40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 163 of 354  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  4466   Wed Mar 30 20:08:34 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 2: Getting the beam through the Faraday isolator (FI).

Started out with an f=100mm lens at position 32,T on the bench which gave a decent looking waist of order 100 um in the right sort of position for the FI, but after checking the FI specs, it's limited to 500W/cm^2. In other words, if we have full power from the laser passing into it we'd need a beam width of more than 211 um. Solution? Use an f=150mm lens instead and don't put the FI at the waist. I normally don't put a FI at a waist anyway, for assorted reasons - scattering, thermal lensing, non-linear magnetic fields, the sharp changing of the field components in an area where you want as constant a beam as possible.  Checked with others to make sure they don't do things differently around these parts… Koji says it doesn't matter as long as it passes cleanly through the aperture. So… next step is inserting the Faraday.

The beam profiles in vertical and horizontal around the FI position with the f=150mm lens in place are attached. Note that the FI will be going in at around 0.56m.

Beam_Matching_02c_Vertical.pngBeam_Matching_02c_Horizontal.png

 

 

 

  4467   Wed Mar 30 20:14:17 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Additional:

I fired up some old waistplotter routines, and set the input conditions as the measured waist after the lens and used that to work out what the input waist is at the laser. It may not be entirely accurate, but it /will/ be self consistent later on.

 

Vertical waist      = 105.00 um at 6.282 cm after laser output (approx)

Horizontal waist = 144.63 um at 5.842 cm after laser output (approx)

 

Definitely astigmatic.

 

  4468   Wed Mar 30 20:31:30 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 3: Inserting FI and un-eliptical-ification of the beam

The FI set up on it's mount and the beam passes through it - centrally through the apertures on each side. Need to make sure it doesn't clip and also make sure we get 93% through (datasheet specs say this is what we should achieve). We will not achieve this, but anything close should be acceptable.

Setting up for minimum power through the FI is HWP @125deg.

Max is therefore @ 80deg

 

Power before FI = 544 mW

Power after FI =     496 mW (after optimising input polarisation)

Power dumped at input crystal = 8.6mW

Power dumped at input crystal from internal reflections etc = 3.5mW

Power dumped at output crystal on 1st pass = approx 8mW

 

OK. that gives us a 90.625% transmission and a 20.1mW absorption/unexplained loss.

 

Well - OK. The important part about isolators isn't their transmission, it's about how well they isolate. Let's see how much power gets ejected on returning through the isolator…

 

Using a beam splitter to pick off light going into and returning from the FI. A 50/50 BS1-1064-50-1025-45P. And using a mirror near the waist after the FI to send the beam back through. There are better ways to test the isolation performance of FI's but this will suffice for now - really only want to know if there's any reasonable isolation at all or if all of the beam is passing backwards through the device.

 

Power before BS = 536 mW (hmmn - it's gone down a bit)

Power through BS = (can't access ejected on first pass)

Power through FI = 164 mW (BS at odd angle to minimise refractive effect so less power gets through)

Power lost through mirror = 8.3mW (mirror is at normal incidence so a bit transmissive)

 

Using earlier 90.6% measurement as reference, power into FI = 170.83 mW

So BS transmission = 170.83/536 = 0.3187

BS reflectivity therefore = 1 - 0.3187 = 0.6813

 

Power back into FI = Thru FI - Thru mirror = 155.7 mW

 

Power reflected at BS after returning through FI = 2.2mW

Baseline power at BS reflection from assorted internal reflections in FI (blocked return beam) = 1.9mW

Note - these reflections don't appear to be back along the input beam, but they *are* detectable on the power meter.

 

Actual power returning into FI that gets reflected by BS = 0.3 mW

(note that this is in the fluctuating noise level of measurement so treat as an upper limit)

 

Accounting for BS reflectivity at this angle, this gives a return power = 0.3/0.6813 = 0.4403 mW

 

Reduction ratio (extinction ratio) of FI =  0.4403/155.7 = 0.00282

 

Again - note that this upper limit measurement is as rough and ready as it gets. It's easy to optimise this sort of thing later, preferable on a nice open bench with plenty of space and a well-calibrated photodiode. It's just to give an idea that the isolator is actually isolating at all and not spewing light back into the NPRO.

 

Next up… checking the mode-matching again now that the FI is in place. The beam profile was scanned after the FI and the vertical and horizontal waists are different...

  4469   Wed Mar 30 20:50:43 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 3b: Non-circular? We can fix that...

A quick Beamscan sweep of the beam after the Faraday:

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

25.8 503.9 478.8

25 477.5 489.0

24 447.1 512.4

21 441.6 604.5

20 476.3 645.4

19 545.4 704.1

18 620.3 762.8

 

After_Faraday.png

 

OK. It looks not too bad - doesn't look too different from what we had. Note that the x axis is in local table units - I found this useful for working out where things were relative to other things (like lenses and the FI) - but it means the beam propagates from right to left in the plot. in other words, the horizontal waist occurs first and is larger than the vertical waist. Also - they're not fitted curves - they're by-eye, best guesses and there's no solution for the vertical that doesn't involve offsets... discussion in a later part of the thread.

 

Anyway! The wonderful thing about this plot is that the horizontal and vertical widths cross and the horizontal focussing at this crossing point is shallower than the vertical. This means that we can put a lens in at the crossing point and rotate it such that the lens is stronger in the horizontal plane. The lens can be rotated until the effective horizontal focal length is right to fix the astigmatism.

 

 

I used a 200mm lens I had handy - a rough check sweeping the Beamscan quickly indicated should be about right though. Adjusting the angle until the beam size at a distant point is approx circular - I then move the profiler and adjust again. Repeat as required. Now… taking some data. with just that lens in:

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

24 371.7 366.1

21 360.3 342.7

20 447.8 427.8

19 552.4 519.0

18 656.4 599.2

17 780.1 709.9

16 885.9 831.1

 

After_Faraday_and_Rotated_Lens.png

 

Well now. That looks quite OK. Fit's a bit rubbish on vertical but looks like a slight offset on the measurement again.

The angle of the lens looks awful, but if it's stupid and it works then it isn't stupid. If necessary, the lens can be tweaked a bit more, but there's always more tweaking possible further down the line and most of the astigmatic behaviour has been removed. It's now just a case of finding a lens that works to give us a 50 um beam at the oven position...

 

 

  4470   Wed Mar 30 21:21:15 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Step 4: Matching into the oven

 

 

Now that the astigmatism is substantially reduced, we can work out a lens solution to obtain a 50um waist *anywhere* on the bench as long as there's enough room to work with the beam afterwards. The waist after the Faraday and lens is at position 22.5 on the bench. A 50 mm lens placed 18 cm after this position (position 14.92 on the bench) should give a waist of 50 um at  24.57 cm after the waist (position 12.83 on the bench). This doesn't give much room to measure the beam waist in though - the Beamscan head has a fairly large finite size… wonder if there's a slightly less strong lens I could use…

OK. With a 66 mm lens at 23 cm (position 13.45 on the bench) after the waist we get a 50 um waist at 31.37 cm after the waist (position 10.15 on the bench). 

 

Oven_Lens_Solution_66mm.png

 

Closest lens I found was 62.9mm which will put the 50um point a bit further towards the wall, but on the X-arm the oven is at position 8.75 ish. So anything around there is fine.

 

Using this lens and after a bit of manual fiddling and checking with the Beamscan, I figured we needed a close in, fine-grained measurement so set the Beamscan head up on a micrometer stage Took a whoie bunch of data around position 9 on the bench:

 

 

Position A1_13.5%_width A2_13.5%_width

(mm) (um mean) (um mean)

-15 226.8 221.9

-14 210.9 208.3

-13 195.5 196.7

-12 181.0 183.2

-11 166.0 168.4

-10 154.0 153.1

-9 139.5 141.0

-8 127.5 130.0

-7 118.0 121.7

-6 110.2 111.6

-5 105.0 104.8

-4 103.1 103.0

-3 105.2 104.7

-2 110.9 110.8

-1 116.8 117.0

0 125.6 125.6

0 125.6 125.1

1 134.8 135.3

2 145.1 145.6

3 155.7 157.2

4 168.0 168.1

5 180.5 180.6

6 197.7 198.6

7 211.4 209.7

8 224.0 222.7

9 238.5 233.7

10 250.9 245.8

11 261.5 256.4

12 274.0 270.4

13 291.3 283.6

14 304.2 296.5

15 317.9 309.5

 

Matching_Into_Green_Oven_zoomed_out.pngMatching_Into_Green_Oven_zoomed_in.png

 

And at this point the maximum power available at the oven-waist is 298mW. With 663mW available from the laser with a desired power setting of 700mW on the supply. Should make sure we understand where the power is being lost. The beam coming through the FI looks clean and unclipped, but there is some stray light around.

 

Position A1_13.5%_width A2_13.5%_width

(bench) (um mean) (um mean)

7 868.5   739.9

6 1324 1130

5 1765 1492

4 2214 1862

 

The plot looks pretty good, but again, there looks to be an offset on the 'fitted' curve. Taking a couple of additional points further on to make sure it all works out as the beam propagates. I took a few extra points at the suggestion of Kiwamu and Koji - see the zoomed out plot.  The zoomed in plot has by-eye fit lines - again, because to get the right shape to fit the points there appears to be an offset. Where is that coming from? My suspicion is that the Beamscan doesn't take account of the any background zero offsets when calculating the 13.5% and we've been using low power when doing these measurements - very small focussed beams and didn't want to risk damage to the profiler head.

 

Decided to take a few measurements to test this theory. Trying different power settings and seeing if it gives different offset and/or a changed width size

 

7 984.9 824.0 very low power

7 931.9 730.3 low power

7 821.6 730.6 higher power

7 816.4 729.5 as high as I'm comfortable going

 

Trying this near the waist…

 

8.75 130.09 132.04 low power

8.75 106.58 105.46 higher power

8.75 102.44 103.20 as high as it can go without making it's saturated

 

So it looks like offset *is* significant and the Beamscan measurements are more accurate with more power to make the offsets less significant. Additionally, if this is the case then we can do a fit to the previous data (which was all taken with the same power setting) and simply allow the offset to be a free parameter without affecting the accuracy of the waist calculation. This fit and data coming to an e-log near you soon.

 

Of course, it looks from the plots above (well... the code that produces the plots above) that the waist is actually a little bit small (around 46um) so some adjustment of the last lens back along the beam by about half a cm or so might be required.

 
  4471   Wed Mar 30 21:43:31 2011 Aidan, KiwamuSummaryGreen LockingCalculation of the green contrast on the RF PD

Skip to final thought ...

Kiwamu and I have set about measuring the contrast of the signal on the RF PD. We can only do this when the end green laser is locked to the cavity. This is because the green transmission through the cavity, when unlocked, is too low. Unfortunately, once we lock the green beam to the cavity, we can't keep the beatnote on the RF PD stable to within a few hundred Hz of DC (remember that the cavity is swinging around by a couple of FSRs). So we also lock the PSL to cavity.

At this point we're stuck because we can't get both of these beams resonant within the cavity AND have the frequency difference between them be less 1kHz - when the lasers are locked to the cavity, their frequencies are separated by an integer number of FSRs + a fixed frequency offset, f_offset, that is set by the phase difference on reflection from the coating between the two wavelengths (532nm and 1064nm). We can never get the frequency difference between the lasers to be less than this offset frequency AND still have them both locked to the cavity.

 

So our contrast measuring method will have to use the RF signal.

 

So this is our method. We know the incident power from each beam on the RF PD (see Kiwamu's elog entry here), but to recap,

P_green_PSL = 72 uW (as measured today)

P_green_XARM = 560 uW (as measured by Kiwamu last week).

The trans-impedance of the RF PD is 240 Ohms. We'll assume a responsitivity of 0.25 A/W. So, if the XARM transmission and PSL green beams are perfectly matched then the maximum value of the RF beat note should be:

RF_amplitude_max = 2* SQRT(P_green_PSL*P_green_XARM) * responsivity * transimpedance = 240*0.25*2*(72E-6*560E-6)^(1/2) (volts)

= 24 mV = -19.5 dBm (or 27.5dBm after the +47 dB from the two  ZFL-1000LN+ amplifiers - with +15V in - that protrude from the top of the PD)

The maximum RF strength of the beat-note that we measure is around -75 dBm (at the RF output of the PD). This means the contrast is down nearly 600x from optimal. Or it means something is broken.

Final thought: at the end of this procedure we found that the RF beat note amplitude would jump to a different and much higher amplitude state. This renders a lot of the above useless until we discover the cause.

  4472   Wed Mar 30 21:46:10 2011 Aidan, KiwamuUpdateGreen LockingStates of the Green beat note

The attached table shows the amplitude of the green beat note when the end laser was in various states. We can increase the beat note amplitude dramatically by switching to a different states.

State 1
C1:GCX-GRN_REFL_DC:             638 counts
C1:GCV-XARM_BEAT_DC: (PSL blocked)    950 avg counts (zero = -794 counts)
amplitude of beat note:            -23dBm (after PD + amps) (f ~ 30 MHz)?
C1:GCX-SLOW_SERVO2_OUT:            318 counts

State 2
C1:GCX-GRN_REFL_DC:             180 counts
C1:GCV-XARM_BEAT_DC: (PSL blocked)    1270 avg counts (zero = -794 counts)
C1:GCV-XARM_BEAT_DC: (PSL unblocked)    1700 avg counts (zero = -794 counts)
amplitude of beat note:            -7dBm (after PD + amps) f = 60MHz
amplitude of beat note:            0dBm (after PD + amps) f = 30MHz
C1:GCX-SLOW_SERVO2_OUT:            290 counts

State 3
C1:GCX-GRN_REFL_DC:             220 counts
C1:GCV-XARM_BEAT_DC: (PSL blocked)    1120 avg counts (zero = -794 counts)
C1:GCV-XARM_BEAT_DC: (PSL unblocked)    1520 avg counts (zero = -794 counts)
amplitude of beat note:            0dBm (after PD + amps) f = 15MHz
C1:GCX-SLOW_SERVO2_OUT:            305 counts

PSL temp = ??
C1:PSL-FSS_SLOWM = -3.524
 

  4473   Thu Mar 31 02:59:49 2011 KojiConfigurationGreen LockingThe wonderful world of mode-matching

 I went through the entries.

1. Give us a photo of the day. i.e. Faraday, tilted lens, etc...

2. After all, where did you put the faraday in the plot of the entry 4466?

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.
How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

  4476   Thu Mar 31 14:10:00 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Quote:

 I went through the entries.

1. Give us a photo of the day. i.e. Faraday, tilted lens, etc...

2. After all, where did you put the faraday in the plot of the entry 4466?

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.
How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

 OK. Taking these completely out of order in the easiest first...

2. The FI is between positions 27.75 and 32 on the bench - i.e. this is where the input and output apertures are. (corresponds to between 0.58 and 0.46 on the scale of those two plotsand just before both the vertical and horizontal waists) At these points the beam radius is around 400um and below, and the aperture of the Faraday is 4.8mm (diameter).

1. Photos...

Laser set up - note the odd angles of the mirrors. This is where we're losing a goodly chunk of the light. If need be we could set it up with an extra mirror and send the light round a square to provide alignment control AND reduce optical power loss...

P3310028.JPG

 

Faraday and angled lens - note that the lens angle is close to 45 degrees. In principle this could be replaced with an appropriate cylindrical lens, but as long as there's enough light passing through to the oven I think we're OK.

P3310029.JPG

3. Fitting... coming soon once I work out what it's actually telling me. Though I hasten to point out that the latter points were taken with a different laser power setting and might well be larger than the actual beam width which would lead to astigmatic behaviour.

  4477   Thu Mar 31 15:23:14 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Quote:

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.

How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

Right. Fitting to the data. Zoomed out plots first. I used the general equation f(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c for each fit which is basically just the Gaussian beam width parameter calculation but with an extra offset parameter 'c'

Vertical fit for zoomed out data:

Coefficients (with 95% confidence bounds):

       c =   7.542e-06  (5.161e-06, 9.923e-06)

       w_o =   3.831e-05  (3.797e-05, 3.866e-05)

       z_o =       1.045  (1.045, 1.046)

 

Goodness of fit:

  SSE: 1.236e-09

  R-square: 0.9994

 
Horizontal fit for zoomed out data:
 

Coefficients (with 95% confidence bounds):

       c =   1.083e-05  (9.701e-06, 1.195e-05)

       w_o =   4.523e-05  (4.5e-05, 4.546e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 2.884e-10

  R-square: 0.9998

  Adjusted R-square: 0.9998

  RMSE: 2.956e-06

 

Zoomed_out_fitting01.png

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

 

OK. Looking at the plots and residuals for this, the deviation of the fit around the waist position, and in fact all over, looks to be of the order 10um. A bit large but is it real? Both w_o values are a bit lower than the 50um we'd like, but… let's check using only the zoomed in data -  hopefully more consistent since it was all taken with the same power setting.

 

 

Vertical data fit using only the zoomed in data:

 

Coefficients (with 95% confidence bounds):

       c =   1.023e-05  (9.487e-06, 1.098e-05)

       w_o =   4.313e-05  (4.252e-05, 4.374e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 9.583e-11

  R-square: 0.997

 

Horizontal data fit using only the zoomed in data:

 

Coefficients (with 95% confidence bounds):

       c =   1.031e-05  (9.418e-06, 1.121e-05)

       w_o =    4.41e-05  (4.332e-05, 4.489e-05)

       z_o =       1.046  (1.046, 1.046)

 

Goodness of fit:

  SSE: 1.434e-10

  R-square: 0.9951

 

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-

Zoomed_in_fitting01.png

 

The waists are both fairly similar this time 43.13um and 44.1um and the offsets are similar too  - residuals are only spread by about 4um this time.

 

I'm inclined to trust the zoomed in measurement more due to the fact that all the data was obtained under the same conditions, but either way, the fitted waist is a bit smaller than the 50um we'd like to see. Think it's worthwhile moving the 62.9mm lens back along the bench by about 3/4 -> 1cm to increase the waist size.

 

 

 

 

 

  4479   Thu Mar 31 20:37:10 2011 AidanSummaryGreen LockingRF amplitude source

 I gutted one of the $2 red laser pointers to build a laser source whose amplitude we could modulate at RF frequencies. Basically, I cut off the bulk of the housing from the pointer and soldered a BNC connection into the two terminals that the 2x 1.5V batteries were connected to. When I applied 3V across this BNC connector the diode still worked. So far so good.

Next I added a bias tee to the input. I put 3V across the DC input of the bias tee and added a -3dBm signal into the RF port of the tee. The laser beam was incident on a PDA100A (bandwidth of 1.7MHz) and, sure enough, Kiwamu and I could see a flat response in the amplitude at a given drive frequency out to around 1.7MHz.

We should check the response on a faster PD to see how fast the laser diode is, but we should be able to use this now to check the RF response of the green beat note PD. 

TO DO:

1. Add some capacitors across the DC input of the bias tee.

2. Do something about the switch on the laser diode.

3. Attach some labels to the laser that specify what is the required DC voltage and the maximum acceptable RF modulation amplitude.

  4480   Thu Mar 31 20:46:11 2011 AidanSummaryGreen LockingGreen beat note PD DC response

I measured the DC response of the Green PD


Power into PD at DC (green laser pointer) = 285 uW
Voltage out of PD = 552mV/(100x SR560gain) = 5.52mV
Photocurrent = 5.52mV/(241 Ohms)*3 = 68.7uA
Responsivity = 68.7/285 = 0.24 A/W

Therefore, since the responsivity is in the correct range for a Silicon PD at 532nm, the DC output is giving us sensible response to an input signal.


But, there is a 2.12MHz, 328mV oscillation on the DC output irrespective of the incident power.
 

  4481   Fri Apr 1 18:54:41 2011 BryanConfigurationGreen LockingY end doubling oven

The doubling oven is now ready to go for the Y arm. The PPKTP crystal is mounted in the oven:

P4010036.JPG

Note - the crystal isn't as badly misaligned as it looks in this photo. It's just an odd perspective shot. I then closed it up and checked to make sure the IR beam on the Y bench passes through the crystal. It does. Just need to tweak the waist size/position a bit and then we can actually double some frequencies!

P4010041.JPG

  4482   Fri Apr 1 23:05:58 2011 kiwamuUpdateGreen Lockingnoise budget

I made a coarse noise budget in order to decide our next actions for the X arm green locking.

So be careful, this is not an accurate noise budget !

 Some data are just coming from rough estimations and some data are not well calibrated.

noise_budget.png

 Assuming all the noise are not so terribly off from the true values, the noise at high frequency is limited by the dark noise of the PD or it already reaches to the IR inloop signal.

The noise at low frequency is dominated by the intensity noise from the transmitted green light although we thought it has been eliminated by the comparator.

In any case I will gradually make this noise budget more accurate  by collecting some data and calibrating them.

 

According to the plot what we should do are :

  * More accurate PD noise measurement

  * More accurate shot noise estimation

  * Searching for a cause of the small beat signal (see here) because a bigger beat signal lowers the PD noise.

  * Investigation of the Intensity noise

  4483   Fri Apr 1 23:49:24 2011 kiwamuSummaryGreen Lockingtwo states in green beat-note

According to the measurement done by Aidan and me, there are two beat-note state.

One gave us a small beat signal and the other gave us a bigger signal by approximately 20 dB.

 

 A possible reason for this phenomenon is that the end laser is operating at a special temperature that somehow drives the laser with two different modes at the same time.

So that it permits the laser sometimes locked with one of the two modes and sometimes with the other mode.

For the first step we will change the temperature such that the laser can run with a single stable mode.

Then for investigating it we will put a scanning cavity on the X end table to see if it really exhibits a two modes or not.

Quote from #4472

The attached table shows the amplitude of the green beat note when the end laser was in various states. We can increase the beat note amplitude dramatically by switching to a different states.

  4485   Mon Apr 4 14:20:32 2011 BryanConfigurationGreen LockingThe wonderful world of mode-matching

Last bit of oven matching for now.

 

I moved the lens before the oven position back along the beam path by about 1cm - waist should be just above position 9 in this case. Note - due to power-findings from previous time I'm maximising the power into the head to reduce the effect of offsets.

 

From position 9:

Position A1_13.5%_width A2_13.5%_width

(mm) (um mean) (um mean)

-1 121.1 123.6

0 112.5 113.8

1 106.4 106.1

2 102.9 103.4

3 103.6 103.6

4 106.6 107.4

5 111.8 112.5

6 118.2 120.1

7 126.3 128.8

8 134.4 137.1

9 143.8 146.5

10 152.8 156.1

11 163.8 167.1

12 175.1 176.4

13 186.5 187.0

14 197.1 198.4

15 210.3 208.9

16 223.5 218.7

17 237.3 231.0

18 250.2 243.9

19 262.8 255.4

20 274.7 269.0

21 290.4 282.3

22 304.3 295.5

23 316.7 303.1

 

Note - had to reduce power due to peak saturation at 15mm - don't think scale changed, but be aware just in case. And saturated again at 11. And again at 7. A little bit of power adjustment each time to make sure the Beamscan head wasn't saturating. Running the fit gives...

 

Waist_Fits_from_laser.pngWaist_Fits_Bench_Position.png

 

OK. The fit is reasonably good. Residuals around the area of interest (with one exception) are <+/- 2um and the waists are 47.5um (vertical) and 50.0um (horizontal) at a position of 9.09 on the bench. And the details of the fitting output are given below.

 

-=-=-=-=-=-=-=-=-=-=-=-

Vertical Fit

 

cf_ =

 

     General model:

       cf_(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c

     Coefficients (with 95% confidence bounds):

       c =   5.137e-06  (4.578e-06, 5.696e-06)

       w_o =   4.752e-05  (4.711e-05, 4.793e-05)

       z_o =        1.04  (1.039, 1.04)

 

 

cfgood_ = 

 

           sse: 1.0699e-11

       rsquare: 0.9996

           dfe: 22

    adjrsquare: 0.9996

          rmse: 6.9738e-07

 

-=-=-=-=-=-=-=-=-=-=-=-

Horizontal Fit

 

cf_ =

 

     General model:

       cf_(x) = w_o.*sqrt(1 + (((x-z_o)*1064e-9)./(pi*w_o.^2)).^2)+c

     Coefficients (with 95% confidence bounds):

       c =    3.81e-06  (2.452e-06, 5.168e-06)

       w_o =   5.006e-05  (4.909e-05, 5.102e-05)

       z_o =        1.04  (1.04, 1.04)

 

 

cfgood_ = 

 

           sse: 4.6073e-11

       rsquare: 0.9983

           dfe: 22

    adjrsquare: 0.9981

          rmse: 1.4471e-06

 

 

 

  4486   Mon Apr 4 18:58:44 2011 BryanConfigurationGreen LockingA beam of purest green

We now have green light at the Y end. 

The set-up (with careful instructions from Kiwamu) - setting up with 100mW of IR into the oven.

Input IR power = 100mW measured.

 

Output green power = 0.11mW

(after using 2 IR mirrors to dump IR light before the power meter so losing a bit of green there light too)

 

And it's pretty circular-looking too. Think there might be a bit more efficiency to be gained near the edges of the crystal with internal reflections and suchlike things but that gives us an UGLY looking beam.  Note - the polarisation is wrong for the crystal orientation so used a lambda/2 plate to get best green  power out.

 

Efficiency is therefore 0.11/100 = 0.0011 (0.11%) at 100mW input power.

 

Temperature of the oven seems to be around 35.5degC for optimal conversion.

Took a picture. Ta-dah! Green light, and lots more where that came from! Well... about 3x more IR available anyway.

 

P4040042.JPG

 

 

  4489   Tue Apr 5 19:54:39 2011 KojiSummaryGreen LockingHamamatsu S3399 test

Since last Friday I have been testing the broadband RF photodetector in order to figure out the capability of S3399 with the similar circuit as Matt's BBPD
We also like to figure out if it has sufficient performance for the 40m green locking.

The circuit diagram is shown in the first attachment. The RF amplifier is attached at the diode while the reverse bias voltage is applied at the other side of the diode. The amplifier's input impedance is used as the transimpedance resister. Note that the bandwidth of this configuration is limited by the RC filter that consists of the junction capacitance of the diode, the series resistance of the diode, and the transimpedance resister. This cut off freq is in general lower than that cut off obtained with the usual transimpedance amplifier which has the readout resister at the feedback path of the opamp.

The transfer function of the PD is measured using Jenne's laser. At the reverse bias voltage of 30V, the -3dB bandwidth of 178MHz was obtained. This is quite high bandwidth for the most of the applications at the 40m.

Because of the low transimpedance the low-noise level of the RF amplifier is very crucial. Recently we can obtain an ultra low noise RF amplifier like Teledyne Cougar AC688 which has the NF of 0.9dB with the bandwidth between 10MHz - 600MHz. Next step will be to obtain this kind of amplifier to test the noise performance.

 

 

  4490   Tue Apr 5 21:20:11 2011 KojiSummaryGreen LockingX-arm cavity locked with LB1005 servo box

Last Thursday, I tested Newport Servo Controller LB1005 with the X_arm green PDH servo.

The setup and the settings I could lock the arm is depicted in the attached figure.
To lock the cavity, follow the steps below

1) Toggle the switch to the "lower" position. This disengages the servo and reset the integrator.

2) Toggle the switch to the "middle" position. The zero freq is set to the "PI corner" freq. At the low freq the gain is limited
at the value of "LF Gain Limit". This gives us a single pole at the low freq.

3) Once the lock is acquired, toggle the switch to the "upper" position. This moves the pole freq to DC, resulting in the complete integration of the signal at the low frequency.

I measured the openloop transfer function (attachment 2). The amp is quite fast and exhibits almost no phase delay upto 100kHz.
The UGF was 10kHz with the phase mergin of ~45deg. I had to tune the input offset carefully to stay at the center of the resonance.

  4491   Wed Apr 6 02:41:01 2011 kiwamuUpdateGreen Lockingnoise budget : some more noise

It turned out that the dark noise from the beat PD and the shot noise on the beat PD was overestimated.

So I corrected them in the plot of the last noise budget (#4482).

Additionally I added the end laser error signal in the plot. Here is the latest plot.

noise_budget.png

 The end laser error spectrum is big enough to cover most of the frequency range.
 (although it was taken at a different time from the other curves.)

Quote from #4482

According to the plot what we should do are :

  * More accurate PD noise measurement

  * More accurate shot noise estimation

  4494   Wed Apr 6 19:36:32 2011 AidanSummaryGreen Locking(In)sanity check of Green PD - some inconsistencies

I moved the Hartmut Green PD to the Jenne laser bench to try to determine if the response at RF was reasonable or somehow very much smaller than it should be. It was set up as shown in the attached diagram. The first pass at this was by comparing the ratio of the RF photocurrent of the green PD to the RF photocurrent of the New Focus 1611 InGaAs PD. That ratio (at a sufficiently low frequency) should be the same as the ratio the DC photocurrents of the two PDs.

Using the network analyzer I measured the ratio of the voltages of the two RF signals (and then scaled each of these by the respective transimpedances of the PDs: 700 Ohms for the 1611 and 240 Ohms for the Harmut PD). The resulting ratio is shown in the attached plot.

I measured the DC voltages from each PD and scaled those by the transimpedances to get the photocurrent (10 kOhm for the 1611 and 80 Ohm effective for the Harmut PD). The ratio of the DC photocurrents was 0.37. This is roughly 3x the ratio of the RF photocurrents at 500kHz (=0.14). This discrepancy is uncomfortably large.

 The full set of measurements is given in the table below:

Measurement Value
DC voltage from Hartmut PD 6.5mV (checked by turning laser on and off and measuring the difference)
DC voltage from 1611 InGaAs PD 2.20V
Transimpedance of Harmut PD at DC 80 Ohm (effective)
Transimpedance of Harmut PD at RF 240 Ohm
Transimpedance of 1611 InGaAs at DC 10 KOhm
Transimpedance of 1611 InGaAs at RF 700 Ohm
Incident Power on Hartmut PD (100% on PD area) 0.28mW (measured by Ophir power meter)
Incident Power on 1611 InGaAs (<100% on PD area) 0.64mW
Responsivity of Silicon PD at 1064nm 0.02 A/W (estimate)
Responsivity of 1611 New Focus PD at 1064nm ~0.8 A/W
   

There is one other troubling point: using the estimate of responsivity on the Harmut PD * incident power * transimpedance at DC = (0.02A/W) * (0.28mW) * (80 V/A) = 0.45 mV.

But the measured DC voltage is 6.5mV = inconsistent.

  4495   Wed Apr 6 22:13:24 2011 BryanConfigurationGreen LockingResonating green light!

Every so often things just work out. You do the calculations, you put the lenses on the bench, you manually adjust the pointing and fiddle with the lenses a bit, you get massive chunks of assistance from Kiwamu to get the alignment controls and monitors set up and after quite a bit of fiddling and tweaking the cavity mirror alignment you might get some nice TEM_00 -like shapes showing up on your Y-arm video monitors.

So. We have resonating green light in the Y-arm. The beam is horribly off-axis and the mode-matching, while close enough to give decent looking spots, has in no way been optimised yet. Things to do tomorrow - fix the off-cavity-axis problem and tweak up the mode-matching... then start looking at the locking...

  4500   Thu Apr 7 16:09:17 2011 AidanSummaryGreen Locking(In)sanity check of Green PD - some inconsistencies

I think I had underestimated the responsivity of the Silicon PD at 1064nm. The previous value was based on a rough search online for the responsivity of Silicon (I couldn't find the product number of the actual PD we are using). For instance, the PDA100A Si detector from Thorlabs has a responsivity of 0.35-0.4A/W at 1064nm. 

If we calculate the responsivity of the Hartmut PD from the measurements I made today (input power = 0.300mW, output voltage = 5.56mV, effective transimpedance = 80 Ohms), then the responsivity at 1064nm is 0.23 A/W which is not an unreasonable number given the response of the Thorlabs detector.

Quote:

Measurement Value
Responsivity of Silicon PD at 1064nm 0.02 A/W (estimate)
Responsivity of 1611 New Focus PD at 1064nm ~0.8 A/W
   

There is one other troubling point: using the estimate of responsivity on the Harmut PD * incident power * transimpedance at DC = (0.02A/W) * (0.28mW) * (80 V/A) = 0.45 mV.

But the measured DC voltage is 6.5mV = inconsistent.

 

  4501   Thu Apr 7 19:28:02 2011 KojiSummaryGreen Locking(In)sanity check of Green PD - some inconsistencies

Responsivity of SGD-444A

Quote:

For instance, the PDA100A Si detector from Thorlabs has a responsivity of 0.35-0.4A/W at 1064nm.

 

  4502   Thu Apr 7 21:58:57 2011 AidanSummaryGreen LockingBeat note amplitude

Having convinced myself that the green Hartmut PD is giving an acceptable response at RF frequencies I decided to double-check the beatnote at IR (fiber transmission from the X-end beating with the PSL). This took a while because I had to realign the beam into the fiber at the X-end (I had a PD monitoring the output from the fiber on the PSL table and 40m of BNC cable giving me the signal from it at the X-end).

Eventually, I managed to get a beatnote on the PD. At first there was no signal at the temperature calculated using Koji and Suresh's calibration, but it turned out that the mode-overlap wasn't good enough on the PD. Now I can clearly see beats between a couple of modes, one of which is much stronger than the other. I think we should use a frequency discriminator on the output from the IR PD to servo the end laser and keep the strong beat note within <100MHz of DC.

 

  4506   Sun Apr 10 19:14:08 2011 KojiUpdateGreen LockingNew Green PD test1

I started to modify another green PD set.

It so far has the transimpedance of 240 Ohm on CLC409 for the RF output.

It shows the BB output upto ~100MHz.
The measurement shows the transimpedenca of ~90Ohm which is ~25% smaller than the expected gain of 120Ohm.
It is calibrated based on the transimpedances of Newfocus 1611 (10kOhm and 700Ohm for AF and RF).

The next step is to change the transimpedance resister to 2k and replace the PD to S3399 Si PD, which has the diameter of 3mm.
Then, the noise level will be measured. (and replace the RF opamp if necessary)

 

  4520   Wed Apr 13 16:56:08 2011 BryanConfigurationGreen LockingY-ARM Green-Locked!

 Locked!

The Y-arm can now be locked with green light using the universal PDH servo. Modulation frequency is now 277kHz - chosen because it seems to produce smaller offsets due to AM effects

To lock, turn on the servo, align the system to give nice circular-looking TEM_00 resonances, and wait for a good one. It'll lock on a decent mode for a few seconds and then you can turn on the local boost and watch it lock for minutes and minutes and minutes.

The suspensions are bouncing around a bit on the Y-arm and the spot is quite low on the ETMY and a little low on ITMY, but from this point it can be tweaked and optimised.

 

 

 

  4525   Thu Apr 14 17:45:59 2011 BryanConfigurationGreen LockingI leave you with these messages...

OK… the Y-arm may be locked with green light, which was the goal, and this is all good but it's not yet awesome. Awesome would be locked and aligned properly and quiet and optimised. So...  in order to assist in increasing the awesome-osity, here are a few stream-of-consciousness thoughts and stuff I've noticed and haven't had time to fix/investigate or have otherwise had pointed out to me that may help...

 

Firstly, the beam is not aligned down the centre of the cavity. It's pretty good horizontally, but vertically it's too low by about 3/4->1cm on ETMY. The mirrors steering the beam into the cavity have no more vertical range left, so in order to get the beam higher the final two mirrors will have to be adjusted on the bench. Adding another mirror to create a square will give more range AND there will be less light lost due to off 45degree incident angles. When I tried this before I couldn't get the beam to return through the Faraday, but now the cavity is properly aligned this should not be a problem.

 

A side note on alignment - while setting cameras and viewports and things up, Steve noticed that one of the cables to one of the coils (UL) passes behind the ETMY. One of the biggest problems in getting the beam into the system to begin with was missing this cable. It doesn't fall directly into the beam path if the beam is well aligned to the cavity, but for initial alignment it obscures the beam - this may be a problem later for IR alignment.

 

Next, the final lambda/2 waveplate is not yet in the beam. This will only become a problem when it comes to beating the beams together at the vertex, but it WILL be a problem. Remember to put it in before trying to extract signals for full LSC cavity locking.

 

Speaking of components and suchlike things, the equipment for the green work was originally stored in 3 plastic boxes which were stored near the end of the X-arm. These boxes, minus the components now used to set up the Y-end, are now similarly stored near the end of the Y-arm.

 

Mechanical shutter - one needs to be installed on the Y-end just like the X-end. Wasn't necessary for initial locking, but necessary for remote control of the green light on/off.

 

Other control… the Universal PDH box isn't hooked up to the computers. Connections and such should be identical to the X-arm set-up, but someone who knows what they're doing should hook things up appropriately.

 

More control - haven't had a chance to optimise the locking and stability so the locking loop, while it appears to be fairly robust, isn't as quiet as we would like. There appears to be more AM coupling than we initially thought based on the Lightwave AM/PM measurements from before. It took a bit of fiddling with the modulation frequency to find a quiet point where the apparent AM effects don't prevent locking. 279kHz is the best point I've found so far. There is still a DC offset component in the feedback that prevents the gain being turned up - unity gain appears limited to about 1kHz maximum. Not sure whether this is due to an offset in the demod signal or from something in the electronics and haven't had time left to check it out properly yet. Again, be aware this may come back to bite you later.

 

Follow the bouncing spot - the Y-arm suspensions haven't been optimised for damping. I did a little bit of fiddling, but it definitely needs more work. I've roughly aligned the ETMY oplev since that seems to be the mass that's bouncing about most but a bit of work might not go amiss before trusting it to damp anything.

 

Think that's about all that springs to mind for now…

 

Thanks to everyone at the 40m lab for helping at various times and answering daft questions, like "Where do you keep your screwdrivers?" or "If I were a spectrum analyser, where would I be?" - it's been most enjoyable!

 
  4532   Fri Apr 15 13:43:23 2011 BryanConfigurationGreen LockingI leave you with these messages...

Y-end PDH electronics.

The transfer function of the Y-end universal PDH box:

Y_End_Electronics_TF.png

 

  4534   Fri Apr 15 22:54:20 2011 Aidan, BryanUpdateGreen LockingBeat note amplitude on Vertex PD

I was investigating the beat note amplitude on the vertex PD again yesterday. The incident power on the PD was 150uW in the PSL green beam and 700uW in the X-ARM green beam. With perfect overlap and a transimpedance of 240, I expected to get a beat note signal of around 25mV or -19dBm. Instead, the size was -57dBm. Bryan and I adjusted the alignment of the green PSL beam to try and improve the mode overlap but we couldn't do much better than about -50dBm. (The noise floor of the PD is around -65dBm).

When we projected the beams to the wall of the enclosure, the xarm beam was 2 to 3x as large as the PSL green beam, indicating that the beam size and/or curvatures on the PD were less than ideal. There is a telescope that the XARM beam goes through just before it gets to the PD. I mounted the second lens in this telescope on a longitudinal translation stage. With some finagling of the position of that lens we were able to improve the beatnote signal strength to -41dBm.

Obviously the ideal solution would be to measure the beam size and RoC of the PSL beam and XARM beams and then design a telescope that would match them as precisely as possible because there's still another 20dB signal strength to be gained.

 

  4584   Thu Apr 28 22:38:38 2011 AidanUpdateGreen LockingElectronics schematic for vertex beatbox

 With some assistance from Kiwamu and Koji, I've drawn up the electronics design for the Beat Box for the vertex green locking. The Omingraffle schematic is posted on the Green Locking Wiki page. It's also attached below. Some final touches are necessary before we can Altium this up.

 Attachment 1: Schematic of beatbox

Attachment 2: Front and back panel designs.

  4593   Sat Apr 30 05:14:33 2011 KojiUpdateGreen LockingElectronics schematic for vertex beatbox

- AC coupling for the comparator circuit of the green locking

In order to relieve the power consumption of the RF buffer, ac coupling circuits have been added.

The ac coupling before the buffer amp helps to relieve the power consumption in the chip.
But because of the distortion of the signal (and the limitation of the bandwidth), the output still has some DC (~0.6V).
Therefore, the output is also AC coupled.

Note that the BW pin of BUF634P should be directly connected to -15V in order to keep the bandwidth of the buffer.

The drawings are also uploaded on the green electronics wiki

  4846   Tue Jun 21 00:38:21 2011 SonaliUpdateGreen Lockingrepositioned "QPDY_PD"

1.The aim is the laser frequency stabilisation of PSL and AUX.

2.As a first step we want to couple some of the AUX laser beam into a single mode optical fibre and route the fibre to the PSL table.

3.The position of the optical fibre on the ETMY table is shown by the coupler in the attached picture. The yellow lines show the new scheme we want to implement.

4.WHAT WE DID TODAY.

  • The Y-arm was locked so that we could use the transmitted IR beam as the reference.
  • We shifted the position of the "QPDY_PD" .
  • We also shifted the "ETMYT" camera to make space for the "QPDY_PD".
  • The mirror  directing the beam into the "QPDY_PD" was rotated by 90 degrees to adhere to the new position of the "QPDY_PD".
  •  The attached photo shows the table as it is right now after the repositioning.
5.We continue with the positioning of the fibre-coupling tomorrow.
  4849   Tue Jun 21 19:54:33 2011 SureshUpdateGreen LockingLightWave NPRO power supply shifted to ETMY end table

The Lightwave NPRO power supply which is being shared between the AS table and the ETMY table has been shifted back to the ETMY table

The current to the laser is set at 1.5A.  The laser output is 200mW at this current level.

  4852   Wed Jun 22 01:59:43 2011 SonaliUpdateGreen Lockingfibre-coupling of the IR beam

 What I did today.

1. Collimation of a beam.

  • I then practiced collimation of a 700 nm laser (output) beam after being coupled through a fibre.
  • I put together the set-up as shown in the attached picture where I used ....... to couple 650nm light into the PM.... fiber.
  • I kept shifting the focus of the output beam to an appreciable distance till it was approximately collimated.

2. Coupling of the IR light at the ETMY table to a fibre.

  • The fibre coupler was put in place to couple light into the fiber.
  • I put in the mirrors as planned to direct the IR beam exiting the doubling crystal towards the fiber coupler (input).
  • The mirrors were aligned such that the beam falls on the input lens of the coupler.
  • The far-end of the fibre originally would have gone to to PSL table but it has been put on this table to study the power of the IR beam transmitted through this set-up.  The output end of the fiber has been connected to another fiber optic coupler to collimate the exiting beam.
  • The picture of the current status attached.
  4862   Thu Jun 23 02:12:12 2011 SonaliUpdateGreen Lockingwork schedule.

 June 22-June 24:

1.Coupling light into fibre at the ETMY.

2.Routing of the fibre to the PSL table.

June 27-June 30:

1.PSL optical table layout sketching.

2.Combining the PSL beam with fibre output onto a BS and then superpose them on a New Focus 1611 PD.

July 5-July 8:

1.Conversion of the PD output to voltage using MFD(Mixer Frequency Discriminator).

2. Report writing.

July 7: 5:00 pm: 1st Report Due.

July 11-July 22:

1.Locking Y-arm to PSL.

2.Setting up the feedback loop using the MFD output as the error signal and acting on the AUX laser frequency.

July 25-Aug 5:

1.Y-Arm cavity characterisation.

Measurement of the transmission of IR and green light through the cavity.

2.Analysis.

To obtain FSR, Finesse,Loss of the Cavity, Visibility, Transverse Modes(g-factor, astigmatism), Reflectivity, Q-factor.

3.Report and abstract writing.

Aug 1: 5:00 pm: 2nd Report and absract due.

Aug 8-11:

Preparation for talk and seminar.

  4882   Sat Jun 25 00:00:28 2011 SonaliUpdateGreen LockingFibre Coupling.

 What I did today.

1. I tried to align the IR input beam by aligning the two mirrors, to couple input light into the fibre.

2.I was unsuccessful for a long time even though I tried a lot of tricks.

3. I also tried to use the optical fault locator to superpose the IR beam spot onto the beam spot of the other laser to facilitate effective coupling.

4.But the crucial point was to superpose the input beam path in the perfect direction of the output beam path and not just the beam spot.(the input cone and the output cone are perfectly aligned).

5.After one whole day of trial and thought, I managed to couple light into the fibre, and saw the output beam spot on the screen-camera-monitor set-up which we had arranged. Eurekka !!;)

6.I then used a power meter to measure the input beam power and the output beam power.

7.It was a disappointing 2% . I had read in project reports of many students of a 20% success.

8.After a lot of subtle tweaking of the mirrors using the knobs, I managed to increase the percentage of output beam to 12%.

9. This is a workable level.

10.A day of lot of new learning! Pictures of the setup are attached.:)

 

  4901   Tue Jun 28 16:52:37 2011 SonaliUpdateGreen LockingRouting of fibre to PSL complete.

1. Suresh and I completed the alignment of the fibre and the three mirrors on the ETMY table.

2. We managed to get an output beam power of around 60% using the Ophir(Orion/PD) power meter to finetune the alignment. The power of the input beam is 74.4 mW and of the output beam is 38.5 mW.

3. The coupler on the output side of the fibre which had been put there to help in the alignment has been removed.

4. The picture of the ETMY layout as of now has been attached.

5. The labels A stands for the mirror used to turn the beam direction and B and C stand for the three mirrors used in the alignment of the beam into the coupler,D.(attachment 3).

6. The fibre we used is 50m in length which was barely sufficient to reach the PSL table.

7. So, the fibre has been routed to the PSL table using the fibre tray running below the Y-arm tube as this was the shortest route possible(even though it is a rather acccident prone zone).

8. The fibre has been tied down at regular intervals so that it does not get snagged and pulled up inadvertently.

9. We will start with the preparation of the layout of the PSL table to superpose the two beams on Monday.

  4958   Fri Jul 8 20:50:49 2011 sonaliUpdateGreen LockingPower of the AUX laser increased.

The ETMY laser was operating at 1.5 A current and 197 mW power.

For the efficient frequency doubling of the AUX  laser beam at the ETMY table, a higher power is required.

Steve and I changed the current level of the laser from 1.5 A to 2.1 A in steps of 0.1 A and noted the corresponding power output . The graph is attached here.

The laser has been set to current 1.8 Amperes. At this current, the power of the output beam just near the laser output is measured to be 390 mW.

The power of the beam which is being coupled into the optical fibre is measured to be between 159 mW to 164 mW (The power meter was showing fluctuating readings).

The power out of the beam coming out of the fibre far-end at the PSL table is measured to be 72 mW. Here, I have attached a picture of the beam paths of the ETMY table with the beams labelled with their respective powers.

Next we are going to adjust the green alignment on the ETMY and then measure the power of the beam.

At the output end of the fibre on the PSL, a power meter has been put to dump the beam for now as well as to help with the alignment at the ETMY table.

  4965   Thu Jul 14 02:32:11 2011 sonaliUpdateGreen LockingPower of the AUX laser increased.

Quote:

The power of the beam which is being coupled into the optical fibre is measured to be between 159 mW to 164 mW (The power meter was showing fluctuating readings).

The power out of the beam coming out of the fibre far-end at the PSL table is measured to be 72 mW. Here, I have attached a picture of the beam paths of the ETMY table with the beams labelled with their respective powers.

 For the phase locking or beat note measuring we only need ~1 mW. Its a bad idea to send so much power into the fiber because of SBS and safety. The power should be lowered until the output at the PSL is < 2 mW. In terms of SNR, there's no advantage to use such high powers.

  4973   Fri Jul 15 13:48:56 2011 sonaliUpdateGreen LockingPower of the AUX laser increased.

Quote:

Quote:

The power of the beam which is being coupled into the optical fibre is measured to be between 159 mW to 164 mW (The power meter was showing fluctuating readings).

The power out of the beam coming out of the fibre far-end at the PSL table is measured to be 72 mW. Here, I have attached a picture of the beam paths of the ETMY table with the beams labelled with their respective powers.

 For the phase locking or beat note measuring we only need ~1 mW. Its a bad idea to send so much power into the fiber because of SBS and safety. The power should be lowered until the output at the PSL is < 2 mW. In terms of SNR, there's no advantage to use such high powers.

 

Well,the plan is to put in  a neutral density filter in the beam path before it enters the fibre. But before I could do that, I set up the camera on the PSL table to look at the fiber output . I will need it while I realign the  beam after putting in the Neutral Density Filter. I have attached the ETMY layout with the Neutral Density filter in place herewith.

  4977   Fri Jul 15 17:42:21 2011 SonaliUpdateGreen LockingPSL layout for superposition of the PSL,ETMX and ETMY beams.

The fibres carrying the beams from the ETMX as well as the ETMY have been routed to the PSL table now.

A part of the PSL beam has to be superposed on the fibre-outputs to obtain a beat signal. We have located a stray beam on the PSL(which is currently being dumped) which we plan to redirect for the same. The layout of the plan is attached herewith.

  4994   Wed Jul 20 06:17:04 2011 SureshUpdateGreen LockingY-end green laser power issues

The Y-end green beam power is 0.47 mW.

While aligning the Y-end aux laser light into the fiber we noticed that the green power out of the doubling crystal was in microwatts.  I checked to see what was the trouble and found that the oven was cold as the temperature controller had been disabled.  I enabled it and scanned the temperature to maximise the green output.  Yet the power is less than 10% of that at the X end (7mW).

To verify I checked the power of various beams on the Y-end table.  They are listed below in the picture

Y-end_table_powers.pdf

The green beam power is proportional to the square of the IR incident power and this explains the drop in green power by a factor of (210/730)^2  thus making 7 mW -->  0.5 mW.  However we may be able to double the power at the Y-arm oven if the uncoated lenses in the IR path are exchaned for coated ones. 

 

The green beam injection into the Y-arm cavity also needs to be cleaned up as noted here.  As seen in the picture below two of the mirrors which launch the beam into the arm cavity need to be fixed as well.

 Y-end_table.png




  4997   Wed Jul 20 10:10:19 2011 SonaliUpdateGreen LockingWeekly summary

 I finished wih the set-up at the ETMY table. Instead of the neutral Density Filter , I put in a mirror(Y1-1037-45S)  which is reflective for IR , so that only 1% of the light is incident on the fibre  as per Rana's suggestion.

Now, the power incident on the fibre is measured to be 6 mW and the power measured out of the fibre is 2.76 mW after the necessary alignments.

On the PSL able, I have routed the beam that is coming out of the back of the PMC(instead of the dumped light from the oven to prevent any light from reflecting back into the laser), to the area where I am putting the set-up for the superposition of the PSL and the ETMX and ETMY beams.

Today I will proceed with the layout.

  5039   Wed Jul 27 01:57:28 2011 SonaliUpdateGreen LockingWeekly Summary

1. I have used the PMC  trans beam in my set-up as the required PSL beam.

2. I have superposed the ETMX-Fibre output with the PSL beam on the PSL table.

3. I have used suitable beam splitters and lens to match the power and the  sizes of the overlapping beams and have aligned them to the optimum.

4. A lens having f=7.6 cms is used to focus the beam into the PD.

5. Initially, I used the broadband 1611 NewFocus PD to find the IR beat signal by scanning the oven temperature. (using the digital sitemap controls.)

6. I checked the previous elog entries by Suresh and Koji on the green beat signal they had worked on and used their data to get an idea of the temperature range of the oven where I could obtain a beat.

7. I obtained peaks at three different temperatures as had been noted previously and set the temperature so that I am now sitting in the middle stable regime.

8. Then I switched to the 1811 100 MHz PD as it has a larger gain. It has a saturation power of 100 microWatts. The input power at the PD is measured to be 80 microWatts.

9. I was having trouble getting a clean peak due to presence of many harmonics as seen on the spectrum analyser. This happened because there was too much power incident on the PD which led to arising of non-linearity giving rise to harmonics.

10.To reduce the power entering the PD, I put in a ND 1.0 Filter just before the beam enters the PD and obtained a clean signal.

11. I will use  the frequency counter tomorrow to check the resonant frequency and try to connect the output to acquire a digital signal.

12. Otherwise I will proceed to build a Mixer Frequency Discriminator.

13. After the feed-back loop is completed, I will proceed to compare the frequency-noises of the green-beat lock and the IR-beat lock.

  5052   Thu Jul 28 13:51:00 2011 SonaliUpdateGreen LockingZHL-32A-S.

Initially I was using RFPD-1611to get the IR beat frequency. Its gain was not very high, so I was getting a very low signal of power -37 dBm.

I used ZHL-32A-S with a gain of 25 dBm to amplify it before feeding it into the spectrum analyser.

I connected the ground of the amplifier circuit to the red of the power supply, which blew the amplifier.

I learnt that there is a small tab indicating the ground side of the BNC to banana connectors which I should have noticed.

I learnt to plug in the side with th little tab on it into the ground of the power supply. (Learnt it the hard way I guess!!)

 

 

  5066   Sat Jul 30 05:11:45 2011 SureshUpdateGreen LockingY- end table clean-up

The optics on the Y-end table which required to be moved have been repositioned.  Please see the attached pic for details.

The green beam is not yet aligned to the cavity. That is my next task.

Y-end_table_work.png

  5084   Mon Aug 1 20:21:05 2011 kiwamuUpdateGreen LockingY arm green beam axis : aligned

The beam axis of the Y green light has been aligned.

Now I can see TEM00 mode is flashing on the ETMY camera.

 

-- (What I will do tonight)

The next step is to refine some electronics in the PDH loops to get the green light locked to the Y arm cavity.

If the beam isn't locked, I guess the in-vac-work will be so difficult because of the low intensity of the green light.

According to a brief check on the circuits, a low pass filter after the demodulation mixer is in a sad situation.

It doesn't pass any signals and in fact it behaves more like an absorber.

On the other hand, the modulation system looks fine to me because I was able to see the 270 kHz sideband converted into AM due to the fringing.

Quote from #5078

  (not yet) Alignment of the Y green beam (#5066)

  5088   Tue Aug 2 02:20:09 2011 kiwamuUpdateGreen LockingY arm green beam axis : done

I succeeded in locking the green light to the Y arm cavity, but it wasn't so robust. Something is unhealthy in the electronics.

I am leaving the Y green system as it is because I already can see a plenty of the green light flashing in the BS chamber.

So just a flashing of the green light is good enough for the in-vac-work.

DONE.

Quote from #5084

The next step is to refine some electronics in the PDH loops to get the green light locked to the Y arm cavity. 

 

  5133   Sun Aug 7 14:01:58 2011 kiwamuUpdateGreen LockingX green beam re-aligned

[Jenne / Kiwamu]

 The X green beam has been realigned to compensate the effect of the ETMX repositioning.

After the alignment we became able to lock the 00 mode with the X green beam.

 

For the alignment:

  spot position on the ETMX mirror = within ~ 1 cm. This number is strictly constrained by a homemade aluminum iris that Jamie put last Friday.

  spot position on the ITMX mirror = unknown, but looks pretty good on the CCD camera.

  spot position on the PSL table = ~ 1 mm downward from what it used to be. The horizontal alignment is perfect.

Conclusions :

  The X green beam again became a reference of the beam axis.

  The ETMX suspension tower is in a good place.

Quote from #5127

Kiwamu will work on the green alignment over the weekend.  Assuming everything works out, we'll try the same procedure on ETMY on Monday.

 

ELOG V3.1.3-