40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 187 of 344  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  6145   Thu Dec 22 19:15:22 2011 kiwamuUpdateGreen Lockingrearrangement of PSL green optics
 As planed (#6143), rearrangement of the PSL green setup has begun.
It required to move approximately half of the green optics on the PSL table
and I finished displacing and installing the necessary optics coarsely.
So far I just have recovered the Y arm beat-note between the PSL green light.
 
 I will do a fine alignment of the X arm path on the PSL table and try obtaining the X arm beat-note tonight.
  6147   Fri Dec 23 01:07:41 2011 kiwamuUpdateGreen Lockingrearrangement of PSL green optics part II

After I did a fine alignment of the X green beam path on the PSL table, the X arm beat-note was also obtained.

Here is a picture of the latest setup. The blue lines represent S-polarizing green beams.

newLayout.png

During I was working on the PSL table HEPA was at 80 %, and after the work I brought it to 20 %.

Quote from #6145
 I will do a fine alignment of the X arm path on the PSL table and try obtaining the X arm beat-note tonight.

  6154   Wed Dec 28 14:13:16 2011 kiwamuUpdateGreen LockingALS feedback on MC2

I added an ALS feedback path on the MC2 suspension and this path will enable us to stabilise the MC length using the ALS scheme.

  The actual digital signal is transmitted from the c1gcv realtime controller to the c1mcs realtime controller through the c1rfm realtime process.
Or in terms of the machines, the signal is transmitted from C1IOO to C1SUS via the reflective memory network.
 
The attached figure is a screen shot of the MC2 position controller screen.  The new ALS path is emphasized by a purple circle in the figure.
MC2_ALS.png

Quote from #5888

Leaving a note on the ALS feedback before I forget:

The MC2 suspension needs to have an input for the ALS feedback in the realtime model like ETMs.

 

  6155   Fri Dec 30 02:16:48 2011 kiwamuUpdateGreen LockingYarm ALS : high frequency noise reduced

The high frequency noise, which has been a dominant noise above 30 Hz in the Y arm ALS (#6133), decreased by a factor of 5.

This reduction was done by increasing the modulation depth at the Y end PDH locking. Now the noise floor at 100 Hz went to 0.2 pm/sqrtHz.

However the noise source is not yet identified and hence it needs a further investigation.

 

 The attached figure is the sensor noises, which were taken from the beat-note signal while the arm was locked by the IR-PDH.
The orange curve is the one before I changed the modulation depth and the red curve is the one taken after I increased the modulation depth.
The high frequency noise went down from 1 pm/sqrt Hz to 0.2 pm/sqr tHz at 100 Hz.
 
Yarm_ALS_2011Dec29.png

 (Increasing the modulation depth)

  Actually I was going to check the RAM noise at the Y end PDH locking as I planed (#6143).
During some preparation for it, I found that there had been a 20 dB attenuator in the modulation LO path.
The reason we have kept it is that somehow a big modulation depth made the reflected DC light noisier.
For curiosity I removed it to see what will happen and took the noise spectra. Then the noise decreased as shown in the plot above.
It means the noise source was like a kind of sensor noise, whose level depends on the responsivity of the sensor.
As far as I can tell, it is not the dark noise or shot noise according to some quick measurements.
  6214   Fri Jan 20 15:59:02 2012 kiwamuUpdateGreen LockingY arm ALS noige budget

One of my goals in this week is : measurement of the current best ALS noise budget.

Last night I took a new noise spectra of the Y arm ALS, which is shown in the attached figure below.

The displacement of the arm cavity observed from the IR PDH is at 66 pm in rms. In the measurement the arm length was stabilized with the ALS technique.

 

Yarm_ALS_2012Jan19.png

 

  6215   Fri Jan 20 16:24:50 2012 kiwamuUpdateGreen LockingY arm ALS : time series

Here is a new time series plot showing how stably ALS can control the arm length.

In the middle of the plot the cavity length was held at the resonance point for ~ 2 min. and then it passed through the resonance point to show the full shape of the PDH signal.

Apparently the PDH signal is now quieter than before (#6133)

time_series.png

Quote from #6214

One of my goals in this week is : measurement of the current best ALS noise budget.

 

  6216   Fri Jan 20 17:05:59 2012 ranaUpdateGreen LockingY arm ALS : time series

                        One of my goals this week is to get people to make plots with physical units:

That ALS plot would be 5x cooler if the POY11 signal could be in meters instead of counts or cubits.

  6220   Tue Jan 24 18:11:13 2012 kiwamuUpdateGreen LockingY arm ALS noise budget

I did some more stuff for the Y arm ALS and updated the noise budget:

After the works, the rms displacement improved a little bit, so it is now at 24 pm in rms.

Though, it turned out that the MFD's ADC is now limiting the noise in a frequency band of 200 mHz - 5 Hz.

So tonight I will increase the gain of the whitening filter to push down the ADC noise more.

 

Yarm_ALS_2012Jan19.png

 

(What I did)

 + added the DAC noise and comparator noise based on measurements.

 + redesigned the servo filter shape to suppress the seismic noise below 10 Hz.

 The attached plot below shows the newly designed open loop transfer function together with the old one for a comparison.

UGF is at 120 Hz and the phase margin is about 27 deg.

  newservo.png

  • FM7 = resonant gain (17)
  • FM6 = resonant gain (3)
  • FM5 = zero(1) * pole(500)
  • FM4 = pole(1) * zero(40.) * 40.
  • FM3 = pole(1) * zero(40.) * 40.
  • FM2 = pole(0.001)*zero(1)*1000.
  6221   Wed Jan 25 02:59:46 2012 kiwamuUpdateGreen LockingY arm ALS noise budget

Surprisingly increasing the gain of the whitening filter didn't improve the noise curve.

It suggests that the ADC noise is not the limiting factor below 10 Hz.

Quote from #6220

Though, it turned out that the MFD's ADC is now limiting the noise in a frequency band of 200 mHz - 5 Hz.

So tonight I will increase the gain of the whitening filter to push down the ADC noise more.

 

  6223   Wed Jan 25 17:32:03 2012 steveUpdateGreen Lockinggeen pointing into y arm is misaligned

I  placed an other Y2-LW-1-2050-UV-45P/AR steering mirror into the beam path of the green beam launching in order to avoid the ~30 degrees use of the 45 degrees mirror. The job is not finished.

  6225   Thu Jan 26 06:09:52 2012 kiwamuUpdateGreen Lockingnoisy AS55

During the Y arm ALS I found that the noise of the AS55 demod signal was worse than that of POY11 in terms of the Y arm displacement.

There is a bump from 500 mHz to 100 Hz in the AS55 signal while POY11 didn't show such a structure in the spectrum.

 

The plot below is the noise spectra of the Y arm ALS. The arm length was stabilized by using the green beat-note fedback to ETMY.

In this measurement, POY11 and AS55 were served as out-of-loop sensors, and they were supposed to show the same noise spectra.

In the plot It is obvious that the AS55 curve is louder than the POY curve.

Yarm_ALS_2012Jan25.png

  6227   Thu Jan 26 10:17:01 2012 steveUpdateGreen Lockinggeen pointing into y arm is realigned

Quote:

I  placed an other Y2-LW-1-2050-UV-45P/AR steering mirror into the beam path of the green beam launching in order to avoid the ~30 degrees use of the 45 degrees mirror. The job is not finished.

 The alignment is finished after the realization that the 3rd steering mirror had to be adjusted too.

The input power increased from 1.2 to 1.4 mW

  6230   Fri Jan 27 05:21:43 2012 kiwamuUpdateGreen Lockingfine alignment of the Y end green setup

I did a fine alignment on the Y end green setup. The green light became able to be locked again.

Quote from #6227

 The alignment is finished after the realization that the 3rd steering mirror had to be adjusted too.

  6234   Fri Jan 27 16:55:28 2012 JenneUpdateGreen LockingY-green realigned

The Yarm green laser really wanted to lock on a 01/10 mode, so Kiwamu suggested I go inside and realign the green beam to the arm.  I did so, and now it's much happier locked on 00 (the Yarm is resonating both green and IR right now).

  6299   Tue Feb 21 08:33:16 2012 steveUpdateGreen Lockingperiscope adapter plate

Two extender plates ready for cleaning. The existing optical table tops have 38" OD. Using two of these the OD will be 44"

  6301   Tue Feb 21 18:39:11 2012 kiwamuUpdateGreen LockingNew BBPDs installed

Two new BBPDs have been installed on the PSL table.

The first one was installed by Koji a few days ago, and I stalled the second one today.

They will serve as beat-note detectors for the green locking.

Next step : I have to lay down a long SMA cable which goes from the BBPD to the IOO rack.

  6324   Mon Feb 27 14:35:37 2012 JenneUpdateGreen LockingPSL Beat Setup

Xarm is aligned for both IR and green. 

Here is a photo of the beam paths of the PSL beat setup.  I want to make sure that the X-green BBPD sees a nice beam from both the PSL and the Xarm, without disturbing the currently working Y setup.  I keep getting confused with all the beamsplitters, especially the green PBSes, which operate at ~56deg, not 45deg, so I made a diagram.

BeatPSLlayout_27Feb2012.png

  6326   Mon Feb 27 18:35:45 2012 JenneUpdateGreen LockingX Beat Search

Meh.  I've searched in steps of 20 counts in C1:GCX-SLOW_SERVO2_OFFSET units (16 bit +\- 10V DAC, and 1GHz/V coeffecient for the Xgreen aux laser means this is ~0.6MHz per 20 count step).  I went from -400cts to +800 cts and haven't found the beatnote yet.  Meh. 

Both PSL green and Xgreen beams are going to the Xgreen BBPD.  Both beams are easily visible, so while I didn't actually measure the power, it should be sufficient.  The arm is being re-locked in green for each step, but it's not locked in IR, but that doesn't matter for just finding the beatnote.

I've got the output of the BBPD directly connected to the 50 ohm input of the HP8591E spectrum analyzer, with the freq span from 10MHz to 120MHz.  The BBPD is supposed to be good up to ~100MHz, so I should catch any beatnote that's there.  I have to head out, so I guess I'll continue the search tomorrow. 

One of Kiwamu's suggestions was that, since no one is using the Ygreen concurrent with my fiddling, I rotate the waveplate after the PSL doubling oven so that max power goes to the Xgreen path, thus giving myself a bigger signal.  I'll try that tomorrow.  Today, I didn't ever touch the waveplate.

  6342   Wed Feb 29 20:27:00 2012 JenneUpdateGreen LockingX green beat - found it!

Found it!

The actual temperature of the Xend laser is 0.02 C higher than anticipated based on the formula in elog 3759.  Both the PSL and the Xend laser are at their nominal diode currents (2.100 A for the PSL, 2.003 A for Xend), so the curves should be used as they are.  The PSL temp (when the slow servo offset is ~0) is 31.71 C.  Using curve 2 from elog3759, the Xend laser should be 37.78, which I found was +10 counts on the Xgreen slow servo offset. 

Right now the Xend laser is at 37.80 C, and the beat is around 30 MHz.  This is +80 counts on the Xgreen slow servo.  +60 counts gave me ~80 MHz.  When (a few minutes ago) the MC unlocked and relocked, it came back to a slightly different place, so the temp of the Xend laser had to go up a few 10's of counts to get the same beat freq.  Right now the PSL slow servo offset is 0.076 V. 

The HP8591E is set with ResBW=100kHz, Ref Level= -39dBm (so I'm not attenuating my input signal!).  The largest peak I see for the beatnote is -66dBm.  The nose floor around the peak is -83dBm.  Trace (trace button!) A is set to MaxHoldA, and Trace B is set to ClearWriteB, so B is giving me the actual current spectrum, while A is remembering the peak value measured, so it's easier to see if I went past the peak, and just didn't see it on the analyzer. 

Also, I went back and realigned the beams earlier, to ensure that there was good overlap both near the BS which combines the PSLgreen and Xgreen beams, and at the PD.  The overlap I had been looking at was okay, but not stellar.  Now it's way better, which made the peak easier to see.  Also, also, the waveplate after the doubling oven on the PSL table is still rotated so that I get max power on the Xgreen side of things, and not much at all on the Ygreen side.  I'll need to rebalance the powers, probably after we make sure we are seeing the beatnote with the BeatBox.

Next Steps:

Lay a cable from the BBPD to the BeatBox in 1X2, make the BeatBox do its thing.

Use the dichroic locking to do a sweep of the Xarm.

  6371   Wed Mar 7 11:44:29 2012 JenneUpdateGreen LockingXgreen beatnote cable made, laid

The Xgreen PD now has a cable going over to the beatbox. Once beatbox characterization is done I can re-find the beat, and we can do some stuff with the beatbox.

  6395   Fri Mar 9 16:00:46 2012 steveUpdateGreen Lockinglaser emergency shut down switch replaced at the south end

Over-sized local laser emergency switch was held by large C clamp at the south end. This was replaced by a smaller one and it is mounted with magnets.

The Innolight laser was turned off, while the interlock was wired.

  6413   Wed Mar 14 10:06:26 2012 steveUpdateGreen Lockingdichroic mirror quotes

Dichroic mirror quotes are in the wiki.

ATF is pricy.

We got a good price from Laseroptik, but the wedges are 5 arcminutes. The fused silica grade is 0F, meaning the  homogeneity is 5 ppm instead of 1ppm.  I requested an other large wedge quote on the substrates.We may have to get substrates from somebody else and ship it to Germany

MLT quote is outrageously high

REO is not interested in this low volume job.

 

  6435   Thu Mar 22 08:14:21 2012 steveUpdateGreen Lockingdichroic mirror quotes with large wedge

Quote:

Dichroic mirror quotes are in the wiki.

ATF is pricy.

We got a good price from Laseroptik, but the wedges are 5 arcminutes. The fused silica grade is 0F, meaning the  homogeneity is 5 ppm instead of 1ppm.  I requested an other large wedge quote on the substrates.We may have to get substrates from somebody else and ship it to Germany

MLT quote is outrageously high

REO is not interested in this low volume job.

 

 The Laseroptik quote is here.The 2 degrees wedge cost is $40 on each optics!  See wiki

  6603   Fri May 4 17:46:46 2012 JenneUpdateGreen LockingPSL doubling oven back on

While walking past the PSL, I noticed that the PSL's doubling oven's heater was still disabled from the power outage.  As with the ETMY heater, I hit the Enable button, and it started warming up (according to the front panel at least).

  6713   Wed May 30 01:35:15 2012 yutaUpdateGreen Lockingaligned Y arm green beam

[Jenne, Yuta]

We aligned the Y arm for IR (C1:LSC-TRY_OUT is now ~ 0.9), and aligned the green beam from the ETMY table. The Y arm green is now resonating in TEM00 mode, but we need some monitors (green trans or green refl) to maximize the coupling.

We noticed that the MC beam spot are oscillating at ~ 1 Hz, mostly in YAW.  This wasn't observable before the PMC realignment (elog #6708). We should find out why and fix it.

  6724   Thu May 31 01:27:16 2012 yutaUpdateGreen LockingPSL and Y arm green beams aligned

[Jenne, Yuta]

We aligned the PSL green optics so that the PSL green beam and Y arm green beam interfere. 2 beams are now hitting the Y arm beat PD. The DC level from the beat PD is about 13 mV.

We didn't try to see the beat signal for today, because the temperature of the doubling crystal seemed funny. We need to look into it tommorow.

Currently, the temperature control is enabled and the set point is 36.9 deg C, but the temperature is stuck at 33.0 deg C.

  6725   Thu May 31 01:36:17 2012 yutaUpdateGreen LockingGREEN_TRX/GREEN_TRY PDs

I did the cabling for monitoring DC transmission of the green beam from the end table.
The two PDs are called GREEN TRX and GREEN TRY, and the channel names are C1:GCV-GREEN_TRX and C1:GCV-GREEN_TRY.
The two signal from the PDs go to the ADC_0 card of the c1ioo computer.

Now, C1:GCV-GREEN_TRX/Y are actually connected to the respective PDs, but green beams are not hitting on the PD. We need two pickoff mirrors.

  6731   Thu May 31 16:19:07 2012 yutaUpdateGreen Lockingtemperature setting for PSL doubling crystal

I fixed the temperature control of the oven for the PSL doubling crystal.
The PID settings were not good, and also, TC200 was beging DETUNED. So, I activated TUNE function and adjusted PID settings.
I'm not sure what the DETUNE function is for. The manual can be found here;
   http://www.thorlabs.com/thorproduct.cfm?partnumber=TC200

Current settings for Thorlabs TC200 are (Red ones are what I changed from the previous setting);

parameters Xend Yend PSL
TEMP SET (deg C) 37.5 35.7 36.9
P 250 250 250
I 60 60 200 (was 117)
D 25 25 40 (was 19)
(DE)TUNE on? TUNE TUNE TUNE (was DETUNE)
TMAX (deg C) 200 200 170
PMAX (Watts) 18 18 18
temperature sensor PTC100 PTC100 PTC100
  6732   Thu May 31 16:54:12 2012 JenneUpdateGreen LockingLinks to old elogs for green beatnote laser temps

Because I keep taking a long time to search for these, since I can't remember the keywords in the different entries, here are the links:

elog 3759 : Green X end aux laser temperature setting vs. PSL laser temperature setting

elog 4439 : Green Y end aux laser temperature setting vs. PSL laser temperature setting

More words: beat note, doubling, second harmonic.

Relevant results: 

T_Xend = 8.31 + 0.9293*T_PSL

T_Yend = 6.9825 + 0.87326*T_PSL

 

Also, C1:GCY-SLOW_SERVO2_OFFSET was 29725 (twenty nine thousand seven hundred twenty five) cts when we sat down to start today.

C1:GCX-SLOW_SERVO2_OFFSET was 80 (eighty) cts when we sat down to start today.  Why the offsets are so different, I don't know.  But I was able to find the X green beatnote with this small number offset, so it is approximately correct.

  6736   Fri Jun 1 02:13:00 2012 JenneUpdateGreen LockingAttempt at Ygreen beat - failed

[Yuta, Jenne]

We tried to find the Ygreen beat note, with no success yet.  We calculate from Bryan's formula that the Yend laser should be ~34.68C.  But Katrin has an elog saying that she was looking around 19C.  I don't know why the discrepancy, but maybe this is part of our problem?  Kiwamu elog-responded that the epics output had to be high (~9V) when the temp was 19C.  So maybe we need a smaller offset setting in the slow servo with the 34C temperature?

We set the "T+" on the Ygreen laser controller to 34.68C using the dial, and then tried a few large steps with the offset in the Ygreen slow servo.  The idea was to see if we could swing past the beat, so we would know vaguely where it was.  But we never saw a resonance on the spectrum analyzer, even with a "hold max" trace. 

We confirmed that there is signal going to the SLOW input of the laser controller's front panel.  Yuta watched a voltmeter while I changed the epics value, and we successfully changed the signal.  However, after plugging the SLOW cable back in, we noticed that no matter what we set the epics value to, we don't see any temperature change reported on the front panel display.  There is something in the manual( according to Katrin) that the "LT" display is not accurate when a cable is plugged in.  But none of the display values changed.  I think there is a measured temp output on the back that Bryan mentioned that we could use to see if something is really changing inside.

Anyhow, no beatnote found yet tonight.  We confirmed before starting that the alignment onto the beat PD was good, so that's not the problem.

  6746   Sat Jun 2 03:19:37 2012 yutaUpdateGreen LockingY green beat note found? - too small

Summary:
  I tried to find Y arm green beat in order to do the mode scan.
  I found a beat peak(see attached picture), but the amplitude seems too small.
  It is may be because the alignment/mode matching of the green beams at the PSL table is so bad. Or, the peak I found might be a beat from junk light.

What I did:
  1. Aligned Y arm to the IR beam from MC.

  2. Re-aligned Y end green beam to the Y arm using steering mirrors on the Y end table.

  3. Re-aligned PSL green optics.

  # C1:GCV-GREEN_TRY is temporary connected to the DC output of the Y green beat PD.

  4. Temperature of the PSL laser was 31.48 deg C, so I set "T+" of the Y end laser to 34.47 deg C, according to Bryan's formula (elog #4439);

  Y_arm_Temp_set = 0.87326*T_PSL + 6.9825

  5. Scanned Y end laser temperature by C1:GCY-SLOW_SERVO2_OFFSET. Starting value was 29725 and I scanned from 27515 to 31805, by 10 or 100. Laser frequency changes ~ 6 MHz / 10 counts, so it means that I scanned ~ 2.5 GHz. During the scan, I toggled C1:AUX-GREEN_Y_Shutter to make sure the green beam resonates in TEM00 mode.

  # I made a revolutionary python script for toggling channels(/opt/rtcds/caltech/c1/scripts/general/toggler.py). I made it executable.

  6. Found a tiny beat note when C1:GCY-SLOW_SERVO2_OFFSET = 29815. I confirmed it is a beat signal by blocking each PSL and Y arm green beam into the beat PD. I left  C1:GCY-SLOW_SERVO2_OFFSET = 29815.

  7. I found that Bryan's formula;

Y_arm_Temp_meas = 0.95152*T_PSL + 3.8672
Y_arm_Temp_set = 0.87326*T_PSL + 6.9825

  was actually

Y_arm_Temp_set = 0.95152*T_PSL + 3.8672
Y_arm_Temp_meas = 0.87326*T_PSL + 6.9825

  according to his graph(elog #4439). So, I set  "T+" of the Y end laser to 33.82 deg C.

  8. This time, I scanned PSL laser temperature by C1:PSL-FSS_SLOWDC. I found a tiny beat note when C1:PSL-FSS_SLOWDC = 1.0995. C1:PSL-FSS_SLOWDC has 10 V range, so I scanned ~ 10 GHz, assuming the laser frequency changes 1 GHz/K and the temperature changes 1 K/V.

  9. Re-aligned PSL green optics so that the beam hits optics at their center, and checked that the poralization of the two green beams are the same.

  10. Checked that amplifier ZFL-100LN+ on the beat PD is working correctly. The power was supplied correctly (+15 V) and measured gain was ~ 25 dBm.

  11. Exchanged BNC cable which connects the beat PD to the spectrum analyzer. Previous one we used was too long and it had -15 dB loss(measured). I exchanged to shorter one which has -2 dB loss.

Beat note amplitude estimation:
  The amplitude of the beat note observed in the spectrum analyzer was ~ -54 dBm. According to the estimation below, it seems too small.

  The measured power of the two green beams are

  P_Y = 4 uW
  P_PSL = 90 uW

  So, the power of the beat signal should be

  P_beat ~ 2 sqrt(P_Y * P_PSL) = 37 uW

  Responsivity and transimpedance of the beat PD (Broadband PD, LIGO-T0900582) are 0.3 A/W and 2 kOhm. So, the power of the electrical signal is

  W = (P_beat * 0.3 A/W * 2 kOhm / sqrt(2))^2 / 50 Ohm = 5 uW

  5 uW is -23 dBm. We have +25 dB amplifier after the PD and the loss of the BNC cable is -2 dB. So, if the two beams interfere perfectly, the peak height of the beat signal should be ~ 0 dBm. The measured value -54 dBm seems too small. According to elog #5860, measured value by Kiwamu and Katrin was -36 dBm.

Current values:
  PSL laser temperature: 31.48 deg C (PSL HEPA 100%)
  Y end laser "T+": 33.821 deg C
  Y end laser "ADJ": 0
  C1:GCY-SLOW_SERVO2_OFFSET = 29815 (was 29725)

  6750   Mon Jun 4 23:48:43 2012 jenneUpdateGreen Lockinglowered gain

We're trying to do a yarm measurement....before I forget, I want to write this down...

I changed the gain of each of the top 2 SR560's down, by a factor of 2.  This made the overload lights quit coming on.

  6751   Tue Jun 5 00:49:28 2012 JenneUpdateGreen LockingNightly update

[Yuta, Jenne]

Vaguely chronological order:

Found a beat peak, thought it was puny, went to realign Ygreen at end table.

Noticed that beam out of faraday was clipping on the last lens before the steering optics.  We adjusted the mirror directly before the faraday, making sure the power transmitted (measured by the Ophir) didn't go down. Now we're roughly centered on both the lens directly after the faraday, and the lens before the steering optics.

This, of course, meant that we had to completely realign the Ygreen beam to find the TEM00 resonance.  We did that.  Actually, this took us a really long time. We ended up putting a temporary CCD camera on the PSL table to look at the transmitted green light.  This helped a lot, but the resonant modes were just totally wacky.  We finally were able (after 30+ minutes, using the camera) to get to TEM01.  Then Yuta adjusted ITMY a teeny bit, and green was happy to resonate.  We then removed the CCD camera so that we could move on to beat stuff.

Yuta decided it's faster to sweep the PSL temp, rather than the end laser temp, since we don't have to watch that the arm maintains lock.  So we set the end laser temp (T+) to 34.049C, which gave a measured temperature at the back of 34.68C (with an offset of 29425)

We then swept the SLOW adjust on the FSS screen to change the PSL temp.  We went all the way, starting at 0, to +10, back to 0, then on to -10, in steps of 0.01 .

We found a puny peak at -0.96, and pretty good peak at -9.48.  Height of the pretty good peak, after optimizing PSL table beat alignment was -50dBm. At this time, the PSL temp is 33.81C, while the Yend is still measured at 34.68C.

I checked the cabling, and it looks like the beat setup is still as it should be, using the old-school, non-beatbox stuff.  We plugged the beat PD into the beat detection setup, removing it from the spectrum analyzer.  As mentioned in my self-reminder elog, I changed the gains on the top 2 SR560's down by a factor of 2 so they weren't overloading. 

We aren't really sure that we're getting any real signals into the ALS model though.  C1:ALS-BEATY_COARSE_I_MON seems to be the same whether or not the arm is locked on green, therefore it seems to be the same ~500 or 600 counts whether or not there is a beat.  Hmmmm. We used the offset option of the OFFSETTER2 to send an offset to the beat signal that gets sent to the ETMY.  We confirmed that signals are going out to ETMY from the ALS model, but we're not sure if they are correct / non-insane signals.  One symptom that we're seeing is even though we have the Yarm locked on green, and the ALS system engaged, the arm is still flashing in IR, which means the green is mostly just following the arm.  We're not actually holding the arm in place.

Also, TRY and TRX are not recorded channels, so I went into the .ini file to have them acquire (uncommented them, set acquire=1, set the data rate to 2048), saved the ini file, and restarted the fb's daqd process.  The new TRY_OUT_DQ channel is digital zeros, and is red in dataviewer.  Also, the lsc model is no longer happily connected to the framebuilder.  I then decided to try Joe's old .daqconfig script (in the scripts directory) which provides a gui for acquiring channels.  Restarted the daqd process, same story.  I then went back to comment out the TRY_OUT_DQ lines, set acquire=0, set data rate back to 16384.  Joe's program put a bunch of spaces into the .ini file, but I don't think they do anything bad.  Except that now when I restart daqd, lsc still won't connect to the framebuilder.  Yuta setup pynds to save the data, if we were able to get anything useful.

We couldn't make awg, tdssine, or DTT write anything to the OFFSETTER2_EXC.  This is annoying, because this is how (once we figure everything else out) we need to sweep (with a ramp or triangle) the beat signal.

Moral of the night: we learned some stuff, but ultimately failed.

  6758   Tue Jun 5 22:03:22 2012 JenneOmnistructureGreen LockingIR beat signal at PSL

Yuta is going to bring this up at the 40m meeting so it can be argued over, but we (I) want a permanent IR beat setup at the PSL table.  This isn't a novel idea or anything, I just think it will save us time if we can quickly re-acquire the beat signal, so I'm bringing it up again.  Eventually, as Koji suggested to me, we can make the IR beat part of a servo, so that the green beat is always within the bandwidth of the green beat PD.  But for Phase 1, it's enough to just see the Ir beat on a ~1GHz PD.  Suresh tells me most of the bits and pieces are around, we just have to gather them all in one place.

  6763   Wed Jun 6 02:28:02 2012 yutaUpdateGreen Lockingtried to see Yarm length change with weak beat note

[Jenne, Yuta]

Summary:
  We tried to see the Yarm length change using Yarm green beat note. The beat note is still puny, so we put an extra amplifier. We saw something, but still can't control the arm length with ALS.

What we did:
  1. Aligned Y arm and PSL green optics as usual.

  2. By changing the temperature of the PSL laser with C1:PSL-FSS_SLOWDC, we find small beat note when

  PSL laser temperature on display: 30.59 deg C (PSL HEPA 100%)
  C1:PSL-FSS_SLOWDC = 5.2100
  Y end laser "T+": 34.049 deg C
  Y end laser "ADJ": 0
  Y end laser measured temperature: 34.68 deg C (*)
  C1:GCY-SLOW_SERVO2_OFFSET = 29425

 (*) Measured using diagnostic output on the back of the laser controller(Lightwave 125/6-OPN-PS) - between pins 2(GND) and 4. Calbration factor is 10 degC/V.

  3. The peak height right after the amplifier on the Y green beat PD was ~ -48dBm, so we put another amplifier (and attenuator) because the beat note which goes into the frequency divier should be -30 dBm to +7 dBm. After we put the amplifier, the peak height was ~ -23 dBm.

  4. We could see the C1:ALS-BEATY_COARSE_I_ERR ringing down, when opening and closing the control room door, which may introduce Y arm length change(screenshot of dataviewer below). But we are still not sure if we are actually getting the Y arm length signal because closing and opening Y end green shutter doesn't make difference on C1:ALS-BEATY_COARSE_I_ERR. The ring down was seen when we turned on the unWhiten filters in C1:ALS-BEATY_COARSE filter modules.

beatycoarseringdown20120605.png

  5. Tried to hold Y arm length with ALS, but couldn't.

Current setup:
  Red ones are the ones we added or changed.

beatysetup20120605.png

Note:
  Dataviewer is so slow and flakey now.

  6771   Wed Jun 6 21:11:45 2012 yutaUpdateGreen Lockingimproved Y arm green alignment

Summary:
  Y arm green transmission to the PSL table improved from ~ 20 uW to 61 uW. Improvement was done by adjusting steering mirrors before and after the faraday on the Y end table.
  But 61 uW is not enough!

What I did:
  1. The incident power to the faraday for the green beam on the Y end table was 1.4 mW, but the transmission was 1.2 mW. So, I adjusted the steering mirrors and the transmission increased to 1.4 mW.

  2. I found that adjusting the steering mirrors to the faraday also increased alignment of the green beam to the Y arm. We always adjusted only the steering mirrors after the faraday for the alignment. I adjusted the alignment using both steering mirrors this time. Reflection of the green beam on the ETMYT camera seems more reasonable now and more frequently lock to TEM00 when closing and opening the Y end green servo loop.

  3. For the adjustment, I tried to utilize PD at the reflection port, or the transmission port. However, I couldn't do that because they fluctuates too much. I don't know why.

  4. Measured the green transmission to the PSL table, The transmitted power was ~20 uW, but after the aligning, it improved to 61 uW.

Current green power:
  I measured the green beam power at various places using Newport power meter (Model 840) with its filter on.

beatygreenpower20120606.png

  Incident green power to the Y arm is ~ 1 mW (more than 1 mW because the aparture of the power meter was smaller than the beam size) and Y arm transmission is designed to be 55%. So, if the alignment and mode matching are perfect, the transmission to the PSL table should be ~ 600 uW. The measured value 61 uW seems too small. Kiwamu says it was 140 uW when he did Y arm.

Next:
  I will find the beat note again tonight and check if the beat PD is working correctly and if the mode matching of the two beams at the PSL table is good.

  6775   Thu Jun 7 01:46:05 2012 yutaSummaryGreen LockingY green beat - found it!!

I found the big big Y green beat. Details will be posted later.

CIMG1504.JPG

  6776   Thu Jun 7 02:25:27 2012 yutaUpdateGreen Lockingimproved Y arm green alignment - even more

[Koji, Yuta]

Summary:
  We improved the Y arm green transmission to the PSL table. It is now 197 uW.
  The improvement was done mainly by adjusting the Y arm green servo gain.

What we did:
  1. Fine-adjusted steering mirrors after the faraday on Y end table by monitoring Y arm green transmission (used Thorlabs PDA36A as a PD, C1:GCV-GREEN_TRY as a channel). We decided which way to adjust the mirrors by just pushing/pulling its mount.

  2. The output of the reflection PD on the oscilloscope seemed like the Y end frequency servo was oscillating. So, we reduced the amplitude of the frequency modulation from 2.83 V to 0.13 V.

  3. We noticed there were two TEM00, one is brighter and the other is dim. We thought this came from a mode-hopping or something. So, we changed the Y end laser temperature from 34.68 deg C to 34.13 deg C (measured). This reduced dim TEM00 and the main one got brighter. C1:GCY-SLOW_SERVO2_OFFSET was changed from 29425 to 29845.

  4. Fine-adjusted the position of the mode-matching lens by reduing LG modes.

Current green power:
  Current measured green power values are as follows.

beatygreenpower20120607.png

  Calculated value for the Y arm green transmission is ~ 600 uW, but we think we are almost at the maximum we can get. So, we have about 70% loss from the Y end table to the PSL table. There may be large loss in windows. The beam shape of the transmitted beam seems OK, but there may be some clipping.

To do:
  - Fine tune the Y end frequency servo loop. Reducing the amplitude of the frequency modulation for reducing the gain is not a very good idea.

  6777   Thu Jun 7 02:59:31 2012 yutaUpdateGreen LockingY green beat - found it!!

Summary:
  I found the big green beat note for the Y arm. The alignment of the green optics on the PSL table was crappy.

What I did:
  1. By adjusting PSL laser temperature, I found tiny beat note when

  PSL laser temperature on display: 31.35 deg C (PSL HEPA 100%)
  C1:PSL-FSS_SLOWDC = 1.75

and

  PSL laser temperature on display: 33.21 deg C (PSL HEPA 100%)
  C1:PSL-FSS_SLOWDC = -6.82

Y end laser temperature settings are fixed as follows during the measurement.

  Y end laser "T+": 34.049 deg C
  Y end laser "ADJ": 0
  Y end laser measured temperature: 34.13 deg C (*)
  C1:GCY-SLOW_SERVO2_OFFSET = 29845

Bryan's formula (swapped one; see elog #6746),  suggests the paring

  (Yend laser temp, PSL laser temp) = (34.13 deg C, 31.09 deg C).

  2. Checked that beat PD is working by swapping the beat PDs for Y arm and X arm.

  3. Checked that the mode-matching of the two beams, one from Y arm and the other from PSL, is OK by moving mode-matching lens and measuring the beam spot size at near/far field are the same.

  4. When checking the beam spot size at far field(~ 1 m from the BS), I noticed the relative beam tilt by ~ 1 mrad. We aligned them few days ago, but I think the green beam from the Y arm has shifted. Of course we align IR to the Y arm first, but we difinitely need dither servo or A2L for the arm, too.

  5. As soon as aligning the PSL green optics near the BS, I found a large beat note. The measured amplitude was ~ -26 dBm, without any amplifiers after the PD.

  Currently the measured green beam power onto the beat PD from Y end is 75 uW and from PSL is 92 uW. So the calculated beat amplitude will be ~ -10 dBm (see calculation in elog #6746). So there is about 84% loss. Anyway, I will go on to the mode scan.

  6779   Thu Jun 7 05:39:41 2012 yutaUpdateGreen Lockingcoarsely stabilized Y arm length with ALS

I coarsely stabilized Y arm length to off resonance point for IR using ALS.
Currently, ASL servo loop is unstable and oscillates so much that I can't hold the length to the resonance point.
We need more investigation on the servo loop before doing the mode scan.

Below is a snapshot of ALS medm screens and time series data of the error signal for ALS coarse loop (C1:ALS-BEATY_COARSE_I_ERR) and IR transmission for the Y arm (C1:LSC-TRY_OUT) when I turned the servo on.

MyFirstALS20120607.png

 

Note:
  I took off amplifiers right after the beat PD on PSL table.
  Also, I reverted the gain change Jenne made last night (elog #6750), because they no longer show overload lights.

  6780   Thu Jun 7 07:27:27 2012 KojiUpdateGreen Lockingimproved Y arm green alignment - even more

Yes. The end PDH servo should be checked more carefully.

The end PDH seems to have insufficient gain at around 100Hz.
The attached is the ALS noise budget calculated with the simulink model for the green locking paper.

The residual error of the end AUX laser (green) is contributing to the final ALS signal (black).
In particular, the residual AUX frequency noise, which is shown as the blue, is contributing to the noise above 100Hz.

In the model I also confirmed that the servo still has a room for improvement.

By having more suppression of the AUX frequency noise, we will be able to increase the ALS servo bandwidth
without increasing the ALS residual RMS by a servo bump. This will give us the improvement of the seismic
noise suppression at 10Hz (i.e. more suppression of red).

  6789   Fri Jun 8 15:08:27 2012 yutaUpdateGreen Lockingaligned/mode-matched Y green beat setup

Laser temperature settings for Y arm green work today are;

  PSL laser temperature on display: 31.38 deg C (PSL HEPA 100%)
  C1:PSL-FSS_SLOWDC = 1.68
  Y end laser "T+": 34.049 deg C
  Y end laser "ADJ": 0
  Y end laser measured temperature: 34.13 deg C (*)
  C1:GCY-SLOW_SERVO2_OFFSET = 29845

Green transmission from Y end and PSL green power on the beat PD are;

  P_Y = 28 uW
  P_PSL = 96 uW

P_Y decrease from its maximum we got (75 uW, see elog #6777) is because the alignment for Y arm green is decreased. I can see the decrease from the green reflection on ETMT camera, but I will leave it because we already have enough beat.

I aligned PSL optics, including the mode-matching lens to maximize the beat note. The beat note I got is about 26dBm.
The calculated value is -14 dBm, so we have about 75 % loss.
I measured the reflection from the PD window and its reflectivity was about 30%. We still have unknown 45% loss.

  6794   Mon Jun 11 21:50:08 2012 yutaUpdateGreen Lockingbeatbox looks OK

Summary:
  We need I-Q frequency deiscriminator to control the arm length fine and continuously.
  I checked the beatbox (LIGO-D1102241-v4; see elog #6302) and it was working.

What I did:
  1. Measured some transferfunctions with a network analyzer (Aligent 4395A) and checked the cabling is correct.

  2. Put 30 m/1.5 m delay line and checked I-Q outputs are actually orthogonal. I did this by sweeping the frequency of RF input to the beatbox. See attached picture. You can see nice circle on the oscilloscope.

Some measurement results:

  - Gains of the transferfunctions(@ 10-100MHz) between;

   RF in -> RF mon: -25 to -20 dB
   RF in -> fine delay out: -50 to -40 dB
   RF in -> coarse delay out: -50 to -40 dB
   RF in -> LO of mixer RMS-1: ~ +4 dB  (RMS-1 needs +7 dB LO)
 
  - 30m delay line(RG-142B/U) had -2 dB loss.

Note:
  - RF input must be larger than about -3 dBm to get enough LO to the mixer. Otherwise, you won't get I-Q outputs.
  - The comparator, whitening filter and differential DAQ outputs are not installed in the current beatbox.
  - Current beatbox only has electronics for the one arm.
  - The print on the board D1102241 says +15V and -15V, but they are actually opposite. Cabling is swapped in order to supply correct power to the ICs.

  6798   Tue Jun 12 01:58:33 2012 yutaUpdateGreen Lockingaligned Y arm to Y end green

[Jenne, Yuta]

We aligned Y arm to the Y end green incident beam.
We noticed two TEM00, bright and dim, so we decreased Y end laser temperature to 34.13 deg C.
It doubled the transmission of the green, and now the transmission to the PSL table is 178 uW, which is close to the maximum(197 uW) we got so far.

Current settings for Y end laser is;

  Y end laser "T+": 34.049 deg C
  Y end laser "ADJ": 0
  Y end laser measured temperature: 34.13 deg C
  C1:GCY-SLOW_SERVO2_OFFSET = 31025
  Y end slow servo: on (was off)

We aligned IR beam to the Y arm by mostly adjusting PZTs and got the transmission, C1:LSC-TRY_OUT ~ 0.9.

We tried to calculate the mode-matching ratio for IR by taking TRY data while ITMY and ETMY are swinging (without ALS), but it was difficult because we see too many higher order modes.

Tomorrow, we will (1) connect the beatbox to ADC, (2) edit c1gcv model, (3) scan the arm using I-Q signals.

  6802   Tue Jun 12 11:54:50 2012 JenneUpdateGreen Lockingc1gcv recompiled

Yuta added channels so we can get the Q phase of all the beat PDs to the c1gcv model.  I showed him how to recompile/install/start.

During the install, it couldn't find: Unable to find the following file in CDS_MEDM_PATH: LOCKIN_FILTER.adl

On all the screens (ALS and SUS), lockin parts are white.  Someone changed something, then didn't go back to fix the screens.

Otherwise, things look to be working fine.

  6808   Tue Jun 12 20:35:46 2012 yutaUpdateGreen Lockingc1gcv recompiled

[Jamie, Yuta]

We recompiled c1gcv because the order of the channels were confusing. We found some change in the phase rotation module when we did this.

I did some cabling and checked each signals are actually going to the right channel. I labeled all the cables I know, which go into the AA chasis for ADC1 of c1ioo machine.

Below is the list of the channels. If you know anything about "unknown" channels, please let me know.

Current channel assignments for ADC1 of c1ioo machine:
  Red ones were added today. Green ones existed in the past, but channel assignment were changed.

cable

# on AA chassis name in Simulink channel name

connected
but unknown

J1A    
   
not connected J1B    
   
not connected J2 adc_1_2 C1:ALS-XARM_BEAT_DC
not connected adc_1_3 C1:ALS-YARM_BEAT_DC
connected
but unknown
J3    
   
connected
but unknown
J4    
   
connected
but unknown
J5    
   
connected
but unknown
J6    
   
connected
but unknown
J7    
   
beat Y arm fine I J8A adc_1_14 C1:ALS-BEATY_FINE_I
beat Y arm fine Q adc_1_15 C1:ALS-BEATY_FINE_Q
not connected J8B    
   
connected
but unknown
J9A    
   
not connected J9B    
   
connected
but unknown
J10    
   
connected
but unknown
J11    
   
not connected J12 adc_1_22 C1:ALS-BEATX_COARSE_I
not connected adc_1_23 C1:ALS-BEATX_COARSE_Q
not connected J13 adc_1_24 C1:ALS-BEATX_FINE_I
not connected adc_1_25 C1:ALS-BEATX_FINE_Q
beat Y arm coarse I
J14 adc_1_26 C1:ALS-BEATY_COARSE_I
beat Y arm coarse Q adc_1_27 C1:ALS-BEATY_COARSE_Q
not connected J15 adc_1_28 Broken! Don't use this!!
adc_1_29 (not broken)
not connected J16A adc_1_30 (not broken)
adc_1_31 Broken? Funny signal.
not connected J16B    
   

Memorandum for me:
  Recompiling procedure;

ssh c1ioo

rtcds make c1gcv
rtcds install c1gcv
rtcds start c1gcv

  6809   Tue Jun 12 23:18:18 2012 yutaUpdateGreen LockingI-Q signals for the beat

[Mengyao, Yuta]

Yes!! We have I-Q signals for the beat!!

What we did:
  1. Aligned Y arm to the Y end green incident beam. The transmission to the PSL was about 195 uW.

  2. Aligned IR beam to the Y arm by adjusting PZTs and got the transmission, C1:LSC-TRY_OUT ~ 0.86.

  3. Aligned green optics on the PSL table to get the beat signal. The beat was found when;

  PSL laser temperature on display: 31.41 deg C
  C1:PSL-FSS_SLOWDC = 1.43
  Y end laser "T+": 34.049 deg C
  Y end laser "ADJ": 0
  Y end laser measured temperature: 34.14 deg C
  C1:GCY-SLOW_SERVO2_OFFSET = 29950
  Y end slow servo: off (was on)

  4. Connected the beat PD output to the beatbox.

  5. Kicked ETMY position to change the cavity length and while the ringdown, we run pynds to get data. We plotted C1:ALS-BEATY_FINE_I_ERR vs C1:ALS-BEATY_FINE_Q_ERR, and C1:ALS-BEATY_COARSE_I_ERR vs C1:ALS-BEATY_COARSE_Q_ERR (below). We got nice circle as expected.

FINEIQplot20120612.pngCOARSEIQplot20120612.png

Current setup:
  Only AA filers are put between the output of the beatbox and the ADC.

beatysetup20120612.png

  6810   Wed Jun 13 02:11:59 2012 yutaUpdateGreen Lockingmy first modescan (sort of)

I stabilized Y arm length by using only I phase coarse signal from the beat(C1:ALS-BEATY_COARSE_I_ERR).
I sweeped the arm length by injecting 0.05Hz sine wave from C1:ALS_OFFSETTER2_EXC.
Below is the plot of TRY and the error signal(ideally, Y arm length) while the sweep.

modescan20120612_1.png

I couldn't hold the arm length tight, so you can see multiple peaks close to each other.
We need to
  - adjust offsets
  - adjust rotation phase of I-Q mixing
  - adjust servo filters

to hold the length tighter.

Also, I couldn't sweep the Y arm length very much. I need to calibrate, but to do the modescan for many FSRs, we need to
  - introduce automatic phase optimizing system
There were sin/cos function in the CDS_PARTS, so I think we can feedback I_ERR to control rotation phase of I-Q mixing.

  6811   Wed Jun 13 02:24:02 2012 ranaUpdateGreen Lockingmy first modescan (sort of)

 That sounds goofy.

With the delay line technique, you can get a linear signal over 50 MHz with no phase shifting. What is with all this I/Q stuff?

  6812   Wed Jun 13 03:03:38 2012 yutaUpdateGreen Lockingmy first modescan (sort of)

Linear range df of the delay line technique is about df ~ c/(2D). So, the linear range for the fine signal(delay line length D=30m) is about 5 MHz.
Arm cavity FSR = c/(2L) = 3.7 MHz.
So, I think we need phase shifting to do mode scan for more than 2 FSRs by holding the arm length finely with fine servo.
For the coarse (D=1.5m), the linear range is about 100 MHz, so if we can do mode scan using coarse servo, it is OK.

In any case, I think it is nice to have linear signal with fixed slope even if we don't adjust the phase every time.

Quote:

 That sounds goofy.

With the delay line technique, you can get a linear signal over 50 MHz with no phase shifting. What is with all this I/Q stuff?

 

ELOG V3.1.3-