40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 163 of 341  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  13649   Thu Feb 22 10:49:11 2018 SteveUpdateElectronicsrack power supplies checked

All rack power supplies labeled if their load changed.

 

Attachment 1: 1X1_DC.jpg
1X1_DC.jpg
Attachment 2: 1X5_DC.jpg
1X5_DC.jpg
Attachment 3: 1X9_DC.jpg
1X9_DC.jpg
Attachment 4: 1X8_DC.jpg
1X8_DC.jpg
Attachment 5: 1Y2_DC.jpg
1Y2_DC.jpg
Attachment 6: 1Y1_DC.jpg
1Y1_DC.jpg
Attachment 7: AUX_1Y2_DC.jpg
AUX_1Y2_DC.jpg
Attachment 8: AUX_OMC_DC.jpg
AUX_OMC_DC.jpg
  13653   Fri Feb 23 07:47:54 2018 SteveUpdateVACCC1 Hornet

We have the IFO pressure logged again! Thanks Johannes and Gautam

This InstruTech cold cathode ionization vacuum gauge " Hornet " was installed 2016 Sep 14

Here is the CC1 gauge history of 10 years from 2015 Dec 1

The next thing to do is put this channel C1:Vac-CC1_HORNET_PRESSURE  on the 40m Vacuum System Monitor   [ COVAC_MONITOR.adl ] 

gautam 1pm: Vac MEDM screen monitor has been edited to change the readback channel for the CC1 pressure field - see Attachment #2. Seems to work okay.

Attachment 1: InstruTech_Hornet_CC1.png
InstruTech_Hornet_CC1.png
Attachment 2: CC1_readback_updated.png
CC1_readback_updated.png
  13685   Fri Mar 16 09:36:56 2018 SteveUpdateVACRGA scan at day 511,218d

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrees

Quote:

pd80b rga scan at 175 day.  IFO pressure 7.3e-6 Torr-it

Condition: vacuum normal, annuloses not pumped. Rga turned on yesterday.

The rga was not on since last poweroutage Jan 2, 2018 It is warming up and outgassing Atm2

 

Attachment 1: RgaScan511d.png
RgaScan511d.png
Attachment 2: 08.png
08.png
  13702   Mon Mar 26 09:25:18 2018 SteveUpdateVACVM1 opened

CC1 old MKS cold cathode gauge randomly turns on- off. This makes software interlock close VM1 to protect RGA  So the closed off RGA region pressure goes up and the result is distorted RGA scan.

CC1 MKS gauge is disconnected and VM1 opened. This reminds me that we should connect our interlocks to CC1 Hornet Pressure gauge.

Quote:

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrres

 

 

Attachment 1: CC4VM1.png
CC4VM1.png
  13709   Tue Mar 27 08:58:21 2018 SteveUpdateVACVM1 opened.......scan fine

 

Quote:

CC1 old MKS cold cathode gauge randomly turns on- off. This makes software interlock close VM1 to protect RGA  So the closed off RGA region pressure goes up and the result is distorted RGA scan.

CC1 MKS gauge is disconnected and VM1 opened. This reminds me that we should connect our interlocks to CC1 Hornet Pressure gauge.

Quote:

Pumpdown 80 at 511 days and pd80b at 218 days

Valve configuration:  special vacuum normal, annuloses are not pumped at 3 Torr, IFO pressure 7.4e-6 Torr at vac envelope temp 22 +- 1C degrres

 

 

 

Attachment 1: rga2018march27.png
rga2018march27.png
  13713   Wed Mar 28 16:44:27 2018 SteveUpdateGeneralAP table today

MCRefl is absent, it is under investigation. I removed a bunch of hardware and note all spare optics along the edges.

 

Attachment 1: AP_Table_20180328.png
AP_Table_20180328.png
  13714   Wed Mar 28 17:28:58 2018 SteveUpdatePSLnoise eater on or off

Till RIN measurement noise eater is off on 2W laser. The inno 1W  has no noise eater.

2010 power v current table is below.

Quote:

Koji and Kevin measured the output power vs injection current for the Innolight 2W laser.

The threshold current is 0.75 A.

 

The following data was taken with the laser crystal temperature at 25.04ºC (dial setting: 0.12).

Injection Current (A) Dial Setting Output Power (mW)
0.000 0.0 1.2
0.744 3.66 1.1
0.753 3.72 4.6
0.851 4.22 102
0.954 4.74 219
1.051 5.22 355
1.151 5.71 512
1.249 6.18 692
1.350 6.64 901
1.451 7.08 1118
1.556 7.52 1352
1.654 7.92 1546
1.761 8.32 1720
1.853 8.67 1855
1.959 9.05 1989
2.098 9.50 2146

 

 

Attachment 1: inno2W.png
inno2W.png
Attachment 2: inno1W.png
inno1W.png
  13739   Mon Apr 9 08:39:39 2018 SteveUpdatePEMM5.3 eq Souther CA

Earth quake M5.3    2018-04-05 19:29:16UTC          Santa Cruz Island, CA

 

Attachment 1: M5.3_Santa_Cruz_Is.CA.png
M5.3_Santa_Cruz_Is.CA.png
Attachment 2: after_M5.3.png
after_M5.3.png
Attachment 3: M5.3vac.png
M5.3vac.png
  13747   Wed Apr 11 10:47:26 2018 SteveUpdateSUSsatellite amps labeled

Satellite amplifiers labeled with date. Old labels left on.

Attachment 1: DSC00912.JPG
DSC00912.JPG
  13756   Tue Apr 17 09:57:09 2018 SteveUpdateGeneralseismometer interfaces

 

Quote:

I've been looking into recovering the seismic BLRMs for the BS Trillium seismometer. It looks like the problem is probably in the anti-aliasing board. There's some heavy stuff sitting on top of it in the rack, so I'll take a look at it later when someone can give me a hand getting it out.

In detail, after verifying that there are signals coming directly out of the seismometer, I tried to inject a signal into the AA board and see it appear in one of the seismometer channels.

  1. I looked specifically at C1:PEM-SEIS_BS_Z_IN1 (Ch9), C1:PEM-SEIS_BS_X_IN1 (Ch7), and C1:PEM-ACC_MC2_Y_IN1 (Ch27). All of these channels have between 2000--3000 cts.
  2. I tried injecting a 200 mVpp signal at 1.7862 Hz into each of these channels, but the the output did not change.
  3. All channels have 0 cts when the power to the AA board is off.
  4. I then tried to inject the same signal into the AA board and see it at the output. The setup is shown in the first attachment. The second BNC coming out of the function generator is going to one of the AA board inputs; the 32 pin cable is coming directly from the output. All channels give 4.6 V when when the board is powered on regardless of wheter any signal is being injected.
  5. To verify that the AA board is likely the culprit, I also injected the same signals directly into the ADC. The setup is shown in the second attachment. The 32 pin cable is going directly to the ADC. When injecting the same signals into the appropriate channels the above channels show between 200--300 cts, and 0 cts when no signal is injected.

 

Attachment 1: BS_Tril_Intrf-1X5.jpg
BS_Tril_Intrf-1X5.jpg
Attachment 2: Gurs_Intf-1X1.jpg
Gurs_Intf-1X1.jpg
  13776   Fri Apr 20 16:25:08 2018 SteveUpdateWiki ETMX table layout uploaded to wiki

ETMX table layout uploaded with beam paths to the wiki.   laugh

  13785   Tue Apr 24 15:59:23 2018 SteveUpdateWiki AP table layout 20180328
Quote:

ETMX table layout uploaded with beam paths to the wiki.   laugh

The pdf file is uploaded into the wiki.

Attachment 1: DSC00668AP20180328.png
DSC00668AP20180328.png
  13806   Wed May 2 10:03:58 2018 SteveHowToSEIpreparation of load cell measurement at ETMX

Gautam and Steve,

We have calibrated the load  cells. The support beams height monitoring is almost ready.

The danger of this measurment that  the beams height changes can put shear and torsional forces on this formed (thin walled) bellow

They are designed for mainly axial motion.

The plan is to limit height change to 0.020" max

0, center oplev at X arm locked

1, check that  jack screws are carrying full loads and set height indicator dials to zero ( meaning: Stacis is bypassed )

2, raise beam height with aux leveling wedge  by 0.010"  on all 3 support point and than raise it an other 0.005"

3, replace levelling wedge with load cell that is centered and shimmed.     Dennis   Coyne pointed out that the Stacis foot has to be loaded at the center of the foot and formed bellow can shear at their limits.

4, lower the support beam by 0.005" ......now full load on the cells

Note: jack screw heights will not be adjusted or  touched.......so the present condition will be recovered

Quote:

We could use similar load cells   to make the actual weight measurement on the Stacis legs. This seems practical in our case.

I have had bad experience with pneumatic Barry isolators.

Our approximate max compression loads are 1500 lbs on 2 feet and 2500 lbs on the 3rd one.

 

 

Attachment 1: loadcellCAL500.pdf
loadcellCAL500.pdf
Attachment 2: 3loadcellwcontr.jpg
3loadcellwcontr.jpg
Attachment 3: loadcellLocation.pdf
loadcellLocation.pdf
Attachment 4: DSC01009.JPG
DSC01009.JPG
Attachment 5: jack_screw.jpg
jack_screw.jpg
Attachment 6: ETMX_NW_foot_STACIS.pdf
ETMX_NW_foot_STACIS.pdf
  13809   Thu May 3 09:56:42 2018 SteveHowToSEIpreparation of load cell measurement at ETMX

[ Dennis Coyne'  precision answer ]

Differential Height between Isolators

According to a note on the bellows drawing (D990577-x0/A), the design life of the bellows at ± 20 minutes rotational stroke is 10,000 cycles. A 20 minute angular (torsional) rotation of the bellows corresponds to 0.186" differential height change across the 32" span between the chamber support beams (see isolator bracket, D000187-x0/B).

Another consideration regarding the bellows is the lateral shear stress introduced by the vertical translation. The notes on the bellows drawing do not give lateral shear limits. According to MDC's web page for formed bellows in this size range the lateral deflection limit is approximately 10% of the "live length" (aka "active length", or length of the convoluted section). According to the bellows drawing the active length is 3.5", so the maximum allowable lateral deflection should be ~0.35".

Of course when imposing a differential height change both torsional and lateral shear is introduced at the same time. Considering both limits together, the maximum differential height change should be < 0.12".

One final consideration is the initial stress to which the bellows are currently subjected due to a non-centered support beam from tolerances in the assembly and initial installation. Although we do not know this de-centering, we can guess that it may be of the order of ~ 0.04". So the final allowable differential height adjustment from the perspective of bellows stress is < 0.08".   Steve:  accumulated initial stress is unknown.  We used to adjust the original jack screws for IFO aligment in the early days of ~1999. This kind of adjustment was stopped when we realized how dangereous it can be. The fact is that there must be unknown amount of accumulated initial stress. This is my main worry but I'm confident that 0.020" change is safe.

So, with regard to bellows stress alone, your procedure to limit the differential height change to <0.020" is safe and prudent.

However, a more stringent consideration is the coplanarity requirement (TMC Stacis 2000 User's Manual, Doc. No. SERV 04-98-1, May 6, 1991, Rev. 1), section 2, "Installation",which stipulates < 0.010"/ft, or < 0.027" differential height across the 32" span between the chamber support beams. Again, your procedure to limit the differential height change to < 0.02" is safe.

Centered Load on the STACIS Isolators

According to the TMC Stacis 2000 User's Manual (Document No. SERV 04-98-1, May 6, 1991, Rev. 1), section 2, "Installation", typical installations (Figure 2-3) are with one payload interface plate which spans the entire set of 3 or 4 STACIS actuators. Our payload interface is unique.

Section 2.3.1, "Installation Steps": "5. Verify that the top of each isolator is fully under the payload/interface plate; this is essential to ensure proper support and leveling. The payload or interface plate should cover the entire top surface of the Isolator or the entire contact area of the optional jack."

section 2.3.2, "Payload/STACIS Interface": "... or if the supporting points do not completely cover the top surface of each Isolator, an interface plate will be needed."

The sketch in Figure 2-2 indicates an optional leveling jack which appears to have a larger contact surface area than the jacks currently installed in the 40m Lab. Of course this is just a non-dimensioned sketch. Are the jacks used by the 40m Lab provided by TMC, or did we (LIGO) choose them? I beleive Larry Jones purchased them.

A load centering requirement is not explicitly stated, but I think the stipulation to cover the entire top surface of each actuator is not so much to reduce the contact stress but to entire a centered load so that the PZT stack does not have a reaction moment.

From one of the photos in the 40m elog entry (specifically jack_screw.jpg), it appears that at least some isolators have the load off center. You should use this measurement of the load as an opportunity to re-center the loads on the Isolators.

In section 2.3.3, "Earthquake Restraints" restraints are suggested to prevent damage from earth tremors. Does the 40m Lab have EQ restraints? Yes, it has

Screw Jack Location

I could not tell where all of the screw jacks will be placed from the sketch included in the 40m elog entry which outlines the proposed procedure.

Load Cell Locations

The sketch indicates that the load cells will be placed on the center of the tops of the Isolators. This is good. However while discussing the procedure with Gautam he said that he was under the impression that the load cell woudl be placed next to the leveling jack, off-center. This condition may damage the PZT stack. I suggest that the leveling jack be removed and replaced (temporarily) with the load cell, plus any spacer required to make up the height difference. Yes

If you have any further question, just let me know.

    Dennis

 

 

Dennis Coyne
Chief Engineer, LIGO Laboratory
California Institute of Technology
MC 100-36, 1200 E. California Blvd.

 

 

 

  13829   Thu May 10 08:45:16 2018 SteveUpdateGeneral4.5M eq. Cabazon, CA

20180508 4:49am Cabazon earth quake 4.5M at 79 miles away.  ETMX is in load cell measurment condition.

Quote:

There was an earthquake, all watchdogs were tripped, ITMX was stuck, and c1psl was dead so MCautolocker was stuck.

Watchdogs were reset (except ETMX which remains shutdown until we finish with the stack weight measurement), ITMX was unstuck using the usual jiggling technique, and the c1psl crate was keyed.

 

Attachment 1: Cabazon4.5m79m.png
Cabazon4.5m79m.png
Attachment 2: 4.5Meq.png
4.5Meq.png
  13843   Tue May 15 13:34:30 2018 SteveUpdatesafetysurf safety training

Pooja and Keirthana received 40m specific basic safety training.

  13851   Thu May 17 09:14:38 2018 SteveUpdateGeneralStack measurement setup decommissioned

The final set-up of stack measurment with 3 load cells and 4 leveling wedge mounts as Atm 1

Sensor voltages BEFORE and AFTER this attempt.

Attachment 1: Load_Cell_Measurement_Set_Up.jpg
Load_Cell_Measurement_Set_Up.jpg
Attachment 2: ETMX_stack_up_down.png
ETMX_stack_up_down.png
  13895   Tue May 29 16:33:04 2018 SteveUpdatePEMair cond filters replaced

Chris replaced some air condition filters and ordered some replacement filter today.

Quote:

 

Quote:

 

Quote:

Yesterday morning was dusty. I wonder why?

The PRM sus damping was restored this morning.

Yesterday afternoon at 4 the dust count peaked 70,000 counts

Manasa's alergy was bad at the X-end yesterday. What is going on?

There was no wind and CES neighbors did not do anything.

Air cond filters checked by Chris. The 400 days plot show 3 bad peaks at 1-20, 2-5 & 2-19

 

  13918   Wed Jun 6 10:02:52 2018 SteveUpdateVACRGA scan
Attachment 1: RGA302d.png
RGA302d.png
Attachment 2: annuloses_NOT_pumped.png
annuloses_NOT_pumped.png
Attachment 3: temp_vac.png
temp_vac.png
  13950   Tue Jun 12 15:32:15 2018 SteveBureaucracyGeneralSalvaged junk from Xend

Koji's collection of Yend components put away. I cleaned up the  Xend bench today.

Loadcells, leveling wedge mounts  and related items placed under flowbench cabinet next to Guralp staff.

 

  13964   Thu Jun 14 15:24:32 2018 SteveUpdatePEM ADC DAC In Line Test Boards are in

We have 6 of these boards now in cabinet E7

Quote:

I wired all 32 channels going to the AA board directly to the ADC as described in the previous log. However, instead of using the old AA board and bypassing the whole circuit, I just used a breakout board as is shown in the first attachment. I put the board back in the rack and reconnected all of the cables.

The seismic BLRMs appear to be working again. A PSD of the BS seismometers is shown in attachment 2. Tomorrow I'll look at how much the ADC alone is suppressing the common mode 60 Hz noise on each of the channels.

Steve: 5 of ADC DAC In Line Test Boards [ D060124 ] ordered. They should be here within 10 days.

 

Attachment 1: ADC_DAC_in_(1).JPG
ADC_DAC_in_(1).JPG
  13970   Fri Jun 15 08:09:15 2018 SteveBureaucracyGeneralcleaning up at the PSL enclousure

The cabeling was cleaned up a little bit yesterday morning. The upper back side is still massy.

Attachment 1: before.jpg
before.jpg
Attachment 2: after.jpg
after.jpg
Attachment 3: back_side.jpg
back_side.jpg
  13971   Fri Jun 15 09:14:42 2018 SteveUpdateGeneralOplev sums

Oplev sums of 240 days.

Quote:

Since there have been various software/hardware activity going on (stack weighing, AUX laser PLL, computing timing errors etc etc), I decided to do a check on the state of the IFO.

  • c1susaux, c1aux and c1iscaux crates were keyed as they were un-telnet-able.
  • Single arm locking worked fine, TT alignment was tweaked (as these had drifted due to the ADC failure in c1lsc) to maximize Y arm transmission using the dither servos.
  • Arms weren't staying locked for extended periods of time. I particularly suspected ITMX, as I saw what I judged to be excess motion on the Oplev.
  • @Steve - ITMX and BS HeNes look like they are in need of replacement judging by the RIN (although the trend data doesn't show any precipitous drop in power). If we are replacing the BS/PRM Oplev HeNe, might be a good time to plan the inejction path a bit better on that table.
  • RIN in Attachment #1 has been normalized by the mean value of the OL sum channel. There is now a script to make this kind of plot from NDS in the scripts directory (as I found it confusing to apply different calibrations to individual traces in DTT).

 

Attachment 1: opSums.png
opSums.png
  13990   Wed Jun 20 09:16:56 2018 SteveUpdatePEMdusty lab

You should wipe off the table cover before you take it off next time.

It is important to turn up the PSL encloure HEPA Variac voltage if you are working in there. It takes less than 10 minutes to reach lab condition.

Lab air count normal. It is not logged. I have a notebook of particle count on the SP table next to the Met One counter.

Quote:

Chris replaced some air condition filters and ordered some replacement filter today.

 

 

Attachment 1: AP.JPG
AP.JPG
Attachment 2: ITMY.JPG
ITMY.JPG
Attachment 3: ITMX.JPG
ITMX.JPG
Attachment 4: SP.JPG
SP.JPG
  14004   Fri Jun 22 08:50:33 2018 SteveUpdateSUSITMY_UL sensor

We may lost the UL magnet or LED

Attachment 1: ITMY_UL.png
ITMY_UL.png
  14006   Fri Jun 22 14:18:04 2018 SteveUpdatePSLOptics on AS table

 

Quote:
Quote:

Furthermore, I believe we are losing more than 10% of the light due to this BS. The ASDC (which is derived from AS55 PD) level is down at ~110cts as the Michelson is fringing, while it used to be ~200 cts. I will update with a power measurement shortly. But I think we should move ahead with the plan to combine the beam into the IFO's AS mode as discussed at the meeting last week.

Is the 10% specified for P-Pol or for UNP? I contacted CVI about beamsplitters, since their website doesn't list a BS1-1064-90-... option on the website. They say a R=90% beamsplitter would be a custom job. The closest stock item they got is BS1-1064-95-2025-45UNP specified at R=95% for UNPolarized beams. They were kind enough to sent me the measured transmission curves for a recent lot of these, which is attached was uploaded to the wiki [Elog Police K: NO PROPRIETARY DOCUMENTS ON THE ELOG, which is public. Put it on our wiki and put the link here]. The figure is not labeled, but according to the contact Red is S-Pol and Blue is P-Pol, which means that this one actually has R=~90% for P, pretty much what we want. We'll need to buy two of these to make the swap in the setup.

Back to your original point: There's only a BS1-1064-10-2025-45UNP on the website, so unless we got these as custom items, the R for P-Pol is probably NOT actually 10%, just somewhere between 0% and 20%

4  std cataloge item fused silica  BS1-1064-95-2025-45UNP 

ordered today. They will arrive no later than July 13, 2018

  14028   Thu Jun 28 08:09:51 2018 SteveUpdateCDS vacuum pneumatic N2 pressure

The fardest I can go back on channel C1: Vac_N2pres is  320 days

C1:Vac-CC1_Hornet Presuure gauge started logging Feb. 23, 2018

Did you update the " low N2 message"  email addresses?

 

Quote:

I moved the N2 check script and the disk usage checking script from the (sudo) crontab of nodus no to the controls user crontab on megatron yes.

 

Attachment 1: 320d_N2.png
320d_N2.png
  14031   Thu Jun 28 13:12:20 2018 SteveUpdatesafetysurf safety training

Shruti and Sandrine received 40m specific basic safety training this morning.

Quote:

Pooja and Keirthana received 40m specific basic safety training.

 

  14034   Mon Jul 2 09:01:11 2018 SteveUpdateSUSITMY_UL sensor

This bad connection is coming back

Quote:

We may lost the UL magnet or LED

 

Attachment 1: ITMY_ULcripingback.png
ITMY_ULcripingback.png
  14059   Thu Jul 12 16:18:22 2018 SteveUpdateVACVent preparations

We are getting ready to vent.

 

Attachment 1: before_Vent.png
before_Vent.png
Attachment 2: before_Vent_cond.png
before_Vent_cond.png
  14066   Fri Jul 13 16:26:52 2018 SteveUpdateVACVent 80 is completing...

Steve and Aaron,

6 hrs vent is reaching equlibrium to room air. It took 3 and a half instrument grade air cilynders [ AI UZ300 as labelled ] at 10 psi pressure. Average vent speed ~ 2 Torr/min

Valve configuration: IFO at atm and RGA is pumped through VM2 by TP1 maglev.

 

Attachment 1: @atm.png
@atm.png
Attachment 2: vent80_7h.png
vent80_7h.png
Attachment 3: ventregN2&Air_c.jpg
ventregN2&Air_c.jpg
  14079   Tue Jul 17 18:16:38 2018 SteveSummaryVACpumpdown 81 at 6 hrs

Precondition:  4 days at atm.   Atm5

HEPA tent used during the vent at ETMY  It reduced partical count 10 fold of 0.5 and 0.3 micron particals. Atm6

New items in vacuum:  Clean manual gate valve [Cetec made] from John Worden with 6" id....as it came from Hanford... [ Throttle able gate valve- TGV ] Atm3

                                 ( note: we have 3 more identical in the lab. The original intention was to use them for purging gates )

                                  Optiform Au plated reflector , Induceramics heating elements, similar as existing Cooner cables and related lenses, hardwear. see 14078

                                  OMC related item : none......... 14,110

 

The pumpdown is at 510 mTorr with RP1 & RP3 still pumping. Koji will shut it down the roughing later tonight. Tomorrow morning I will start the pumping by switching over to TP1 maglev.

Thanks for Koji and Gautam'  help of the installation of the manual gate valve. Atm4  This will allow us to control the load on our Varian foreline D70 turbo TP3

 

Attachment 1: pd81@6hrs.png
pd81@6hrs.png
Attachment 2: before_c.jpg
before_c.jpg
Attachment 3: tgv_c.jpg
tgv_c.jpg
Attachment 4: TGVinstalled.jpg
TGVinstalled.jpg
Attachment 5: 4_days_vent.png
4_days_vent.png
Attachment 6: tentHEPA.jpg
tentHEPA.jpg
  14082   Wed Jul 18 12:49:08 2018 SteveSummaryVACpumpdown 81 at 6 +4.5hrs

The manual gate valve scan was clean. Atm1     TP1 was pumping on it overnight.

                                                Pumpdown continued to hand over the pumping to TP1 maglev turbo

V1 was opened at P1 400 mTorr  with manual gate at 3/4 turn open position as Magev at 560 Hz rotation.

Two aux fans on to hold tubo temps TP1 & TP3 . Atm3

This is the first time we pumping down from atm with ONE small "beer can" turbo  and throttled gate valve to control load on small turbo forepump

The 70 l/s turbo is operating at 50k RPM, 0.7 A and 31 C,  pumping speed  ~ 44 mTorr/h at 200-400 mTorr range with aux drypump in the foreline of TP3

Watching foreline pressures and current one can keep opening gate valve little by little the so the load is optimized. It is working but not fast.

Let's keep small turbo at 0.8 Amp and 32 C max at this pumpdown. 

Quote:

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

Attachment 1: manlGateScan.png
manlGateScan.png
Attachment 2: handing_over_Mag.png
handing_over_Mag.png
Attachment 3: TGVw2auxfans_.jpg
TGVw2auxfans_.jpg
  14083   Wed Jul 18 17:36:50 2018 SteveSummaryVACpumpdown 81 at 6 +9 hrs completed

IFO P1 6e-4 Torr,  manual gate valve is fully open

The annuloses will be pumped down tomorrow.

Valve configuration: vacuum normal, RGA and annuloses are not pumped

Quote:

The manual gate valve scan was clean. Atm1     TP1 was pumping on it overnight.

                                                Pumpdown continued to hand over the pumping to TP1 maglev turbo

V1 was opened at P1 400 mTorr  with manual gate at 3/4 turn open position as Magev at 560 Hz rotation.

This is the first time we pumping down from atm with one small "beer can" turbo  and throttled gate to control load on small turbo forepump

The 70 l/s turbo is operating at 50k RPM, 0.7 A and 31 C,  pumping speed  ~ 44 mTorr/h at 200-400 mTorr range.

Watching foreline pressures and current one can keep opening gate valve little by little the so the load is optimized. It is working but not fast.

Let's keep small turbo at 0.8 Amp and 32 C max at this pumpdown. 

Quote:

10:20PM

  • Opened VM2 to pump down the RGA section with TP1
  • Stopped rotary roughing pumps
    • Manually closed RV1
    • Closed V3
    • Stopped RP1 and RP3
    • Vented the RP hose

The P1 pressure is 380mTorr. I allowed Gautam to use the full PSL power (~1W).

Attachment 1: pd81completed.png
pd81completed.png
Attachment 2: pd81@30hrs.png
pd81@30hrs.png
  14087   Thu Jul 19 11:01:03 2018 SteveSummaryVACpd81 @ 2e-5 Torr

Cold cathode gauge just turned on.

Attachment 1: pd81@2days.png
pd81@2days.png
  14088   Thu Jul 19 13:35:30 2018 SteveSummaryVACannuloses pumped

Roughing down the annuloses required closing V1 for 13 minutes

IFO is 2.2e-5 Torr

Attachment 1: AnsPumped.png
AnsPumped.png
  14090   Fri Jul 20 07:43:54 2018 SteveSummarySUSETMY

 

 

Attachment 1: ETMY_leveling.png
ETMY_leveling.png
Attachment 2: ETMY.png
ETMY.png
  14098   Mon Jul 23 09:58:52 2018 SteveSummaryVACRGA scan at day 6

 

 

Attachment 1: pd81-560Hz-d6.png
pd81-560Hz-d6.png
  14106   Thu Jul 26 15:11:18 2018 SteveUpdateGeneral Viewports & coating of 2001

New optical quality BK-7 windows in 2001 [4 substrates ] AR coated R<0.75 % for 630-1064nm " Azury BLue" broadband : TRX, TRY, ITMY-Oplev &  ITMX-Oplev viewports.

The BS-Oplev and PRM-Oplev 10" CF with 5.38" diameter view was coated the same way. The window here is Corning 7056 Borosilicate

5 more BK-7 substrates were coated R <0.1% of 1064 nm "Golden Orange" Their location: IMC-IN, IFO-REF and OMC   The next vent we have to confirm optical quality window locations.

All other conflat flange viewports are 7056 Kovar sealed .

Technical notes of 2001 40m upgrade can be seen at LIGO-T010115- 00- R  ....page 14

Attachment 1: BK7window_Coatings.PDF
BK7window_Coatings.PDF BK7window_Coatings.PDF
  14108   Fri Jul 27 10:48:57 2018 SteveUpdateSUSBS oplev window

Yesterday I inspected this BS oplev viewport. The heavy connector tube was shorting to table so It was moved back towards the chamber. The connection is air tight with kapton tape temporarly.

 The beam paths are well centered. The viewport is dusty on the inside.

The motivation was to improve the oplev noise.

Attachment 1: BSOw_.jpg
BSOw_.jpg
Attachment 2: dustInsideBSO.jpg
dustInsideBSO.jpg
  14119   Tue Jul 31 08:17:55 2018 SteveUpdateSUSTrillium interface box was fixed,reinstalled & working

 

 

Attachment 1: all_OK.png
all_OK.png
  14124   Thu Aug 2 16:30:08 2018 SteveUpdateTreasuretime capsule location

I 've just found this time capsule note from Nov. 26, 2000 by Kip Thorne:  LIGO will discover gravitational waves by Dec.31, 2007

Quote:

   Beautifully Done

   Chirp

  what is next?

Atm 3, Ron Drever could not celebrate with us because of health issues.

 

 

Attachment 1: time_capsule.JPG
time_capsule.JPG
  14137   Mon Aug 6 09:34:02 2018 SteveUpdateVACRGA scan at day 20

 

 

Attachment 1: pd81d20.png
pd81d20.png
  14156   Mon Aug 13 09:56:23 2018 SteveUpdateSUSETMX trip follow-up

Here is an other big one

Quote:

A brief follow-up on this since we discussed this at the meeting yesterday: the attached DV screenshot shows the full 2k data for a period of 2 seconds starting just before the watchdog tripped. It is clear that the timescale of the glitch in the UL channel is much faster (~50 ms) compared to the (presumably mechanical) timescale seen in the other channels of ~250 ms, with the step also being much smaller (a few counts as opposed to the few thousand counts seen in the UL channel, and I guess 1 OSEM count ~ 1 um). All this supports the hypothesis that the problem is electrical and not mechanical (i.e. I think we can rule out the Acromag sending a glitchy signal to the coil and kicking the optic). The watchdog itself gets tripped because the tripping condition is the RMS of the shadow sensor outputs, which presumably exceeds the set threshold when UL glitches by a few thousand counts.

 

Attachment 1: ETMXglitch.png
ETMXglitch.png
Attachment 2: ETMXgltch.png
ETMXgltch.png
  14167   Thu Aug 16 07:50:28 2018 SteveUpdateVACpumpdown 81 at day 30

 

 

Attachment 1: pd81d30.png
pd81d30.png
  14168   Thu Aug 16 14:48:14 2018 SteveUpdateVACwhy do we need a root pump?

Basic Pump Throughput Concepts

What is Pump Throughput?

The manufacturer of a vacuum pump supplies a chart for each pump showing pumping speed (volume in unit time) vs pressure. The example, for a fictitious pump, shows the pumping speed is substantially constant over a large pressure range.

By multiplying pumping speed by pressure at which that pumping speed occurs, we get a measure called pump throughput. We can tabulate those results, as shown in the table below, or plot them as a graph of pressure vs pump throughput. As is clear from the chart,  pump throughput (which might also be called mass flow) decreases proportionally with PRESSURE, at least over the pressure range where pumping speed is constant.

 

Pumping Speed Pressure Pressure x Pumping Speed
100 L/sec 10 torr 1000 torr.liter/sec
100 L/sec 1 torr 100 torr.liter/sec
100 L/sec 0.1 torr 10 torr.liter/sec
100 L/sec 0.01 torr

1 torr.liter/sec

The roughing pump speed actually will reach 0 l/s  at it's ultimate pressure performance.

Our roughing pump  pumping speed will slowly drop  as chamber pressure drops. Below 10 Torr this decrease is accelerated and bottoms out. This where the Root pump can help. See NASA evaluation of dry rough pumps...What is a root pump 

We have been operating succsessfully with a narrow margin. The danger is that the Maglev forline peaks at 4 Torr. This puts load on the small turbo TP2, TP3 &  large TP1

The temperature of these TP2 & 3  70 l/s drag turbos go up to 38 C and their  rotation speed slow to 45K rpm from 50K rpm because of the large volume 33,000 liters

Either high temp or low rotation speed of drag turbo or long time of overloading  can shut down the small turbo pumps......meaning: stop pumping, wait till they cool down

The manual gate valve installed helped to lower peak temp to 32C It just took too long.

We have been running with 2 external fans [one on TP1 & one on TP3]  for cooling and one aux drypump to help lowering the foreline pressure of TP2 & 3

The vacuum control upgrade should include adding root pump into the zero pumping speed range.

 

Atm1,   Pump speed chart:   TP1  turbo -red, root pump -blue and mechanical pump green. Note green color here representing an oily rotory pump. Our small drypumps [SH-100] typically run above 100 mTorr

                                           They are the forepump of TP2 & 3     Our pumpdown procedure: Oily Leybold rotory pumps ( with safety orifice 350 mT to atm ) rough to 500 mTorr

                                                                                                 Here we switch over to TP2 & 3 running at 50k RPM with drypumps SH-100 plus Aux Triscroll

                                                                                                 TP1- Maglev rotating full speed when V1 is opened at full volume at 500 mTorr 

                         History: the original design of the early 1990s had no dry scroll pumps. Oil free dry scrools replaced the oily forepumps of TP2 & TP3 in ~2002  at the cost of degrading the forline pressure somewhat.

                                     We had 2 temperature related Maglev failers in 2005 Aug 8 and 2006 April 5  Osaka advised us to use AUX fan to cool TP1  This helped. 

Atm2,   Wanted Root pump - Leybold EcoDry 65 plus  

Atm3,   Typical 8 hrs pumpdown from 2007 with TP2 & 3 

Atm4,   Last pumpdown zoomed in from 400 mT to 1mT with throttled gate  valve took 9 hrs  The foreline pressure of TP1 peaked at 290 mT, TP3 temperature peaked at 32C

            This technic is workable, but 9 hrs is too long.

Atm5,   The lowest pressure achived in  the 40m Vacuum Envelope 5e-7 Torr with pumps Maglev  ~300 l/s,  Cryo 1500 l/s  and 3 ion pumps of 500 l/s      [ in April 2002 at pumpdown 53 day 7 ] with annuloses at ~ 10 mTorr

Atm6,  Osaka TG390MCAB Throughput with screen ~300 L/s at 12 cfm backing pump

Attachment 1: PUMPSPEED_CHAR.pdf
PUMPSPEED_CHAR.pdf
Attachment 2: Leybold_Broschuere_8Seiten_EN_ANSICHT.pdf
Leybold_Broschuere_8Seiten_EN_ANSICHT.pdf
Attachment 3: pd65.jpg.png
pd65.jpg.png
Attachment 4: pd81completed.png
pd81completed.png
Attachment 5: best_.pdf
best_.pdf
Attachment 6: Osaka390.pdf
Osaka390.pdf
  14173   Tue Aug 21 09:16:23 2018 SteveUpdateWiki AP table layout 20180821

 

 

Attachment 1: 20180821.JPG
20180821.JPG
  14176   Wed Aug 22 08:44:09 2018 SteveUpdateGeneralearth quake

6.2M Bandon, OR did not trip any sus

 

Attachment 1: yesterday_EQs.png
yesterday_EQs.png
  14178   Thu Aug 23 08:24:38 2018 SteveUpdateSUSETMX trip follow-up

Glitch, small amplitude, 350 counts  &  no trip.

Quote:

Here is an other big one

Quote:

A brief follow-up on this since we discussed this at the meeting yesterday: the attached DV screenshot shows the full 2k data for a period of 2 seconds starting just before the watchdog tripped. It is clear that the timescale of the glitch in the UL channel is much faster (~50 ms) compared to the (presumably mechanical) timescale seen in the other channels of ~250 ms, with the step also being much smaller (a few counts as opposed to the few thousand counts seen in the UL channel, and I guess 1 OSEM count ~ 1 um). All this supports the hypothesis that the problem is electrical and not mechanical (i.e. I think we can rule out the Acromag sending a glitchy signal to the coil and kicking the optic). The watchdog itself gets tripped because the tripping condition is the RMS of the shadow sensor outputs, which presumably exceeds the set threshold when UL glitches by a few thousand counts.

 

 

Attachment 1: ETMX-UL_glitch.png
ETMX-UL_glitch.png
Attachment 2: PEM_4d.png
PEM_4d.png
  14182   Fri Aug 24 08:04:37 2018 SteveUpdateGeneralsmall earth quake

 

 

Attachment 1: small_EQ.png
small_EQ.png
ELOG V3.1.3-