40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 179 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  810   Thu Aug 7 12:20:52 2008 YoichiUpdateSUSPRM stand-offs and wire
We removed the side OSEM of the PRM so that we can see the stand-off on the farther side.

Attachment 1: Farther side stand-off from an angle before removing the OSEM
Attachment 2: Farther side stand-off through the empty OSEM hole.
Attachment 3: Near side stand-off

The wire is definitely in the near side stand-off groove.
Probably the wire is in the groove also on the farther side.
  3816   Fri Oct 29 01:18:03 2010 KojiSummarySUSPRM standoff glued

[Suresh Koji]

The standoff glued. The incandescent lamp set for curing the epoxy.


Jenne and Suresh did the balancing job. The next job was to glue it.

They ran out of the clear epoxy, and tried to use the grey epoxy which we used on the other suspensions for the upgrade.
They found that the solution A with grey color one was dried out and grainy.

We made a test piece of the grey epoxy (mixed with the solution B) in order to see the glue is still usable or not.
After the PMA party, we found that the glue was not stiffening but brittle. We judged that the grey epoxy is no longer useful.

Steve found a pack of Vac Seal in the chemical fridge. We decided to use this one for the gluing of the standoff.

After the gluing, we set an incandescent lamp to make the glue warm. 

Finally, we wrapped the suspension tower with Al foils and turned the HEPA fans again.

  829   Tue Aug 12 19:48:24 2008 JenneUpdateIOOPRM standoff is in....mostly
Yoichi, Jenne

The missing PRM standoff is now partially installed. The standoff is in, and the wire is in the groove, but we have not finished adjusting its position to make the PRM stand up straight. It turns out to be pretty tricky to get the position of the standoff just right.

We have set up a HeNe laser as an oplev on the flow bench (which we checked was level) in the clean assembly room, and are using it to check the pitch of the mirror. We set a QPD at the height of the laser, and are looking at the single-reflected light. When the single-reflected light is at the same height as the center of the QPD, then the mirror is correctly aligned in pitch. (Actually, right now we're just trying to get the single-reflected light to hit the diode at all...one step at a time here).

We'll continue trying to align the PRM's standoff in the morning.
  15887   Tue Mar 9 14:37:26 2021 gautamSummarySUSPRM suspension

The PRM got tripped ~5AM this morning. The cause is unclear - the seismometer reports elevated activity ~10 minutes before the ringdown starts (as judged using the OSEMs). But the other optics didn't seem to receive as much of an impulse (I only show the BS sensors here as it sits on the same stack as the PRM). Anyway it certainly wasn't me trying to make life difficult for the morning team.

I was able to restore the damping with reEnableWatchdogs.py. I am now running some suspension tests on the PRM by letting it swing freely so please let that finish. I plan to attempt some locking this evening.

Quote:

[Paco, Anchal]

- Upon arrival, MC is locked, and we can see light in MON5 (PRM) (usually dark).

  15889   Tue Mar 9 15:22:56 2021 KojiSummarySUSPRM suspension

I just saw the PRM watchdog tripped at ~15:20 local (23:20UTC). I restored the PRM but I saw only the side watchdog tripped.
Again at 15:27

17:55 I found the PRM was oscillating while the watchdogs were not tripped. I turned off the OPLEV servos and this made the PRM calmed down. But I didn't turn on the OPLEVs for the past two trips. How were the OPLEVs turned on???

Ah, I'm sorry, I missed the line that Gautam was running the free-swinging test on the PRM.
The two kicks starting from 23:08:50 and from 23:26:31 were spoiled. Did it make the measurement completely waisted?

 

  15002   Wed Oct 30 19:20:27 2019 gautamUpdateSUSPRM suspension issues

While I was trying to lock the PRMI this evening, I noticed that I couldn't move the REFL beamspot on the CCD field of view by adjusting the slow bias voltages to the PRM. Other suspensions controlled by c1susaux seem to respond okay so at first glance it isn't a problem with the Acromag. Looking at the OSEM sensor input levels, I noticed that UL is much lower than the others - see Attachment #1, seems to have happened ~100 days ago. I plugged the tester box in to check if the problem is with the electronics or if this is an actual shorting of some pins on the physical OSEM as we had in the past. So PRM watchdog is shutdown for now and there is no control of the optic available as the cables are detached. I will replace the connections later in the evening.

Update 10pm:

  1. Measured coil inductances with breakout board and LCR meter - all 5 coils returned ~3.28-3.32 mH.
  2. Measured coil resistances with breakout board and DMM - all 5 coils returned ~16-17 ohms.
  3. Checked OSEM PD capacitance (with no bias voltage) using the LCR meter - each PD returned ~1nF.
  4. Checked resistance between LED Cathode and Anode for all 5 LEDs using DMM - each returned Hi-Z.
  5. Checked resistance between PD Cathode and Anode for all 5 PDs using DMM - each returned ~430 kohms.
  6. Checked that I could change the slow bias voltages and see a response at the expected pins (with the suspension disconnected).

Since I couldn't find anything wrong, I plugged the suspension back in - and voila, the suspect UL PD voltage level came back to a level consistent with the others! See Attachment #2.

Anyway, I had some hours of data with the tester box plugged in - see Attachment #3 for a comparison of the shadow sensor readout with the tester box (all black traces) vs with the suspension plugged in, local damping loops active (coloured traces). The sensing noise re-injection will depend on the specifics of the  local damping loop shapes but I suspect it will limit feedforward subtraction possibilities at low frequencies.

However, I continue to have problems aligning the optic using the slow bias sliders (but the fast ones work just fine) - problem seems to be EPICS related. In Attachment #4, I show that even though I change the soft PITCH bias voltage adjust channel for the PRM, the linked channels which control the actual voltages to the coils take several seconds to show any response, and do so asynchronously. I tried restarting the modbus process on c1susaux, but the problem persists. Perhaps it needs a reboot of the computer and/or the acromag chassis? I note that the same problem exists for the BS and PRM suspensions, but not for ITMX or ITMY (didn't check the IMC optics). Perhaps a particular Acromag DAC unit is faulty / has issues with the internal subnet?

  15003   Wed Oct 30 23:12:27 2019 KojiUpdateSUSPRM suspension issues

Sigh... hard loch

  15894   Wed Mar 10 11:55:22 2021 gautamUpdateSUSPRM suspension suspect

The procedure is that the optic is kicked to excite it, and allowed to ring down for ~1ksec, with damping turned off. The procedure is repeated 15 times for some averaging. 

Attachment #1 - sensor spectra from yesterday.

Attachment #2 - peaks using the naive diagonalization matrix from yesterday.

Attachment #3 - Data from ~1 year ago. 

The y-axis in all plots is labelled as "cts/rtHz" but these are the DQed channels, which come after a "cts2um" CDS filter - so if that filter is accurate, them the y-axes may be read as um/rtHz.

I wonder if the September 2020 earthquake somehow damaged the PRM suspension, as this experiment would suggest that the problem is not only with the actuation. The data was gathered with the neutral position of the PRM (between kicks) being well aligned for PRMI, and the DC values of all the shadow sensors in this position is close to half-light (~1V, except for side which was more like 4V). Hard to say what exactly is happening since only the PIT DoF has the weird asymmetric peak shape instead of the expected Lorentzian - I would have thought that a damaged wire or broken magnet would affect all 4 DoFs but the F.C. spring experience on ETMY showed that anything is possible.

  15853   Mon Mar 1 16:27:17 2021 gautamUpdateLSCPRM violin filter excessive?

The PRM violin filter seems very suboptimal - the gain peaking shows up in the MICH OLTF, presumably due to the MICH-->PRM LSC output matrix. I plot the one used for the BS in comparison in Attachment #1, seems much more reasonable. Why does the PRM need so many notches? Is this meant to cover some violin modes of PR2/PR3 as well? Do we really need that? Are the PR2/PR3 violin modes really so close in frequency to that for the 3" SOS? I suppose it could be since the suspension wire is thinner and the mass is lighter, and the two effects nearly cancel, but we don't actuate on PR2/PR3? According to the earlier elog in this thread, this particular filter wasn't deemed offensive and was left on.

Indeed, as shown in Attachment #2, I can realize a much healthier UGF for the MICH loop with just a single frequency notch (black reference trace) rather than using the existing "PRvio1,2" filter (FM2), (live red trace). The PR violins are eating so much phase at ~600 Hz.

Quote:

We turned off many excessive violin mode bandstop filters in the LSC.

  15854   Tue Mar 2 13:39:31 2021 ranaUpdateLSCPRM violin filter excessive?

agreed, seems excessive. I always prefer bandstop over notch in case the eigenfrequency wanders, but the bandstop could be made to be just a few Hz wide.

 

  9772   Tue Apr 1 21:45:01 2014 JenneSummaryLSCPRM violin notch not at correct freq?

Koji and I have the PRMI locked right now, and we hear a very strong violin mode ringing up, at 628Hz.  This is, according to Koji's elog 9634, what we expect the PRM's violin mode to be.  However, the current PRM violin mode notch is really more of a bandstop filter, between 622-670Hz.  At 628Hz, it has a suppression of about -20dB.  If I try to increase the width of this notch by making it 612-670Hz, the PRMI won't hold lock.

We're leaving this as a daytime task for tomorrow, since we're in the middle of taking data to show that Koji's new ASC filter design (slightly tuned from his elog 9769) works well.

Edit:  I have moved the PRM violin notch frequency over to 612-660 Hz, and after letting it sit for a while (while locked on PRMI), the violin mode has settled down.  Interestingly, if I compare the spectrum with and without the 1st order violin mode notch, it looks like the 2nd order mode changes from 1256Hz to 1303Hz.  I don't know what is going on here, but we already have notches for both of those frequencies.

  10753   Thu Dec 4 01:24:47 2014 JenneUpdateSUSPRM volin 3rd harmonic

Earlier this afternoon, while locking PRMI, I saw a big peak at 1883.48 Hz.  This comes closest to the PRM's 627.75 Hz *3, so I infer that it is the 3rd order harmonic of the PRM violin mode. 

While putting this in, I noticed that my addition of ETM filters the other day (elog 10746) had gotten deleted.  Koji pointed out that Foton can do this - it allows you to create and save filters that are higher than 20th order, but secretly it deletes them.  I went into the filter archive and recovered the old ETM filters, and split things up.  I have now totally reorganized the filters, and I have made every single optic (ETMs, ITMs, PRM, SRM, BS, MC2) all the same. 

FM1 is BS 1st and 2nd harmonics, and FM6 directly below that is a generic 3rd order notch that is wide enough that it encompases 3*BS. 

FM2 is the PRM 1st and 2nd order, and FM7 below it is the PRM 3rd order. 

FM3 is the SRM 1st order, FM4 is the ETMs' 1st order, and FM5 is the MC2 1st and 2nd order filters. 

All of these filters are triggered on if any degree of freedom is triggered.  They all have a ramp time of 3 sec. We may want to consider having separate trigger options for each optic, so that we're not including the PRM notch on the ETMs, for example, and vice versa. 

When all of these filters are on, according to Foton we lose 5.6 degrees of phase at 100 Hz.

  6896   Fri Jun 29 16:41:41 2012 yutaUpdateGeneralPRM was NOT installed backwards

[Koji, Steve, Jamie, Yuta]

So, PRM was NOT flipped......

We opened the BS chamber and quickly checked the arrow on the PRM pointing HR. It turned out to be correct, the arrow was pointing towards the arm cavity. We opened the ITMX chamber, too, to check PR2 later.
BS chamber and ITMX chamber is now closed with the light door.

But it was a one step forward anyway, because we could prove PRM was innocent.

What to do next:
  We know that the mode-matching of the incident beam and both arms are pretty good. So, dirty modes come from PRC.
  We will check beam clipping, mirrors, suspensions in PRC.
  I expect the chambers to be closed on Monday(July 2) afternoon and start pumping on Tuesday(July 3) morning.

  14745   Wed Jul 10 16:53:22 2019 gautamUpdateSUSPRM watchdog condition modified

[koji, gautam]

We noticed that the PRM watchdog was tripping frequently. This is a period of enhanced seismic activity. The reason PRM in particular trips often is because the SIDE OSEM has 5x increased transimpedance. We implemented a workaround by modifying the watchdog tripping condition to scale the SD channel RMS by a factor of 0.2 (relative to the UL and LL channels). We restarted the modbus process on c1susaux and tested that the new logic works. Here is the relevant snippet of code:

# Disable fast DAC if variation tests too high
# PRM Side is special, see elog 14745
record(calc,"C1:SUS-PRM_LOGIC")
{
    field(DESC,"Tests whether RMS too high")
    field(SCAN,"1 second")
    field(PHAS,"1")
    field(PREC,"0")
    field(HOPR,"1")
        field(LOPR,"0")
        field(CALC,"(A<B)&(C<B)&(0.2*D<B)")
        field(INPA,"C1:SUS-PRM_ULPD_VAR  NPP  NMS")
        field(INPB,"C1:SUS-PRM_PD_MAX_VAR  NPP  NMS")
        field(INPC,"C1:SUS-PRM_LLPD_VAR  NPP  NMS")
        field(INPD,"C1:SUS-PRM_SDPD_VAR  NPP  NMS")
}

The db file has a note about this as well so that future debuggers aren't mystified by a factor of 0.2.

  6364   Tue Mar 6 16:06:15 2012 JenneConfigurationSUSPRM watchdog tripped

Quote:

ND filter ND3 (which is at the REFL port to the REFL OSA) is removed. Don't forget to put it back when you restore PRM!!!

 I don't know what tripped the PRM watchdog, but it was unhappy.  I manually moved the sliders on the IFO align screen away from the positions of the save file before turning on the damping, to make sure that I wouldn't be sending oodles of power to the REFL port, since the ND filter is still removed.  So PRM is damped now, but misaligned.

  14038   Thu Jul 5 10:15:30 2018 gautamUpdateSUSPRM watchdog tripped

PRM watchdog was tripped around 7:15am PT today morning. I restored it.

  8443   Thu Apr 11 10:15:55 2013 SteveUpdateLockingPRM yaw oplev transferfunction

See   Feb 2012 PRM yaw transferfunctions, also check Valera's modified  side sensor may effect yaw motion

 

  8532   Tue May 7 03:08:12 2013 JenneUpdate PRM yaw responsible for RIN

Koji spent some time earlier this evening exploring where the excess RIN that we see in the PRC is coming from. 

He did this by locking the PRMI (MICH on AS55Q, PRCL on REFL33I, Pnorm for MICH = sqrt(POP110) with 0.1, Pnorm for PRCL = sqrt(POP110) with 10, MICH gain = -30, PRCL gain = 8), and then exciting each relevant optic, one at a time, in yaw.  The excitation was always using the ASCYAW excitation point on each of the optics (BS, PRM, ITMX, ITMY), with a frequency of 4.56 Hz, and an amplitude of 30 counts.

He also took reference traces with no optics excited.

Here, I plot (for each excited optic separately) the reference traces and traces during excitation for POP110_I_ERR, POPDC, and the OPLEV_YERROR for the optic that is being excited.

What we are looking for (only in yaw, since we see on the cameras that the dominant motion is in yaw) is an increase in POPDC and POP110 at the same frequency as an optic's excitation. 

We see that neither ITM is contributing a noticeable amount to either POPDC or POP110.  BS is contributing a little bit, but PRM is clearly contributingNo this entry should be read. (KA)

A week or two ago, I calculated in elog 8489 that the angular motion that we see does not explain the RIN that we're seeing, unless our cavity is much more unstable than Jamie calculated in elog 8316

I think that I need to install one of the T240's on the new granite slab, and see what kind of coherence we have between seismic and PRM yaw motion, and if FF can get rid of it.

BS_excited.pdf

ITMX_excited.pdf

ITMY_excited.pdf

PRM_excited.pdf

 

  8535   Tue May 7 10:30:32 2013 KojiUpdateLockingPRM yaw responsible for RIN

Quote:

BS is contributing a little bit, but PRM is clearly contributing

No.

While the peak in the PRM OPLEV was more than 10 times higher than the spectrum level without the excitation,
we only saw small peaks in the RIN spectra. This suggests that the PRM angular motion did not contribute to the RIN spectra.

You should divide the POP110I and POPDC spectra by 400 and 450, which was the DC values of these channels, in order to convert them into RIN (1/rtHz)
The OPLEV spectra is calibrated to be urad/rtHz (is this true?) so you can obtain the conversion factor from OPLEV to RIN (1/urad)
by matching the peaks. This way you make a angular noise projection.

Quote:

I think that I need to install one of the T240's on the new granite slab, and see what kind of coherence we have between seismic and PRM yaw motion, and if FF can get rid of it.

Yes we should do that. BTW what should be pushed?

  6525   Thu Apr 12 00:40:45 2012 JenneUpdateSUSPRM, BS oplevs off

There's a beam dump after the HeNe on the BS oplev table, since the IPPOS measurement optics (steering mirrors) are in the way of the oplev beams. 

Don't enable the BS or PRM oplevs!!!!  We'll post a notice in the elog when the oplevs are back to normal. 

Self, remember to disable the oplevs manually if they come on with any restore scripts.

  8634   Thu May 23 20:58:49 2013 JenneUpdatePEMPRM, ITMX optics tripped, restored

M5.7 - 11km WNW of Greenville, California

Time
Location
40.190°N 121.064°W
Depth
0.0km
  9065   Mon Aug 26 19:31:22 2013 manasaUpdateSUSPRM, ITMY watch dogs

PRM and ITMY were found with their watchdogs shutdown this afternoon (cause unknown). I re-engaged them.

  3104   Wed Jun 23 12:47:43 2010 JenneUpdateSUSPRM, SRM ready for vacuum

I fitzed with the PRM and SRM briefly, and I now believe that they're both ready to go into the chambers. 

For each optic, I used the microscope on a micrometer to check that the scribe lines on each side of the optic were at the same height.  Basic procedure was to center the microscope on one scribe line, move the microscope to the other side, to see how far the line was from center, and try to (very gently!!) rotate the optic in the wire about the z-axis about half the distance that the one scribe line needed to be.  Rinse and repeat several times until satisfied. 

I then checked that our HeNe oplev was still at 5.5" beam height, and that the beam traveled straight across the table.  I put the SRM in the oplev, unclamped the EQ stops, and waited for it to settle.  The HEPA filters were turned off, to minimize the breeze.  While the SRM settled, I worked on the height/rotation for the PRM on the other table. 

After checking the SRM balance, I clamped it and moved it, and checked the PRM balance, then turned off the HeNe and rewrapped everything in foil, and turned on the HEPAs.

Both the SRM and the PRM seem a little off in Pitch.  The beam returning to the QPD (placed just next to the laser) was always ~1cm above the center of the QPD.  The beam travel distance was ~3m (vaguely) from laser to optic to QPD.  This effect may be because the optics were originally balanced with OSEMs in place, and I didn't have any OSEMs today.  Koji and I found several months ago that the OSEMs have some DC affect on the optics.

Anyhow, since our optics are so small, I think the OSEMs and coils can handle this small DC offset in pitch, so I think we're ready to rock-n-roll with putting them in the chambers.

Still on the to-do list......Tip Tilts!

The photo shows the oplev beam position on (kind of) the QPD, for the SRM.  The PRM was basically the same.

  7884   Tue Jan 8 18:10:41 2013 JenneUpdateSUSPRM, SRM, BS oplevs off

I don't know why (I'm just leaving the lab right now....) but BS, PRM, SRM all have no light on their oplev PDs. I have turned off the oplev servos for now, and will get back to them tomorrow, before redoing the BS table oplev layout.

  9408   Tue Nov 19 11:33:39 2013 SteveUpdateSUSPRM- OSEM side ccd camera is in place

Quote:

Can't we somehow hook up this camera to the MUX with the movie mode?
I think both the MUX and the sensoray are compatible with the color video signal.
Only the old CRT is B/W.

 Watek 902H ccd with Tamron M118FM50 lens is hooked up to MUX  Please be careful! In this set up the lens is close to the view port glass window! 

  9409   Tue Nov 19 11:56:10 2013 manasa, jenne, ericQUpdateLSCPRM- OSEM side ccd camera is in place

Quote:

Quote:

Can't we somehow hook up this camera to the MUX with the movie mode?
I think both the MUX and the sensoray are compatible with the color video signal.
Only the old CRT is B/W.

 Watek ccd with Tamron lens is hooked up to MUX

This set up close to the viewport glass! Please be careful!

 Video captures when power recycling cavity is locked (videos 1 & 2) and flashing (video 3). Arms stayed misaligned.

1. CH1 and CH2 are loooking at PRM front and back faces. CH3 and CH4 are looking at POP and REFL

 2. CH1 and CH2 are loooking at PRM front and back faces. CH3 and CH4 are looking at the ITMs

3. CH1 and CH2 are loooking at PRM front and back faces. CH3 and CH4 are looking at POP and REFL

  11344   Wed Jun 3 11:55:52 2015 SteveUpdateOptical LeversPRM-BS oplev

I'm getting ready change the Newport Ultima U100-AC to SS-Polaris-K1  LOW DRIFT MIRROR MOUNTS

Note: there is only one lens in the PRM lunching path (  only realized later ) , so the spots are large ~ 3 mm at PRM qpd and ~4.5 mm at BS qpd

The spots are well centered.

Atm3,  the spots were well centered yesterday ( the PRM is misaligned in pitch and retsore does not work today )


 

  8182   Wed Feb 27 11:59:43 2013 yutaUpdateSUSPRM/BS coil re-balanced

I re-adjusted coil gains and f2a filters for PRM and BS.
I'm not sure what happened to PRM since I balanced on Feb 16(elog #8093).
Let's see if it helps PRMI locking or not.


========== PRM ==========

- Original DC coil gains

C1:SUS-PRM_ULCOIL_GAIN 1.049901772380000e+00
C1:SUS-PRM_URCOIL_GAIN -9.833961907160000e-01
C1:SUS-PRM_LRCOIL_GAIN 9.543042546630000e-01
C1:SUS-PRM_LLCOIL_GAIN -9.713568522590000e-01

- New DC coil gains


multiplier factors are :
UL = 0.928167
UR = 1.061448
LR = 0.941659
LL = 1.068726
Set C1:SUS-PRM_ULCOIL_GAIN to 0.974482231437
Set C1:SUS-PRM_URCOIL_GAIN to -1.04382410014
Set C1:SUS-PRM_LRCOIL_GAIN to 0.898628670041
Set C1:SUS-PRM_LLCOIL_GAIN to -1.03811466772

- New f2p filters

- measured coupling coefficients are :
P2P(POS=>PIT) = 0.023968
P2Y(POS=>YAW) = 0.007075

PRM_f2a20130227.png



========== BS ==========

- Original DC coil gains

C1:SUS-BS_ULCOIL_GAIN 1.037692431800000e+00
C1:SUS-BS_URCOIL_GAIN -1.016268296990000e+00
C1:SUS-BS_LRCOIL_GAIN 9.660800075010000e-01
C1:SUS-BS_LLCOIL_GAIN -9.791833500410000e-01

- New DC coil gains


multiplier factors are :
UL = 1.017855
UR = 1.023207
LR = 0.956184
LL = 1.002755
Set C1:SUS-BS_ULCOIL_GAIN to 1.0562177496
Set C1:SUS-BS_URCOIL_GAIN to -1.03985422464
Set C1:SUS-BS_LRCOIL_GAIN to 0.923750146975
Set C1:SUS-BS_LLCOIL_GAIN to -0.981880297098

- New f2p filters

- measured coupling coefficients are :
P2P(POS=>PIT) = 0.038251
P2Y(POS=>YAW) = -0.014677

BS_f2a20130227.png

  7978   Thu Jan 31 20:06:22 2013 EvanUpdateLockingPRM/PR2 cavity

[Jenne, Evan]

Tonight we made a non-folded cavity between the PRM and PR2 as follows. I put down two dog clamps to constrain the original position of the PR2 mount. I then loosened the dog clamps holding the mount to the table and nudged the mount until we saw a few reasonably well-aligned bounces in the cavity. I then dogged down the mount.

We played with the PRM and TT2 steering until we saw flashes of TEM00. However, the resonance is not clean so we couldn't lock.

Since we changed the PRM alignment, we had to redo the last bit of steering for the PRM oplev into the photodiode. We also put a few ND filters on the POP camera.

  7980   Thu Jan 31 23:48:45 2013 KojiUpdateLockingPRM/PR2 cavity

Wow! What's happened?

As the video showed good quality of resonances, I stopped by at the 40m on the way back home.

I looked at the error signals and found that they indicate high finesse and clear resonance of the sidebands.
The lock was immediate once the gain is set to be -0.004 (previous 0.05ish). This implies the optical gain is ~10 times larger than the previous configration.
The alignment was not easy as POPDC was saturated at ~27000I leave this as a daytime job.

As I misaligned the PRM, I could see that the lock hopped into the next higher order. i.e .from TEM00 to TEM01, from TEM01 to TEM02, etc
This means that the modes are closely located each other, but sufficiently separated to sustain each mode.

I definitely certify that cavity scans will give us meaningful information about the cavity.

  7981   Fri Feb 1 09:33:11 2013 JamieUpdateLockingPRM/PR2 cavity

I replaced the BS1 between the POPDC PD and the camera with a 98 reflector, and moved the 50 up before the BS to dump half the light.  Still saturating POPDC, but hopefully the ratio between POPDC and the camera should be better.  We just need to dump more of the power before we get there.  I'll come back to this after C&D if no one else has already gotten to it.

I don't know why I didn't pay more attention last night, but things look way WAY better.  The beams are much cleaner and the power level is much much higher.

  7985   Fri Feb 1 15:12:53 2013 JenneUpdateLockingPRM/PR2 cavity

 After Jamie did all the work this morning on the POP table, I was able to get the cavity to lock.  It's not very stable until I engage the boost filters in the PRCL loop.  After locking, I tuned up the alignment a bit more.  Now we're taking mode scan data.  Look for results hopefully shortly after Journal Club!

  7986   Fri Feb 1 19:55:33 2013 JenneUpdateLockingPRM/PR2 cavity

[Jamie, Koji, Jenne]

We are looking at the mode scan data, and have some preliminary results!  We have data from when the cavity was aligned, when it was slightly misaligned in pitch, and slightly misaligned in yaw.

Inverting the equation for transverse mode spacing, we infer (for pitch misalignment) a cavity g-factor of 0.99, and from there (assuming the G&H mirror is flat and so has a g-factor of 1), we infer a PRM radius of curvature of 168 meters which is ~50% longer than we expected.

 

More results to come over the weekend from Jamie.

  7987   Fri Feb 1 23:12:42 2013 KojiUpdateLockingPRM/PR2 cavity

During the scanning we were riddled by the fact the PDH error and the transmission peaks do not happen simultaneously.

After a little investigation, it was found that "LP100^2" filter is left on in the POPDC filter.

Moreover, it was also found that the whitening filter switches for the POPDC does not switch the analog counterpart.

These were the culprit why we never saw accidental hitting of the max transmission by the peaks when the cavity was not locked.

 

I know that the most of the whitening filter in the RF paths were checked before (by Keiko?), but the similar failure still exists in the POX path.
We should check for the whitening filters in the DC path as well and fix everything at once. I can offer assistance on the fixing part.

  7988   Fri Feb 1 23:52:59 2013 ranaUpdateLockingPRM/PR2 cavity

 Very exciting result, if true. I suppose we should try to reconfirm this result by doing another phase map of PRM03.

Is it possible that PR2 is not flat? How would we test to see if the tip-tilt frame screw gives it a curvature? Perhaps we can check with COMSOL.

  2848   Mon Apr 26 21:12:53 2010 KojiUpdateSUSPRM/SRM standoffs glued

Kiwamu and Koji

The PRM/SRM were balanced with the standoffs. We glued them to the mirror.

This was the last gluing so far until we get new PRM/ETMs.

  9274   Thu Oct 24 04:13:15 2013 JenneUpdateLSCPRMI + 2 ALS arms

[Masayuki, Jenne, Rana]

We have, for the past hour and a few minutes, had PRMI + 2 arms locked.  Yup, that's right, we did it! (We never gave control of the arms to the IR LSC system, so it's kind of cheating, but it was still cool.)

A little after midnight, we felt that the Yarm was behaving well enough that we could give PRMI + 2 arms a try.  So we did.  Probably around 1am-ish, or maybe a little bit before, we had the system locked. 

How did we do it?

* Locked arms in IR to help find green beatnotes.

* Misalign ETMs, lock and align PRMI.

* Misalign PRM.

* Restore ETMs, find arm resonances, then step away (I did +3 counts, which is 29 kHz).

* Restore PRM, lock PRMI.

* Brought Xarm back close to resonance using ALS (-3 counts). It seems like this may not actually have gotten us back to perfect resonance, but that actually made bringing in the other arm easier.

* Brought Yarm back close to resonance using ALS (-3 counts). 

* Turned on Sensing Matrix notches and oscillators (10,000 counts for MICH, actuating on BS and PRM at 562.01 Hz, 200 counts for PRCL actuating on PRM at 564.01 Hz). 

* Stepped arms back and forth to see how things responded.

Notes:

During this process, particularly during the various arm steps, the PRMI lost lock many times.  However, the ALS system never lost lock for either arm, for an hour and a half or so.  Good work, ALS team!!  The PRMI would reaquire lock (sometimes we'd have to undo whatever arm step we just took, to get farther away from resonance) without any intervention.  It seemed that as we came closer to full arm resonance, we were never able to hold PRMI locked.  This is what is instigating some of our investigations for tomorrow.

Also, Rana reported to me that he turned the c1tst model back off, and opened the door(s?) to the ETMY rack to allow more air flow sometime before midnight, which seems to have reduced the rate of the CPU going over 61 microseconds, as well as reduced the number of times the ETMY suspension glitches.  We definitely need to make some changes so that we're not so close to the edge.  This may have been one of the big things that allowed our success tonight.

The transmission PDs at the ends of the arms are saturating around 50 counts (they have gains of 2e-3 so that they are roughly normalized to 1 being the max power in a single arm).  We need to commission the end transmission QPDs. 

All of the signals looked a little ratty, and we heard lots of noise - Rana suggests that we recommission our CARM servo.

ALS beat info:  [Xarm  40.9 MHz,  -11.4 dB], [Yarm  50.5 MHz,  -17.7 dB]

Things to look at tomorrow:

Data!  I should be able to extract sensing matrix information, even though my sensing matrix software isn't totally ready yet.  I know what the oscillators were doing, and I can look at the PD error signals.  We also save the Offsetter numbers, so I can kind of tell what the PRMI+arms situation was. 

Can we tell by looking at the end laser PZT feedback signals whether we're making our arms longer or shorter?  So that we can tell if we're putting on DARM or CARM offsets.

Spectrum and time series of REFL 165 (our PRMI LSC locking PD) to see if we're saturating while we bring the arms into resonance.  Basically, does anything bad happen, particularly since the PD is not a resonant PD, so there are some 1f signals floating around in addition to the 3f signals.  We want to put in a directional coupler after the PD, before the demod board, and send that signal to a spectrum analyzer and a 'scope.  Hopefully we can use the power of the internet to not need to sit in the IFO room saving data as we move the arms around.  Do we need to put bandpass filters on the PD signal before it goes to the demod board?

Optickle model of 1f vs. 3f signals in the different ports, as the CARM offset is reduced.

Violin notches for the arms - should be put into ALS and LSC models.  It looks like the modes are around 631 Hz, but we should check. 

Hardware for end low gain transmission QPDs.

Software (schmidt triggering) for end transmission QPDs.

Modifying / preparing a matrix in the ALS system so that we can give CARM and DARM offsets conveniently.

  9275   Thu Oct 24 08:04:54 2013 SteveUpdateLSCPRMI + 2 ALS arms

 

 Nice work. Congratulation

  9276   Thu Oct 24 09:08:27 2013 jamie.UpdateLSCPRMI + 2 ALS arms

nice.

  9279   Thu Oct 24 14:14:18 2013 ranaUpdateLSCPRMI + 2 ALS arms

 Just in case people were confused, although the PRMI + 2 ALS arms were controlled, we weren't able to bring them in to resonance. They were in some unknown off-resonant state.

We can try to calculate the expected recycling gain (ignoring losses in the PRM) following section F.2.1 of my Manifesto:

T_PRM = 5.6%, R_ARMS ~ 98%, G_PRC ~38.

So the full TRX/TRY powers should be G_PRC/T_PRM = 690.

In our stable configuration, we were sitting at TRX/Y powers of ~5-10. Once in awhile we could get a state where the power was saturating the detectors at ~50 and possibly would have gone up to 100, but it was all oscillation at that point. (we've got to find and notch the ETM violin mode frequencies in the ALS feedback servos.

As we move in towards resonance, we have to now consider all of complications of handing off to various error signals and CARM optical spring compensation and RF saturation that have been discussed in Rob's thesis and Lisa's lock acquisition modeling.

  9280   Thu Oct 24 15:19:58 2013 KojiUpdateLSCPRMI + 2 ALS arms

all of complications of handing off

That involves:

- ALS error signals transfered to the LSC input matrix.

- Handing off from the ALS to the 1/sqrt(TRX)+offset signal

- Handing off to the RF signal

- And, of course, CM servo.

  9243   Wed Oct 16 02:27:56 2013 JenneUpdateLSCPRMI + 2 arm attempt
[Masayuki, Jenne]
 
Masayuki informed me that the Xarm ALS was feeling pretty good today, so we quickly (<20 minutes, including 2 open loop transfer functions) locked the PRMI+Xarm
We then tried PRMI + 2 arms, but while trying to bring the arms into IR resonance, the PRMI lost lock.
 
What we did (procedure-wise):
 
I locked and aligned both arms in IR.  I misaligned the ETMs, locked MICH to tweak BS pointing.  I locked PRMI with REFL 165 I&Q, and used the ASS to tweak up the PRM pointing.  I then moved PRM -0.5 units in pitch (after turning off the LSC). 
Masayuki then restored ETMX, locked the Xarm ALS, used his nice new script to find the IR resonance, then we stepped ~5 offset counts away from the resonance.  This is just barely off the IR resonance, since we don't want to cross any sideband cavity resonances.  I then brought the PRM back, and turned on the LSC.  PRMI immediately acquired lock.  Then Masayuki, with a 30 second ramp time, moved us back the ~5 counts until we had Xarm IR resonance! 
After that,
we took 2 open loop transfer functions, one of PRCL and one of MICH.

It was smooth like butter.  Seriously, we decided to give it a try around 12:50am, and by 1:08am we had saved both OLTF .xml files.  During this lock, Xarm ALS beatnote was -14.5 dBm, at 68.9 MHz.
 
After that success, we decided to be bold, and see if we could do PRMI + 2 arms.  I turned off the PRMI's LSC, and misaligned the PRM by -0.5 slider units.  We restored ETMY, and Masayuki got both arms locked with ALS, found the resonances, and then stepped ~5 offset counts away from each resonance.  I restored the PRM, and enabled the LSC.  Once again, the PRMI acquired lock immediately.  However, when I tried to turn on the ASS, I lost lock of the PRMI (but not the arms' ALS).  PRMI did seem noticeably noisier this time than either without any arms, or even with just Xarm.  The POP spot on the camera was wiggling about the same amount that it normally does when the ETMs are misaligned, PRMI is locked, and the ASS is on.  However, the ASS was off, and we were still seeing this angular motion.  Anyhow, I relocked the PRMI, and left the ASS off.  Then, we tried bringing the arms back into resonance for IR.  We should probably automate this process, or do it with a CARM-type loop, so that both come in at the same time.  As it was, Masayuki typed the offset for resonance into one arm (with a 30 second ramp time), then quickly typed in the number for the other arm (again with a 30 second ramp time).  So, the arms weren't exactly in common.  We lost PRMI lock during the scan toward resonance. 
Here is some time series data.  While it's tricky to see much in this plot, here's the command to get it:  ./getdata -s 1065947469 -d 40 -c C1:LSC-POP22_I_ERR_DQ C1:LSC-TRX_OUT_DQ C1:LSC-TRY_OUT_DQ C1:ALS-OFFSETTER1_OUT_DQ C1:ALS-OFFSETTER2_OUT_DQ C1:LSC-MICH_IN1_DQ C1:LSC-PRCL_IN1_DQ   Also, the text files for these traces are in my directory: /users/jenne/PRCL/PRMI_Xarm_ALS_16Oct2013/  During this trial (at least before the lockloss), Xarm was still on the same lock stretch with ALS as before, so -14.5 dBm at 68.9 MHz, and the Yarm was -21.7 dBm at 82.9 MHz.
 
To-do:
To take a step back, we should try bringing in only one arm to IR resonance, then the other, to see if we can isolate what the cause of the lockloss was. 
I need to finish setting up the new sensing matrix measurement stuff, so we can take sensing matrix data throughout this process.
 
 

Plots:

PRCL Open Loop Transfer Function.  PRMI locked on REFL 165 I&Q, Xarm held on IR resonance using ALS, ETMY misaligned:

PRCL_OLTF_PRMIir_XARMgreen_16Oct2013.pdf

MICH Open Loop Transfer Function.  PRMI locked on REFL 165 I&Q, Xarm held on IR resonance using ALS, ETMY misaligned:

MICH_OLTF_PRMIir_XARMgreen_16Oct2013.pdf

 Time series data during our PRMI + 2 arm attempt:

TimeSeries_PRMI_2arms_16Oct2013.png

  9244   Wed Oct 16 02:39:24 2013 ranaUpdateLSCPRMI + 2 arm attempt

 

 that's some hot stuff

its time to get the CM servo hardware turned back on. We're going to want to switch it on when we're about ~1/50th of the way up the CARM fringe.

A good way to re-commission it is to lock it to the single arm, using a Pomona box filter to move the arm pole down to the coupled cavity pole frequency.

 

  9247   Wed Oct 16 17:34:28 2013 JenneUpdateLSCPRMI + 2 arm attempt

Koji reminded me that we should also save the data from the PRMI+Xarm, just in case we want to look at it later.

Here is the time series, in which you can see us finding the Xarm IR resonance, moving the arm off resonance, locking PRMI, and bringing the arm back into resonance.  At the very end, the arm is still held on resonance, but I had disabled the LSC locking, so we see very large flashes at TRX (of order 40, rather than 1).

TimeSeries_PRMI_Xarm_16Oct2013.png

The data is in the same folder as the 2arm data: /users/jenne/PRCL/PRMI_Xarm_ALS_16Oct2013/

The text files have been differentiated, so that the 2arm data has "_2arms" at the end of the filename, while the Xarm data had "_Xarm" appended to the filename. Since we left the cavities locked for many minutes (during which transfer functions were taken), the data set for the PRMI+Xarm is very long.

  8837   Fri Jul 12 12:51:16 2013 manasaUpdateLSCPRMI + ALS automation

Quote:

We talked about how it should be automated.

We'll gradually offload the switching works on scripts.

 Here is the list of automations that we need to work on for less hectic PRMI+ALS trials.

1. Enable/Disable ASC when PRMI is locked/unlocked.

2. Smooth transfer from REFL33/AS55 to REFL165 when PRMI is locked.

3. Change actuation from the ITMs to BS and PRM after PRMI lock.

4. Enable ALS.

5. IR resonance scan using ALS.

  8779   Fri Jun 28 02:12:21 2013 manasaUpdateLSCPRMI + X arm ALS

X arm stabilized using ALS while PRMI stayed locked

[Rana, Lisa, Jenne, Manasa]

Attachment 1

Time series : ALS enabled at t = 0 and disabled at t = 95s

PRMI_XALS_Jun28.png

What we did:
1. Jenne will elog about ASC (POP QPD) updates.
2. Found the beat note between Xarm green and PSL green.
3. Stabilized arm fluctuation by enabling ALS servo.
4. Scanned the arm for carrier resonance by ramping on the offset and set the offset such that we had IR resonating (TRX fluctuated between 0.1 and 0.8 counts).
5. Disabled the ALS servo and locked PRMI using AS55 for MICH and REFL33 for PRCL.
6. Enabled ALS.

Discussion:
Enabling ALS to detune the arm out of resonance kept PRMI locked  (currently for a span of few tens of seconds). However we could not see PRMI locked as stably compared to when the arms are misaligned. Everytime the offset was set IR to resonate, the PRMI was kicked out of lock.

Also there is some leakage at the arm transmission when PRMI was locked. The leakage was visible at ETMX transmission as flashes in different higher order modes indicating the not-so sufficient ALS stability. The leakage sets an offset at TRX measuring 0.01-0.05 counts.

To do list:
The ALS_OFFSETTER1 has to be calibrated in FSR. We were giving random offsets to do the offset scan.

Misc:
Installed a filter before ETMXT camera to remove the refl green. (Note to myself: The filter needs to go on a better mount/adapter).

  8833   Fri Jul 12 00:12:41 2013 KojiUpdateLSCPRMI + Y arm trial

[Koji, Manasa, Annalisa]

I made several trials to scan the arm on the IR TEM00 resonance while the PRMI was held with REFL165I&Q.
It was so hectic to keep multiple systems running correctly. We talked about how it should be automated.
We'll gradually offload the switching works on scripts.

In a good alignment condition, when I swept on the resonance, everytime the PRMI lost the lock. It reacquired
once the arm passed the resonance.

Lately I got difficulty to acquire lock of the PRMI while the arm is waiting at its off resonance.
If I change the ALS offset I got a stable lock in a certain offset, and did not get in another offset
so there could be something systematic. (The arm was in between the carrier resonance and the next sideband (55MHz) resonance).

-----

Procedure

[Preparation]

- Run LSCoffset script.

- Misalign PRM. Lock and align the arms with ASS.

- Go into the tables. Align the oplevs for ETMX/Y, ITMX/Y, and BS. (Very important for alignment stability)

- Align PRMI and lock PRMI. Unlock once.

- Go into the BS/PRM table. Align the oplev for PRM.

[ALS]

- Misalign PRM by -0.2

- Find the beat note at around 50MHz by changing the Yarm SLOW control. Today the PSL SLOW was ~0.24, and the Yarm SLOW was -10981.

- Reset Phase Tracker History (Important)

- Engage Yarm ALS with FM5. Tested the sign of the servo by giving 0.01 or -0.01. In my case, the negative number worked fine.
  Gradually increase the gain up to -10. Turn on FM2/3/6/7/10.

- Use Filter module "C1ALS-OFFSETTER2" to give the ALS sweep. I used FM1 (30mHz LPF). Change the offset while looking at the IR TRY and POY11 error signal.

- Once the resonance is found, shift the beat note by giving +10 or -10 offset.

[PRMI]

- While the arm is kept off resonance, align PRM.

- Lock PRMI with REFL33I and AS55Q. Turn on PRM ASC.

- Once the stable lock is obtained, switch the input signals to REFL165I&Q. I used REF33I x1.0->REFL165I x0.8 and AS55Q x1.0 -> REFL165Q x0.5

[PRMI + one arm]

- Revert the ALS offset by 10 to bring the arm on the resonance the see what happens.

 

  9037   Tue Aug 20 00:19:23 2013 ranaUpdateLSCPRMI / DRMI investigations

While Jenne was plotting, I locked and aligned the MICH with AS55_Q. Then I aligned the PRM and locked PRMI using REFL55_I/Q with triggering on POP22, but no power normalization.

I used this to set the phase for REFL11 and REFL55 (driving PRM at 111.3 Hz and minimizing the Q response using the DTT Sine Response tool). I flipped the sign on REFL11 by 

The REFL11 gain is ~50x larger than REFL55; this is with the 15 dB whitening gain on REFL55 and none for REFL11. What's going on here? The attached PDF shows the two time series with the free swinging PRMI and both phases set to ~ +/- 2 deg. The REFL55 signals have been scaled up by 50x.

So then we went in and looked at the RF signals at the demod boards. To do this we disconnected the RFPD test cables and hooked the RF Mon outputs into the 50 Ohm inputs on a scope. The following PNG images show the scope traces. The REFL11 (yellow) traces are too big!! See how small the REFL55 (green) are. REFL11 is saturating - need to fix.

TEK00000.PNGTEK00001.PNG

TEK00002.PNGTEK00003.PNG

  15873   Fri Mar 5 22:25:13 2021 gautamUpdateLSCPRMI 1f SB locking recovered

Now that the REFL55 signal chain is capable of providing balanced, orthogonal readout of the two quadratures, I was able to recover the 1f SB resonant lock pretty easily. Ran sensing lines for ~5mins, still looks weird. But I didn't try to optimize anything / do other checks (e.g. actuate MICH using ITMs instead of BS) tonight, and I'm craving the Blueberry pie Rana left me. Will continue to do more systematic tests in the next days.

  15291   Thu Apr 2 15:53:01 2020 gautamUpdateASCPRMI 1f locked for collecting feedforward data

This afternoon, I kept the PRM locked for ~1hour and then measured transfer functions from the PRM angular actuators to the POP QPD spot motion for pitch and yaw between ~1pm and 4pm. After this work, the PRM was misaligned again. I will now work on the feedforward filter design.

ELOG V3.1.3-