40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 177 of 344  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  16199   Mon Jun 14 15:31:30 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

I checked the BI situation on the HAM-A coil driver. It seems like these are sinking BIs and indeed need to be isolated from the Acromag unit GND to avoid contamination.

The BIs will have to be isolated on a different isolator. Now, the wires coming from the field (red) are connected to the second isolator's input and the outputs are connected to the Acromag BI module and the Acromag's RTN.

I updated the wiring diagram (attached) and the wiring spreadsheet.

In the diagram, you can notice that the BI isolator (the right one) is powered by the Acromag's +15V and switched when the coil driver's GND is supplied. I am not sure if it makes sense or not. In this configuration, there is a path between the coil driver's GND and the Acromag's GND but its resistance is at least 10KOhm. The extra careful option is to power the isolator by the coil driver's +V but there is no +V on any of the connectors going out of the coil driver.

I installed an additional isolator on the DIN rail and wired the remaining BOs (C1:SUS-ETMY_SD_ENABLE, C1:SUS-ETMY_LR_ENABLE) through it to the DB9F-4 feedthrough. I also added DB9F-3 for incoming wires from the RTS and made the required connection from it to DB9F-4.

I tested the new isolated BOs using the Windows machine (after stopping Modbus). As before, I measure the resistance between pin 5 (coil driver GND) and the channel under test. When I turn on the BO I see the resistance drops from inf to 166ohm and back to inf when I turn it off. Both channels passed the test.

 

  16205   Wed Jun 16 17:24:29 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

I updated the wiring diagram according to Koji's suggestion. According to the isolator manual, this configuration requires that the isolator input be configured as PNP.

Additionally, when the switch in the coil driver is open the LED in the isolator is signaling an on-state. Therefore, we might need to configure the Acromag to invert the input.

There are the Run/Aquire channels that we might need to add to the wiring diagram. If we do need to read them using slow channels, we will have to pull them up like the EnableMon channels to use them like in the wiring diagram.

  16207   Wed Jun 16 20:32:39 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

I installed 2 additional isolators in the Acromag chassis. I set all the input channels to PNP. I ran the digital inputs (EnableMon channels) through these isolators according to the previous post.

I tested the digital inputs in the following way:

I connected an 18V voltage source to the signal wire under test through a 1Kohm resistor. I connected the GND of the voltage source to the RTN wire of the feedthrough. When the voltage source was connected, the LED on the isolator turned on and the EPICs channel under test was Enabled. When I disconnected the voltage source or shorted the signal wire to GND the LED on the isolator turned off and the EPICs channel showed a Disabled state.

  16215   Fri Jun 18 19:02:00 2021 YehonathanUpdateBHDSOS assembly

Today I glued some magnets to dumbells.

First, I took 6 magnets (the maximum I can glue in one go) and divided them into 3 north and 3 south. Each triplet on a different razor (attachment 1).

I put the gluing fixture I found on top of these magnets so that each of the magnets sits in a hole in the fixture. I close the fixture but not all the way so that the dumbells get in easily (attachment 2).

I prepared EP-30 glue according to this dcc. I tested the mixture by putting some of it in the small toaster oven in the cleanroom for 15min at 200 degrees F.

The first two batches came out sticky and soft. I discarded the glue cartridge and opened a new one. The oven test results with the new cartridge were much better: smooth and hard surface. I picked up some glue with a needle and applied it to the surface of 6 dumbells I prepared in advance. I dropped the dumbells with the glue facing down into the magnet holes in the fixtures (attachment 3). I tightened the fixture and put some weight on it. I let it cure over the weekend.

I also pushed cut Viton tips that Jordan cleaned into the vented screws. While screwing small EQ stops into the lower clamps I found some problems. 4 of the lower clamps need rethreading. This is quite urgent because without those 4 clamps we don't have enough SOS towers. Moreover, I found that the screws that we bought from UC components to hold the lower clamps on the SOS towers were silver plated. This is a mistake in the SOS schematics (part 23) - they should be SS.

  16221   Tue Jun 22 17:05:26 2021 YehonathanUpdateBHDSOS assembly

According to the schematics, the distance between the original EQ tap holes is 0.5". Given that the original tap holes' diameter is 0.13" there is enough room for a 1/4" drill.

Quote:

Then, can we replace the four small EQ stops at the bottom (barrel surface) with two 1/4-20 EQ stops? This will require drilling the bottom EQ stop holders (two per SOS).

 

 

  16227   Mon Jun 28 12:35:19 2021 YehonathanUpdateBHDSOS assembly

On Thursday, I glued another set of 6 dumbells+magnets using the same method as before. I made sure that dumbells are pressed onto the magnets.

I came in today to check the gluing situation. The situation looks much better than before. It seems like the glue is stable against small forces (magnetic etc.). I checked the assemblies under a microscope.

It seems like I used excessive amounts of glue (attachment 1,2). The surfaces of the dumbells were also contaminated (attachment 3). I cleaned the dumbells' surfaces using acetone and IPO (attachment 4) and scratched some of the glue residues from the sides of the assemblies.

Next time, I will make a shallow bath of glue to obtain precise amounts using a needle.

I glued a sample assembly on a metal bracket using epoxy. Once it cures I will hang a weight on the dumbell to test the gluing strength.

  16229   Tue Jun 29 20:45:52 2021 YehonathanUpdateBHDSOS assembly

I glued another batch of 6 magnet+dumbell assemblies. I will take a look at them under the microscope once they are cured.

I also hanged a weight of ~150g from a sample dumbell made in the previous batch (attachments) to test the magnet+dumbell bonding strength.

  16235   Thu Jul 1 16:45:25 2021 YehonathanUpdateBHDSOS assembly

The bonding test passed - the weight still hangs from the dumbell. Unfortunately, I broke the bond trying to release the assembly from the bracket. I made another batch of 6 dumbell+magnet.

I used some of the leftover epoxy to bond an assembly from the previous batch to a bracket so I can test it.

  16243   Fri Jul 9 18:35:32 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

Following Koji's channel list review, we made changes to the wiring spreadsheet.

Today, I made the changes real in the Acromag chassis. I went through the channel list one by one and made sure it is wired correctly. Additionally, since we now need all the channels the existing isolators have, I replaced the isolator with the defective channel with a new one.

The things to do next:

1. Create entries for the spare coil driver and satellite box channels in the EPICs DB.

2. Test the spare channels.

  16244   Mon Jul 12 18:06:25 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

I edited /cvs/cds/caltech/target/c1auxey1/ETMYaux.db (after creating a backup) and added the spare coil driver channels.

I tested those channels using caget while fixing wiring issues. The tests were all succesful. The digital output channel were tested using the Windows machine since they are locked by some EPICs mechanism I don't yet understand.

One worrying point is I found that the differential analog inputs to be unstable unless I connected a reference to some stable voltage source unlike previous tests showed. It was unstable (but less) even when I connected the ref to the ground connectors on the power supplies on the workbench. This is really puzzling.

When I say unstable I mean that most of the time the voltage reading shows the right value, but occasionly there is a transient sharp volage drop of the order of 0.5V. I will do a more quantitative analysis tomorrow.

 

  16259   Tue Jul 27 17:14:18 2021 YehonathanUpdateBHDSOS assembly

Jordan has made 1/4" tap holes in the lower EQ stop holders (attachment). The 1/4" stops (schematics) fit nicely in them. Also, they are about the same length as the small EQ stops, so they can be used.

However, counting all the 1/4"-3/4" vented screws we have shows that we are missing 2 screws to cover all the 7 SOSs. We can either:

1. Order new vented screws.

2. Use 2 old (stained but clean) EQ stops.

3. Screw holes into existing 1/4"-3/4" screws and clean them.

4. Use small EQ stops for one SOS.

etc.

Also, I found a mistake in the schematics of the SOS tower. The 4-40 screws used to hold the lower EQ stop holders should be SS and not silver plated as noted. I'll have to find some (28) spares in the cleanroom or order new ones.

 

  16262   Wed Jul 28 12:00:35 2021 YehonathanUpdateBHDSOS assembly

After receiving two new tubes of EP-30 I resumed the gluing activities. I made a spreadsheet to track the assemblies that have been made, their position on the metal sheet in the cleanroom, their magnetic field, and the batch number.

I made another batch of 6 magnets yesterday (4th batch), the assembly from the 2nd batch is currently being tested for bonding strength.

One thing that we overlooked in calculating the amount of glue needed is that in addition to the minimum 8gr of EP-30 needed for every gluing session, there is also 4gr of EP-30 wasted on the mixing tube. So that means 12gr of EP-30 are used in every gluing session. We need 5 more batches so at least 60gr of EP-30 is needed. Luckily, we bought two tubes of 50gr each.

  16263   Wed Jul 28 12:47:52 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

To simulate a differential output I used two power supplies connected in series. The outer connectors were used as the outputs and the common connector was connected to the ground and used as a reference. I hooked these outputs to one of the differential analog channels and measured it over time using Striptool. The setup is shown in attachment 3.

I tested two cases: With reference disconnected (attachment 1), and connected (attachment 2). Clearly, the non-referred case is way too noisy.

  16265   Wed Jul 28 20:20:09 2021 YehonathanUpdateGeneralThe temperature sensors and function generator have arrived in the lab

I put the temperature sensors box on Anchal's table (attachment 1) and the function generator on the table in front of the c1auxey Acromag chassis (attachment 2).

 

  16276   Wed Aug 11 12:06:40 2021 YehonathanUpdateCDSOpto-isolator for c1auxey

I redid the differential input experiment using the DS360 function generator we recently got. I generated a low frequency (0.1Hz) sine wave signal with an amplitude 0.5V and connected the + and - output to a differential input on the new c1auxcey Acromag chassis. I recorded a time series of the corresponding EPICS channel with and without the common on the DS360 connected to the Ref connector on the Acromag unit. The common connector on the DS360 is not normally grounded (there is a few tens of kohms between the ground and common connectors). The attachment shows that, indeed, the analog input readout is extremely noisy with the Ref being disconnected. The point where the Ref was connected to common is marked in the picture.

Conclusion: Ref connector on the analog input Acromag units must be connected to some stable voltage source for normal operation.

  16297   Wed Aug 25 11:48:48 2021 YehonathanUpdateCDSc1auxey assembly

After confirming that, indeed, leaving the RTN connection floating can cause reliability issues we decided to make these connections in the c1auxex analog input units.

According to Johannes' wiring scheme (excluding the anti-image and OPLEV since they are decommissioned), Acromag unit 1221b accepts analog inputs from two modules. All of these channels are single-ended according to their schematics.

One option is to use the Acromag ground and connect it to the RTNs of both 1221b and 1221c. Another is to connect the minus wire of one module, which is tied to the module's ground, to the RTN. We shouldn't tie the grounds of the different modules together by connecting them to the same RTN point.

We should take some OSEM spectra of the X end arm before and after this work to confirm we didn't produce more noise by doing so. Right now, it is impossible due to issues caused by the recent power surge.

Quote:

{Yehonathan, Jon}

We poked (looked in situ with a flashlight, not disturbing any connections) around c1auxex chassis to understand better what is the wiring scheme.

To our surprise, we found that nothing was connected to the RTNs of the analog input Acromag modules. From previous experience and the Acromag manual, there can't be any meaningful voltage measurement without it.

 

  16321   Mon Sep 13 14:32:25 2021 YehonathanUpdateCDSc1auxey assembly

So we agreed that the RTNs points on the c1auxex Acromag chassis should just be grounded to the local Acromag ground as it just needs a stable reference. Normally, the RTNs are not connected to any ground so there is should be no danger of forming ground loops by doing that. It is probably best to use the common wire from the 15V power supplies since it also powers the VME crate. I took the spectra of the ETMX OSEMs (attachment) for reference and proceeding with the grounding work.

 

  16332   Wed Sep 15 11:27:50 2021 YehonathanUpdateCDSc1auxey assembly

{Yehonathan, Paco}

We turned off the ETMX watchdogs and OpLevs. We went to the X end and shut down the Acromag chassi. We labeled the chassi feedthroughs and disconnected all the cables from it.

We took it out and tied the common wire of the power supplies (the commons of the 20V and 15V power supplies were shorted so there is no difference which we connect) to the RTNs of the analog inputs.

The chassi was put back in place. All the cables were reconnected. Power turn on.

We rebooted c1auxex and the channels went back online. We turned on the watchdogs and watched the ETMX motion get damped. We turned on the OpLev. We waited until the beam position got centered on the ETMX.

Attachment shows a comparison between the OSEM spectra before and after the grounding work. Seems like there is no change.

We were able to lock the arms with no issues.

 

  16346   Mon Sep 20 15:23:08 2021 YehonathanUpdateComputersWifi internet fixed

Over the weekend and today, the wifi was acting bad with frequent disconnections and no internet access. I tried to log into the web interface of the ASUS wifi but with no success.

I pushed the reset button for several seconds to restore factory settings. After that, I was able to log in. I did the automatic setup and defined the wifi passwords to be what they used to be.

Internet access was restored. I also unplugged and plugged back all the wifi extenders in the lab and moved the extender from the vertex inner wall to the outer wall of the lab close to the 1X3.

Now, there seems to be wifi reception both in X and Y arms (according to my android phone).

 

  16359   Thu Sep 23 18:18:07 2021 YehonathanUpdateBHDSOS assembly

I have noticed that the dumbells coming back from C&B had glue residues on them. An example is shown in attachment 1: it can be seen that half of the dumbell's surface is covered with glue.

Jordan gave me a P800 sandpaper to remove the glue. I picked the dumbells with the dirty face down and slid them over the sandpaper in 8 figures several times to try and keep the surface untilted. Attachment 2 shows the surface from attachment 1 after this process.

Next, the dumbells will be sent to another C&B.

  16374   Mon Oct 4 16:00:57 2021 YehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

{Yehonathan, Anchel}

In an attempt to fix the actuation of the PRMI DOFs we set to modify the output matrix of the BS and PRM such that the response of the coils will be similar to each other as much as possible.

To do so, we used the responses at a single frequency from the previous measurement to infer the output matrix coefficients that will equilize the OpLev responses (arbitrarily making the LL coil as a reference). This corrected the imbalance in BS almost completely while it didn't really work for PRM (see attachment 1).

The new output matrices are shown in attachment 2-3.

  16393   Tue Oct 12 11:32:54 2021 YehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

Late submission (From Thursday 10/07):

I measured the PRMI sensing matrix to see if the BS and PRMI output matrices tweaking had any effect.

While doing so, I noticed I made a mistake in the analysis of the previous sensing matrix measurement. It seems that I have used the radar plot function with radians where degrees should have been used (the reason is that the azimuthal uncertainty looked crazy when I used degrees. I still don't know why this is the case with this measurement).

In any case, attachment 1 and 2 show the PRMI radar plots with the modified output matrices and and in the normal state, respectively.

It seems like the output matrix modification didn't do anything but REFL55 has good orthogonality. Problem gone??

  16400   Thu Oct 14 09:28:46 2021 YehonathanUpdatePSLPMC unlocked

PMC has been unlocked since ~ 2:30 AM. Seems like the PZT got saturated. I moved the DC output adjuster and the PMC locked immidiatly although with a low transmission of 0.62V (>0.7V is the usual case) and high REFL.

IMC locked immidiately but IFO seems to be completely misaligned. The beams on the AS monitor are moving quite alot syncronously. BS watchdog tripped. I enabled the coil outputs. Waiting for the RMS motion to relax...

Its not relaxing. RMS motion is still high. I disabled the coils again and reenabled them. This seems to have worked. Arms were locked quite easily but the ETMs oplevs were way off and the ASS couldn't get the TRX and TRY more than 0.7. I align the ETMs to center the oplev. I realign everything else and lock the arms. Maximium TR is still < 0.8.

 

 

  16401   Thu Oct 14 11:25:49 2021 YehonathanUpdatePSLPMC unlocked

{Yehonathan, Anchal}

I went to get a sandwich around 10:20 AM and when I came back BS was moving like crazy. We shutdown the watchdog.

We look at the spectra of the OSEMs (attachment 1). Clearly, the UR sensing is bad.

We took the BS sattelite box out. Anchal opened the box and nothing seemed wrong visually. We returned the box and connected it to the fake OSEM box. The sensor spectra seemed normal.

We connected the box to the vacuum chamber and the spectra is still normal (attachment 2).

We turn on the coils and the motion got damped very quickly (RMS <0.5mV).

Either the problem was solved by disconnecting and connecting the cables or it will come back to haunt us.

 

 

 

  16402   Thu Oct 14 13:40:49 2021 YehonathanSummarySUSPRM and BS Angular Actuation transfer function magnitude measurements

Here is a side by side comparison of the PRMI sensing matrix using PRM/BS actuation (attachment 1) and ITMs actuation (attachment 2). The situation looks similar in both cases. That is, good orthogonality on REFL55 and bad seperation in the rest of the RFPDs.

Quote:

should compare side by side with the ITM PRMI radar plots to see if there is a difference. How do your new plots compare with Gautam's plots of PRMI?

 

  16405   Thu Oct 14 20:16:22 2021 YehonathanUpdateGeneralPRMI free swinging

{Yehonathan, Raj}

We aligned the IFO in the PRMI state and let it swing freely.

  16426   Tue Oct 26 10:17:14 2021 YehonathanUpdateBHDSOS assembly

Things that I need to start suspending optics:

1. Winch adapter plate (D970314). Might need to make one.

2. Quad photodetector

3. Camera and camera mount

4. Beam height target

5. Height gauge

  16439   Thu Oct 28 23:13:19 2021 YehonathanUpdateBHDSOS assembly

{Tega, Yehonathan, Koji}

Suspension of a Dummy Optic

We gathered the components needed for suspending a 2" optic housed in a 3" ring adapter:

1. SOS Tower

2. Winches+Winch adapter plate (Attachment 3)

2. HeNe Laser + Power supply

3. A steering mirror

4. QPD + ND2 Filter + Electronic amplifier

5. Oscilloscope

6. Dummy optic housed in a ring adapter (Attachment 2)

An OpLev was built using the HeNe laser, steering mirror, suspended optic, QPD (Attachment 1).

The beam height was set with a ruler. The QPD was placed in front of the laser and its height was adjusted until the Y signal vanished.

The beam was made parallel to the table. First, roughly by using an iris. Then, more accurately, by measuring the beam directed at the suspended optic with the QPD and zeroing the Y signal by adjusting the steering mirror.

We suspended the dummy optic using a music wire we found in the cleanroom cabinet.

All the wire clamps on the ring adapter, SOS, and winches were loosened.

About 0.5m of music wire was cut. Then, the wire was threaded through the wire clamp on the adapter side block, around the ring adapter, and through the wire clamp on the other side block, keeping the wire untwisted. The optic was put on the safety stop and the height was roughly adjusted using the lower EQ stops.

The wire pair was then threaded through the wire clamp on the suspension block and held near the winches. The wire was made to go through the groves at the side blocks. The wire was clamped to the side blocks. The wires were clamped on the winches. The wires were pulled by the winches until the magnet marking on the side blocks was centered on the OSEMs' holes on the side plates of the SOS (attachment 4).

Once the heights were set, the wire was clamped at the suspension block.

We balanced the dummy optic using a counterweight.

We placed the QPD at the laser reflection from the optic. We adjusted the screw set going through the counterweights to adjust the balance. The pitch imbalance was monitored by observing the Y signal on the oscilloscope.

Comments:

1. Turns out that for a 1/4" thick optic, the rear counterweight needs to be removed for achieving balance.

2. To fix the counterweight on the setscrew we will use some epoxy.

3. Seems like the left optical table in the cleanroom is slightly tilted. We need to fix it.

4. The bottom long EQ stop is not touching the adapter due to the balancing mass socket. We might want to put a nut on it.

5. Still need to glue 3 more side magnet+dumbell assemblies to rods and then glue them before gluing them to the side blocks which will take at least 2 more days until we can start suspending a real optic.

  16443   Tue Nov 2 15:02:03 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Tega}

We took the free-swinging spectra of the OpLev in the X and Y direction.

To make the motion of the optic quiet we turned off the airflow on the optical bench and moved the QPD close to the SOS so that the laser beam stays more or less within the QPD sensitive area.

In the process, we realized that the cleanroom HeNe went bad. It turned off after a few minutes after turning it on. The behavior repeated with another power supply. We replaced the HeNe and realigned it coarsely.

The data was taken using an oscilloscope while the optic was swinging freely. The PSD was calculated afterward (attachment 1).

Surprisingly, the pitch has a resonance frequency of ~ 2.5 Hz. And this is after we removed the back counterweight.

Additionally, we aligned the tilt of the optical table. Using a spirit bubble we adjusted the tilt by using a wrench on the table legs. As we suspected, the table was slightly tilted in the north-south direction.

  16456   Mon Nov 8 17:22:27 2021 YehonathanUpdateBHDSOS assembly

Big Gluing Day

Today I glued the magnet+dumbell assemblies on the optics adapters.

Unlike magnet gluing on a 3" optic where one can use a magnet gluing fixture, here I had to position the magnets manually. There is a complication though: the magnet is much heavier than the dumbell making it almost impossible gluing the dumbell side down onto the adapter since it is very unstable in this position. A workaround is to put the magnets on some paramagnetic sheet so that the magnets stick to it and then flip it over and glue it on the adapter dumbell sides down.

The problem here is that I need to position the magnets relatively accurately on the metal sheet. To make things slightly easier I printed some drawings of the positions of the magnet, laminated them, and cleaned them to have a decent starting point (attachment 1).

For each adapter:

1. I applied glue to the 4 circular grooves at the back of the adapter.

2. I picked 4 magnets (2 north, 2 south). Trying to match their strength.

3. Made a note of which magnets I picked for which adapter in the magnet+dumbell spreadsheet.

4. Clean the dumbells' surfaces when necessary.

5. Put the magnets on a laminated magnet-positions-drawing on a metal sheet that was precleaned in the right order.

6. Flip the metal sheet and position it on the adapter such that the dumbells go as precisely as possible into the circular grooves on the adapater.

7. Adjust the magnets' positions by pushing them slightly with a non-magnetic tip.

Attachment 2 shows the numbering on the adapters for future tracking.

I also glued some magnets and aluminum rods to side blocks. Next gluing session I will glue magnets to the aluminum rods. Probably some dumbells will not stick well to the adapters. These will have to be cleaned and reglued as well.

 

 

  16459   Tue Nov 9 11:11:37 2021 YehonathanUpdateBHDSOS assembly

The gluing was mostly successful. Only two magnets didn't stick (see attachment).

  16465   Fri Nov 12 23:47:29 2021 YehonathanUpdateBHDSOS assembly

{Tega, Yehonathan}

First attempt at the suspension of a Lambda Optic mirror

We found the box with the 2" Lambda Optic mirrors in the cleanroom. We choose to suspend a mirror with a ROC = 5m, probably LO1.

The mirror was put inside an adapter that was prepared beforehand, put the mirror in place by tightening the Teflon rod, and then clamp it using the clamping pads.

We decided to cut two wires and clamp them to the side blocks of the adapter, while it sits on the EQ stops. The wires were threaded through the winches' clamps, through the wire clamp on the suspension block, and through the side blocks' wire clamps. We adjusted the wire position while pulling on it. The wire was made to sit inside the wire grooves on the side blocks. While tightening the clamp on the side block with the magnet, the LN key fell knocking off two magnets from the back of the adaptercrying.

Next time we think it might be a better idea to do all the adapter wire clamping on the table instead of on the SOS tower.

In the meanwhile, here are some pictures from today.

 

  16470   Tue Nov 16 17:42:46 2021 YehonathanUpdateBHDSOS assembly

{Tega, Yehonathan}

Another attempt at the suspension of a Lambda Optic mirror

The lambda mirror was removed from the adapter whose magnets were knocked off. We tried to mount the mirror on a different adapter but we knocked off magnets from two adapters crying. We succeeded in mounting the mirror at the third attempt (Adapter number 6). In the meanwhile, Tega threaded wires through side blocks separated from the adapter. He positioned the wires inside the grooves of the side block under a microscope (attachment 1). This procedure is much more accurate and pain-free than doing it on the suspended mirror.

We took the adapter and put it on the EQ stops. The wires were threaded through the wire clamp on the suspension block and clamped at the winches.

The adapter was rotated until the side magnet was roughly at the center of the side OSEM port. We then, as before, put coils in OSEM ports and try to adjust the height of the side magnet and the magnet groove on the other side block such that they are roughly at the center of the coil. We used the winches for fine adjustment.

I used the Canon camera to make sure the side blocks are leveled (attachment 2). I used the macro lens for that purpose. I set up a live stream from the Canon camera using these instructions only that I use OBS instead of CamTwist. I painted a semi-transparent green rectangle to annotate the position of the side magnet socket (attachment 3). I did this several times to confirm the repeatability of the results. Again using the winches for fine adjustments.

Once the height of the side magnets was confirmed to be leveled. I clamped the wires to the suspension block and cut them above it.

I tried to balance the optic but again I see that the suspensions are hysteretic. I check to see whether the wire is touching anything and indeed it touches the corner of the side blockcryingcryingcrying (attachments 4, 5).

 

 

 

  16483   Wed Nov 24 14:15:15 2021 YehonathanUpdateBHDSOS assembly

Late update. We got 2 modified side blocks from Jordan a few days ago. Yesterday, I glued a side magnet to one of the modified side blocks.

I took the opportunity to reglue some magnets that were knocked off from the adapters. I did this for 2 adapters only since w need 4 shallow adapters and we already had 2 complete ones.

Today, Jordan gave us the rest of the modified side blocks clean and baked. We are ready to suspend a mirror today.

  16484   Wed Nov 24 14:34:15 2021 YehonathanUpdateBHDSaving on SUSAUX slow channels

Koji found out that the stock for BIO Acromag modules is very low and that the lead time for ordering new ones is ~ 1-year X-o.

We figure we might need to minimize the number of modules but still keep the Acromag chassis functional.

 

Looking at the new C1AUXEY feed-throughs spreadsheet one can see that we actually normally need only 1 BIO (not 2) module since there are 16 suspensions related bios + 1 green shutter which is unrelated to SUSAUX so there is no room to cut back here.

 

There are 16 analog input channels, 5 for PDMONs and 5 VMONs, and 6 spares which require 2 ADCs. Removing the spares and 2 monitoring channels will be enough to get us to 1 ADC.

  16485   Wed Nov 24 17:13:31 2021 YehonathanMetaphysicsGeneralToilet tank broken

The toilet tank in the big bathroom stopped refilling. I contacted PPService@caltech.edu and put up an "Out of Order sign".

  16487   Tue Nov 30 11:03:44 2021 YehonathanMetaphysicsGeneralToilet tank broken

a plumber came in yesterday and fixed the issue.

Quote:

The toilet tank in the big bathroom stopped refilling. I contacted PPService@caltech.edu and put up an "Out of Order sign".

 

  16489   Wed Dec 1 12:57:08 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Tega}

We glued some magnets onto modified side blocks. We followed pretty much the same procedure form last time. The music wires were clamped on the side blocks away from the optic adapter. The clamps were screwed down using the low profile screws the Jordan obtained from UC components to allow maximum clearance for the coils (Attachment 2).

The modified side blocks with wires already clamped in them were screwed onto the adapter. We put the adapter on the EQ stops and do rough adjustments, making sure the side magnet is roughly on the center of a coil we inserted to the side. The wires were threaded through the wire clamp on the suspension block and clamped on the winches. We realigned the Oplev beam such that it is parallel to the table using the quad photodiode.

We balanced the height of the adapter. This time we used a camera facing the adapter. The tilt of the camera was set by drawing a straight line (red line in attachment 1) such that the bottom clamps on the SOS are parallel to it.

Then, we adjusted the winches such that the screws on the side blocks are on the same green line on attachment 1.

Once the height was adjusted, we clamped the wire on the suspension block and cut it at the winches.

We balanced the optic. We had to take out the front counterweight to get the balance (attachment 3).

We checked whether the wire is touching anything. We confirmed that it doesn't. The wire goes nicely through the new hole on the side blocks (attachment 4, 5).

We measure the resonance frequency for both yaw (attachment 6) and pitch (attachment 7). They both seem to be sub-Hz. The pitch trace also shows that the oscillations are centered around 0 meaning the optic is balanced.

There's still the issue of what to do with the lower back EQ stop not touching the adapter.

  16491   Mon Dec 6 18:23:04 2021 YehonathanUpdateBHDSOS assembly

I installed OSEMs on the LO1 SOS. To my surprise, the side magnet is not in the center of the side OSEM. It completely misses the LED as can be seen in the attachment.

Looking at the CAD model, it turns out the position of the OSEM on the left side plate is different from the position of the OSEM on the right side plate in the SOS tower.

We need to take the optic down, swap the right and left side blocks, and resuspend it.

There is not enough 🤦🏻‍♂️in the world

  16497   Thu Dec 9 21:57:35 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Tega}

We took the optic out of the SOS tower and removed the side blocks. We mounted new side blocks with wires already clamped in them in the reverse order.

The Adapter was placed back into the SOS and the wires were threaded through the wire clamp and suspended on the winches. The roll of the optic was balanced using a camera (attachment 1).

The pitch was balanced. this time I used 2 counterweights instead of 1 in order to not have to take so much of the weight out.

The mechanical resonances were measured by taking a 100 sec time series of QPD readout and doing PSD estimation (attachment 2). The mirror motion was damped as much as possible before taking the measurement.

3 peaks below 1.5Hz can be seen with frequencies of 755mHz (Yaw), 942mHz, 1040mHz (Pitch + Pos). The pitch/pos peaks are a bit close to each other, I bet if we go back to 1 counterweight the situation will be better.

While inserting the side OSEM I realized I didn't check the overall height of the adapter. The magnet was too high. I will fix it tomorrow and repeat the roll balancing.

 

  16505   Tue Dec 14 14:02:33 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Paco}

I fixed the overall height of the adapter (attachment 1). I put an OSEM next to the side magnet. I positioned a camera in front of the SOS and connected it to my laptop for live streaming. I painted a line indicating the height of the OSEM plates and a line in between with the mean height. I discarded the wire clamp on the suspension block I released the wires from the winches and pulled on them until the magnet was roughly in the right position. I clamped the wires back on the winches and adjusted them until the magnet was on the middle line. I also verified that the roll of the adapter is aligned as before by making sure that the horizontal features on the adapter are parallel to the horizontal features on the SOS tower.

The wires were clamped to the suspension block using a new wire clamp.

I Found that locking the counterweight setscrew changes the alignment. Today we verified this effect. We released the setscrew and pre-compensated by adjusting the counterweight such that when the setscrew was locked the mirror was aligned.

We measured mechanical resonances (attachment 2). This time the yaw motion was very quiet so we got a smaller peak for the yaw. The peaks are the same as before. Y readout has peaks around the pitch and pos resonances that don't appear in the X readout. I'm not sure what they are. Maybe coming from the QPD electronics.

We locked the adapter using the EQ stops. We made sure the alignment stays close to ideal.

We installed OSEMs on the SOS. We chose suboptimal OSEMs because LO1 will only be used for steering. I made a spreadsheet copying the OSEM catalog into it. There we mark which OSEM goes where.

I cleaned the optic using the ion gun with a pressure of 30 PSI.

The next steps are:

1. Engrave the SOS tower.

2. Cut the wire at the winches and remove the winch adapter plate.

3. Wrap the SOS with foil.

4. Install the SOS in the vacuum chamber.

 

 

  16511   Wed Dec 15 22:09:53 2021 YehonathanUpdateBHDSOS assembly

{Paco, Yehonathan, Anchal}

I cut the wires from the winches and removed the winch adapter plate. I engrave  'LO1' on the SOS tower. Me and Paco wrapped the SOS with foil and transported it to Anchal who put it inside the ITMX chamber.

The transportation seems to be successful. Nothing broke. However, we found that even with the short side OSEM the LO1, as it is now, cannot sit in its designed position since ITMX's side OSEM stands in its way.

If there are magnets on both ITMX sides we can move its side OSEM to the other side. Another option is to resuspend LO1 with a side magnet on its left side.

 

  16518   Thu Dec 16 18:16:36 2021 YehonathanUpdateBHDSOS assembly

Today I glued magnets onto the new 3/4" mirror adapters. I also took the opportunity to make some more side magnets assemblies.

Yesterday I mounted PR3/SR2 3/4" thick mirror onto one of the new adapter. There seem to be no issues for now.

I started the process of suspending AS1 (E2000226-A). The Lambda Optic mirror with the closest specs has Rc = 2 m. I attached side blocks with clamped wires onto adapter number 7 - side block with a magnet on the right.

I then took one of the Lambda Optic mirrors and tried mounting it in the adapter. It was quite difficult to get it right. Unfortunately, I chipped the edge of the substrate (attachment 1) 🤦🏻‍♂️. I put the mirror back in the box and decided to use the spare mirror. I successfully mounted it into the adapter but when I put the clamping screws one of them fell on the mirror 🤦🏻‍♂️🤦🏻‍♂️. There is no visible damage though. I took some pictures (attachment 2-4).

I and Anchal then started suspending the mirror but then we found that one of the wires is dented in the middle 🤦🏻‍♂️🤦🏻‍♂️🤦🏻‍♂️. I'm burned out for today.

Late update: one nice thing that I found yesterday is that the glue is viscous enough to hold the dumbells without a metal sheet from above holding the magnets. This greatly simplifies the gluing process.

 

  16520   Fri Dec 17 17:50:17 2021 YehonathanUpdateBHDSOS assembly

I threaded a new wire through a different side block with a magnet and clamped it under a microscope. It was hard, but eventually, I was able to do it by holding the wire on both sides of the side block with weights.

The dented wire was discarded and the side block that was mounted on the AS1 adapter was put aside. I mounted the side block with the new wire on the AS1 adapter.

 

Anchal and I hanged the AS1 adapter and clamped the wires on the winches of an SOS tower. I balanced the roll and adjusted the height of the magnet with respect to a side OSEM using a camera (attachments 1 & 2).

I shoot the Hene laser on the optic and look at the reflection. I align the laser beam to be as close as possible to the center of the mirror. The OpLev needs to be realigned.

To my surprise, the ghost beam shoots up above the reflected beam! See attachment 3. I check to see that the arrow which marks the thinnest side of the mirror is horizontal (attachment 4). WTF?!

Also, now I realize that the marking on the Lambda optics are pencil markings 😵😵😵.

  16523   Fri Dec 17 22:16:07 2021 YehonathanUpdateBHDSOS assembly

I specifically checked the specification before mounting the mirror. It says clearly "Arrow at the thinnest location pointing towards Side 1". I guess they just ignored it.

As for LO1, I mounted it without noticing the location of the arrow. Later, I checked and the ghost beam was horizontal so I left it as it is. Yeah, I guess I will remount the mirror. Also, what do we do with the pencil markings? It's not vacuum-compatible.

Quote:

We @40m do the convention of the arrow at the thinnest side & pointing the HR side, but nobody says Lambda does the same.

We can just remount the mirror without breaking the wires and adjust the pitching if you do it carefully.

Does this mean that the LO1 also likely to have the wedge pointing up? Or did you rotate the mirror to have the wedge reflection to be as horizontal as possible?

 

  16528   Mon Dec 20 17:26:13 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Anchal}

I released the AS1 wires from the winches, removed the adapter from the SOS tower, and removed the Lambda optic from the adapter. Attachment 1 shows the pencil markings on the optic before cleaning. I cleaned the pencil marking from the side of the optic with acetone using swabs until there were no pencil residues on the swab (attachment 2 shows the swab I used next to an unused swab). I was not able to remove the markings completely though (attachment 3).

I remounted the optic with the arrow rotated by 90 degrees counterclockwise.

We hang the adapter on the winches and adjust the height of the magnet and the adapter roll using the winches. We monitor the height of the adapter using a live stream from the Cannon camera. The camera's tilt was adjusted using straight features on the SOS tower. When we ran out of winch travel we adjust the height using the lower EQ stops and pull tight the wires. Attachment 4 shows the alignment of the side magnet with respect to the SOS tower and a side OSEM.

We checked the ghost beam trajectory and it looks much better (attachment 5)

We started realigning the OpLev. We realize that the height of the beam should be 5+14/32" = 5.437 by measuring the height of the screw holding the side OSEM from the table. The real height from the schematics is 5.425 We make the beam parallel with the table first using an iris and then the QPD.

Today, I balanced the counterweight. First using an iris, then by placing a QPD close to the SOS measuring the reflection from AS1. I locked the counterweight's set screw and the QPD Y readout looks good. Attachment 6 shows the QPD y readout near the beat node between pitch and pos. The node comes very close to zero which indicates that the pitch is balanced.

I measured the free-swinging motion using the QPD x and y axes. Attachment 7 shows the spectra of that motion. The major peaks are at 755mHz, 953mHz, and 1.05Hz.

 

  16531   Tue Dec 21 18:04:46 2021 YehonathanUpdateBHDSOS assembly

I locked the EQ stops while retaining the XY alignment on the QPD and installed 5 green OSEMs. AS1 is ready for transfer into the vacuum chamber.

  16544   Wed Jan 5 19:18:06 2022 YehonathanUpdateBHDSOS assembly -- AS4

{Paco, Yehonathan, Anchal}

Today we suspended AS4 (E2000226-B). Anchal mounted Lambda Optic mirror with an RoC closest to AS4 in a thin optic mount. He noted that this optic as well as AS1 don't have a wedge angle. The specs claim that the wedge angle is 2 degrees what should have been clearly seen by inspecting the optic with a naked eye. All the ghost beam deflections probably come from the curvature of the mirror.

We did all the height and roll balancing using a camera (Attachment 1,2). We balanced that pitch of the adapter using a QPD not before we realigned the OpLev setup.

We measured the motion spectra (attachment 3). Major peaks are found at 755 mHz, 964 mHz, and 1.062Hz. I locked the counterweights setscrew and observed that the pitch balance doesn't change. I locked the EQ stops such that the alignment of the mirror remained the same by monitoring the QPD signals. I clamped the suspensions wires to the suspension block.

The only thing remaining is inserting the OSEMs.

 

  16550   Thu Jan 6 17:00:20 2022 YehonathanUpdateBHDSOS assembly -- LO2

{Paco, Yehonathan}

Today we suspended LO2 (E1800089) which Anchal has loaded into the thick optic adapter. Attachments 1,2 show the height and roll balance adjustments.

I realigned the opLev setup and balanced the suspended mass. We figured that if we use 2 counterweights we will be 1 short. We decided to use 1 mass at the back of the adapter. This has the additional advantage that the Viton tip on lower back EQ stop can touch it and act normally. The optic was successfully balanced in this way. Attachment 3 shows the motion spectra on the QPD. There are major peaks at 712 mHz, 854 mHz, 876 mHz, and 996 mHz. As expected using only 1 counterweight raised the center of mass and lowered the pitch resonance frequency. The optic was locked keeping the alignment fixed on the center of the QPD, OSEMs were inserted and the SOS tower was engraved.

We should apply some glue to the counterweight to prevent it from spinning on the setscrew.

  16551   Thu Jan 6 17:16:51 2022 YehonathanUpdateBHDUsing Peek screws/nuts

There were several cases where the long EQ stops didn't perform as expected.

In one type of case, we used a counterweight at the front of the adapter but not in the back leaving a recess where the lower back EQ stop should touch.

In the other type, a recess in the thick optics adapter prevented the upper EQ stop from touching the adapter. In the first thick optic, the screw was screw barely scratched the recess' corner. In the second case, it didn't touch it at all.

In the last group meeting, we discussed using Peek screws (made out of plastic) to prevent metal on metal bumping when the EQ can touch the adapter and Peek nuts when it doesn't to increase its impact area.

Mcmaster has 1.5" long 1/4-20 screws (part number 98885A131) that will fit well in the OSEM plates. We can order 20 of those.

The biggest Peek nuts on Mcmaster however are not big enough (7/16" wide) to cover the entire bottom recess area which is 0.5" wide (they are good enough for the top recess area in the thick adapter optic design). Koji suggested that we can use a big Peek washer for that purpose that can be held between nuts. We should then order 10 Peek nuts (98886A813) and 1 package of 10 Peek washers (0.63" OD) (93785A600).

ELOG V3.1.3-