more attentions.

Sad ..

Quote from #6357

   The polarity for controlling the PZT1 PITCH seems to have flipped for some reason.


  5368   Fri Sep 9 11:59:58 2011 kiwamuUpdateIOOPZT1 doesn't work

Last night I noticed that PZT1 didn't work properly

I am not sure what is going on. Today I will try localizing the cause of the problem.

As far as I remember it was perfectly working at the time just after we readjusted the OSEMs on MC1 and MC3 (Aug 23th)


The symptoms are :

  + No response to both pitch and yaw control from EPICS (i.e. C1:LSC-PZT1_X and C1:LSC-PZT1_Y)

  + When a big value (-3 or so) from EPICS was applied, the PZT1 mirror suddenly jumped.

     However it turned out it just corresponded to a state where OOR (Out Of Range) LED lights up.


I did some brief checks :

  + checked the voltage going into the HV amplifiers' "MOD" input. Those are the voltage coming out from DACs and controlled from EPICS.

   --> looked healthy. They went from -10 to 10 V as expected (although the HV amp takes up to only +/-5V).

  + swapped the ''MOD" input cables such that C1:LSC-PZT1 controls the PZT2 HV and vice versa.

    --> The PZT2 mirror was still controlable, but the PZT1 mirror still didn't move. So the DAC and EPICS are innocent.

  + swapped the D-dub cables, which are directly going into the feedthroughs, such that the PZT1 HV drives the PZT2 mirrors and vice versa.

    --> the PZT2 mirror became unable to be controlled. For the PZT1 mirror, only PITCH worked smoothly.

  5447   Sat Sep 17 14:04:45 2011 KojiUpdateIOOPZT1 driver in place

The PZT driver is now in place. The actual PZTs are not connected yet!

It is accommodated on Ben's connector adapter board.

The panel has additional connectors now: two inputs and a power supply connector.

The supply voltage is +/-30V (actual maximum +/-40V), and the input range is +/-10V
which yields the output range of -5V to 30V. The gain of the amplifier is +2.

It is confirmed that the HV outputs react to the epics sliders although the PZT connector is not connected yet
so as not to disturb the locking activity.

When we engage the PZT connector, we should check the HV outputs with an oscilloscope to confirm they
have no oscillation with the capacitances of the PZTs together with the long cable.

  7857   Wed Dec 19 18:40:00 2012 JenneUpdateIOOPZT1 removed, TT1 in place

[Manasa, Jamie, Jenne]

PZT1 has been removed, and is wrapped in foil and stored in a (labeled) plastic box.

We beeped the cable between the cable holder bracket on the in-vac table, and the outside of the feedthrough.  Things are mirrored, so pins 1,14 (one edge on the feedthrough) go to pins 13,25 on the in-vac cable bracket.

Tip Tilt, serial number ### (Manasa will get the serial number and put it in the elog) was taken out of the cleanroom, for use as TT1.

We checked the epics controls from the TT screen that Jamie made a while back (accessible from the ASC tab on the sitemap) to the output of the AI board.  Things were very weird, but Jamie fixed them up in the model, then rebuilt and restarted the ASS model so that now the epics channel corresponding to, say, UL actually actuates on the UL output of the boards.

We tested the cables from the rack to the feedthrough, and discovered that they are also mirrored, to undo the mirroring between the feedthrough and the in-vac bracket.

Jamie made an adapter cable to take the pinout of the coil driver boards correctly to the pinout of the quadrupus cable, through this double-mirroring (i.e. no net mirror effect).

We set up a laser pointer on a tripod outside the door of the MC chamber (where the access connector usually is), and pointed it at the back of the TT.  Den or whomever put the cable on the TT didn't follow the diagram (or something got messed up somewhere), because when we actuate in pitch (+ on the uppers, - on the lowers), we see the TT move in yaw, and vice versa. 

We are in the process of removing the quadrupus from the TT, figuring out which connector goes where, putting it on correctly, and re-testing.

Depending on how far things get tonight, Jamie and Manasa may ask Steve to help them remove the BS door, so they can get started on replacing PZT2 with TT2.

  7858   Wed Dec 19 19:28:12 2012 ManasaUpdateIOOPZT1 removed, TT1 in place


Tip Tilt, serial number ### (Manasa will get the serial number and put it in the elog) was taken out of the cleanroom, for use as TT1.


Depending on how far things get tonight, Jamie and Manasa may ask Steve to help them remove the BS door, so they can get started on replacing PZT2 with TT2.

Tip-Tilt TT1


I have fixed TT1 close to what it's position looks like in the CAD drawing. Only 2/3 of TT1 rests on the table...so we need to be extra careful when we will move it for alignment.

Serial Number:  SN 027

dcc number: D1001450-V2

 We are still in the process of removing the quadrupus from the TT, figuring out which connector goes where, putting it on correctly, and re-testing.

We closed the IMC chamber with light doors calling it a day!


  5431   Fri Sep 16 11:15:12 2011 KojiUpdateIOOPZT1 situation

[Koji Kiwamu]

- We have checked the situation of the broken Piezo Jenna PZT (called PZT1)

- Tested PZT1 by applying a dc voltage on the cables. Found that pitch and yaw reasonably moving and the motions are well separated each other.
  The pitch requires +20V to set the IPPOS spot on the QPD center.

- Made a high-voltage (actually middle voltage) amp to convert +/-10V EPICS control signal into -5 to +30V PZTout. It is working on the prototype board and will be put into the actual setup soon.


- The Piezo Jenna driver box has 4 modules. From the left-hand side, the HV module, Yaw controller, Pitch controller, and Ben abbot's connector converter.

- We checked the voltage on Ben's converter board. (Photo1)
  It turned out that the red cable is the one have the driving voltage while the others stays zero.

- We hooked a 30V DC power supply between the red cable and the shield which is actually connected to the board ground.

- Applying +/-10V, we confirmed the strain gauge is reacting. If we actuated the pitch cable, we only saw the pitch strain gauge reacted. Same situation for yaw too.

- Kiwamu went to IPPOS QPD to see the spot position, while I change the voltage. We found that applying +20V to the pitch cable aligns the spot on the QPD center.


- I started to make a small amplifier boards which converts +/-10V EPICS signals into -5V to +30V PZT outs.

- The OPAMP is OPA452 which can deal with the supply voltages upto +/-40V. We will supply +/-30V. The noninerting amp has the gain of +2.

- It uses a 15V zener diode to produce -15V reference voltage from -30V. This results the output voltage swing from -5V to +35V.
The actual maximum output is +30V because of the supply voltage.

- On the circut test bench, I have applied +/-5V sinusoidal to the input and successfully obtained +5V to +25V swing.

- The board will be put on Ben's board today.

  7440   Wed Sep 26 01:10:34 2012 JenneUpdateIOOPZT2 not working?!?! MC back to normal

[Jenne, Evan, Den]

MC REFL beam is back on the PD, and the mode cleaner locks.  It looks like we're a little high on the MC Refl camera, but the MC spots were measured, and don't look like they changed from Friday (or maybe Monday?), the last time they were measured. We took this to be acceptable MC alignment, and did not touch the PSL table's pointing.

The laser power reduction optics were removed, and placed out of the way on the PSL table (where do they belong?).  PSL-POS and PSL-ANG aren't quite perfectly centered, but a beam dump had been in the way of that path, so I don't know if they drifted bad, or if it was a sudden thing.  The beam is still hitting the QPDs though.  After removing the beam power reducing optics, we recentered the MC REFL beam on the REFL PD, still not touching any PSL alignment.  MC mirrors were aligned (Den did this work while I showed Evan around, so I don't know by how much), and MC Trans was maximized (really MC Refl was minimized, making sure that the unlocked MC Refl was the usual 4.something units on the EPICS readback.

We turned on the PZT high voltage supplies for the output steering PZTs and for the input steering PZTs.  We left the OMC locking PZT supplies off, since we're still not using the OMC.  Sadly, the beam coming out of the AS port looks clipped somewhere.  [SELF: attach the videocapture shot when you get to work tomorrow] We tried moving PZT2's sliders, but nothing happened!!! I can move BS and the ITMs to get the beam mostly unclipped, but I really need to be able to move the PZTs, or at least one of them.  IPPOS and IPANG beams are hitting the QPDs (although they're not centered perfectly), so the PZTs came back mostly to the same positions, but not exactly.  Evan and I sat next to the input steering PZT controllers in 1Y3, and moved the sliders around.  For most of the range, nothing changes on the LCD screen for either PZT2 pitch or yaw.  Yaw can make 2 small steps near the far negative side of the slider, but nothing happens for most of the slider.  Pitch really doesn't do anything for any part of the slider.  We ensured that the LED labeled "CL ON" was not illuminated, next to the button labeled "closed loop", for all 4 controllers (PZT1 and 2, pitch and yaw).  Sad!!   I don't know if the LCD screen on the front panel of the PZT controllers is a readback of signal supplied to the PZTs, or of the strain gauges.  I really hope it's the controller that's not working, rather than the PZTs themselves.  The PZTs were fine before we vented, and Koji and I did our centering of the PZT range check during the vent, so they were fine then.  What happened???  All PZT high voltage supplies were off during the pump-down.  I turned them off yesterday, and Evan and I turned them back on tonight around 9:30pm or 10pm.  What else could make them bad?

Without being able to move PZT2, just using BS and / or ITMs, I was unable to completely make the beam look nice on the AS camera.  I came close, but it still seems a little bit funny, and I had to move the suspended optics quite a bit to find that place.  This is not good. 

  7509   Tue Oct 9 00:25:33 2012 JenneUpdateIOOPZTs - hacky solution in place!!

[Evan, Jenne]

We applied some volts across both the pitch and yaw pin sets of the ribbon cable that goes to PZT2.  We ended up with ~40V yaw and ~14.5V pitch.  That was the nice happy center of the clipping that we can see on the AS camera.  Once we found the center of the PZT clipping range with the ITMY beam, we recentered the AS camera (actually, this took a few iterations, but now it's good). 

We then aligned MICH, but aren't able to get it to lock.  Before falling asleep, we have decided to align the PRM and SRM, so right now we have a flashing DRMI.  Both the SRMI and PRMI look a little funny the closer you get to 'good' alignment, so I'll investigate a little more tomorrow, and include pictures.  (The video capture script has barfed again, and I'm not in the mood to deal with it today.)

  4108   Tue Jan 4 21:21:57 2011 kiwamuUpdateIOOPZTs are connected to c1iscaux

I connected PZT1 and PZT2 to a slow front end machine c1iscaux.

Now we are able to align these PZTs from the control room via epics.


   Since we removed C1ASC that was controlling the voltage applied on the PZTs, we didn't have the controls for them for a long time.

So Rana and I decided to hook them up to an existing slow front end machine temporarily.

(probably the best solution is to connect them to C1LSC, which is fast enough to dither them.)

We actually found that c1iscaux is the proper machine, because it looked like it used to control the PZTs a long long time ago.

Moreover, c1iscaux still has DAC channels named like C1:LSC-PZT1_X, and so on.


  Below shows a screen shot of the medm screen for controlling the PZTs, invoked from a button on sitemap.adl ( pointed by a black arrow in the picture below)

The current default values are all zero at the right top sliders.


ELOG V3.1.3-