40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 162 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  8792   Wed Jul 3 01:49:46 2013 AnnalisaUpdateGreen LockingALS servo configuration

[Koji, Annalisa, Manasa]

Today we worked on the ALS servo stabilization for the Y arm.

First step: find the beat note

The beat note was found following the usual steps:

  • Y arm cavity locked on IR to have a good alignment
  • Y arm cavity locked on green (eventually unlocked on IR)
  • beat note alignment maximized on the PSL table

Beat note amplitude = -27 dBm @ 50 MHz

PSL temperature = 31.54 degC

Laser Offset on the slow servo2 = -11011

 

In the GREEN HORNET we did the following changes for the Y arm:

Input Signal Conditioning

On the C1ALS-BEATY_FINE  screen the same antiwhitening filters of the C1ALS-BEATX_FINE have been reproduced. At moment, only the FM3 [10:1] is enabled.

On the C1ALS-BEATY_FINE_PHASE screen the gain was set at 3600, since the amplitude of the Q signal after the Phase rotator (BEATY_FINE_Q_ERR) was about 30. To set this value we made a proportion with respect to a previous optimized value, where the amplitude was 100 and the gain was set to 1200.

DOF filters

In order to stabilize the beat frequency, we started enabling the FM5 [1000:1] filter in the C1ALS_YARM panel, and then we started increasing the gain first in small steps (0.1), in order to understand which sign the gain should have without kicking the mirror.

We measured the Power Spectrum of the C1:ALS-BEATY_FINE_PHASE_OUT in-loop signal while varying the gain of the C1ALS_YARM servo filter.

Eventually, we enabled the following filters:

FM2 [0:1]

FM3 [1:5]

FM4 [1:50]

FM5 [1000:1]

FM6 [RG3.2]

FM7 [RG16.5]

Gain = -30.

Koji expects the UGF of the loop to be around 100-ish Hz, and he also expected the small bump around 300-400 Hz.

Then we realized that the channel we were measuring was not calibrated in unit of Hz, so we took again the measurement looking at the channel C1:ALS-BEATY_FINE_PHASE_OUT_HZ. In this case, we didn't observe any bump. Maybe the beat frequency was slightly changed from the previous measurement and the all servo shape was also different. The final value of the gain was set at -8.

The Y axis unit is missing (bad me!). It's in deg/sqrt(Hz) for the first plot and Hz/sqrt(Hz) for the second one.

 

  8793   Wed Jul 3 03:06:29 2013 AnnalisaUpdateGreen LockingALS servo configuration

 

I realized that I cannot open the attached plots. I'll fix them tomorrow.

  8807   Mon Jul 8 21:46:31 2013 manasaUpdateGreen LockingBeatbox

[Koji, Manasa]

I wanted to investigate on the ALS electronics(in particular the beatbox and the phase tracker) and find out if the beatbox is showing a linear behavior
as we expect it to and as to why we have been seeing sudden jumps at the phase tracker output.

I have been using the Xarm part of the beabox.
I used Marconi as well as signal generator to do frequency sweep/modulation at the RF input of the beatbox and looked at the I_MON output of the beatbox.

We observed sudden jumps in the beatbox output from time to time while we either varied the carrier frequency or the RF amplitude.
Also the beatbox output shows high frequency oscillations at ~95MHz (source unknown). It is for sure that the beatbox is not behaving the way it should
but we could not tell more or troubleshoot with the beatbox mounted on the rack.

I am going to let Annalisa do her Y arm ALS scan tonight and pull out the beatbox tomorrow to fix it.

  8813   Tue Jul 9 17:03:06 2013 SteveUpdateGreen Lockingfiber layed for Y arm

Alex, Gautam and Steve,

Single mode fiber 50m long is layed out into cable tray that is attached to the beam tube of the Y arm.

It goes from ETMY to PSL enclosure. It is protected at both ends with " clear- pvc, slit corrugated loom tubing " 1.5" ID

The fiber is not protected between 1Y1 and 1Y4

  8817   Wed Jul 10 01:27:44 2013 gautamUpdateGreen LockingY-end Green PDH open-loop transfer function

 [Annalisa, gautam]

Summary:

We have measured the open-loop transfer function of the Y-end green PDH loop. From the measurement, the loop UGF is ~12kHz.

Details:

We have been trying to measure this transfer function for some time now, and playing around with various points of injecting the excitation and measuring the output. Koji helped arrive at one that actually worked, and the scheme used to make this measurement is shown in the sketch below. The SR785 signal analyzer was used to make the measurement, while an SR560 preamp was used to sum the output from the PDH box (PZT-OUT) and the excitation, with this sum being delivered to the auxiliary laser PZT via a pomona box that sums the servo output and the signal from the LO. The transfer function measurement made was a1/a2 w.r.t the sketch attached.

  • The swept-sine measurement was done from high to low frequencies, as the open-loop gain was expected to be high at low frequencies.
  • After some trial and error, we realised that the excitation amplitude on the SR785 can be varied continuously during the course of a swept sine measurement using the dial on the front panel. We started out with a 1mVpp signal at the high end of the frequency sweep (~102kHz, the upper limit on the SR785) and went up to 17mVpp at ~30Hz). These values were determined by trial and error, and were approximately the maximum that did not kick the loop out of lock/into a higher order mode.

Remarks:

  • As per this paper, the expected bandwidth of this loop is expected to be ~30kHz, while the measured UGF was more like 11.7kHz. Perhaps we can get this closer to the expected 30kHz by increasing the servo gain. The measurement shown was done with the servo gain knob on the Universal PDH box set to ~7.86. We tried two other values, ~8.2 and 10 (this was the limit on the knob), but the UGF first increased to ~13kHz (for the 8.2 gain), and then decreased to ~5kHz with a gain of 10. Not sure why this was, but it can be looked into further. 
     

Set-up to measure Y-end Green PDH transfer function:

Green_PDH_measurement.pdf

 

Measured Open Loop Transfer Function:

Y-end_Green_PDH.pdf

  8818   Wed Jul 10 02:10:41 2013 manasaUpdateGreen LockingBeatbox gets a makeover

Quote:

[Koji, Manasa]

I wanted to investigate on the ALS electronics(in particular the beatbox and the phase tracker) and find out if the beatbox is showing a linear behavior
as we expect it to and as to why we have been seeing sudden jumps at the phase tracker output.

I have been using the Xarm part of the beabox.
I used Marconi as well as signal generator to do frequency sweep/modulation at the RF input of the beatbox and looked at the I_MON output of the beatbox.

We observed sudden jumps in the beatbox output from time to time while we either varied the carrier frequency or the RF amplitude.
Also the beatbox output shows high frequency oscillations at ~95MHz (source unknown). It is for sure that the beatbox is not behaving the way it should
but we could not tell more or troubleshoot with the beatbox mounted on the rack.

I am going to let Annalisa do her Y arm ALS scan tonight and pull out the beatbox tomorrow to fix it.

 The beatbox output showed high frequency oscillations during the troubleshooting process yesterday. I removed the beatbox from the rack. With no RF inputs, just powering the beatbox showed these high frequency oscillations at the beatbox output. This confirms that these oscillations are from the op-amp AD829JR. I replaced these with low noise OP27G. Also I removed the AD829JR that were soldered to the frequency divider and comparator which are not being used. Output buffer U10 was also removed.

After replacing with OP27G, I rechecked the beatbox with and without the RF input. There were no more high frequency contaminations and beatbox seemed to behave as it is supposed to when a frequency modulated RF input is fed. I put the beatbox back on the rack and did  a quick recheck.

Before (top) and after (bottom) pictures

IMG_0842.JPGIMG_0844.JPG

IMG_0845.JPGIMG_0846.JPG

 

  8819   Wed Jul 10 02:28:04 2013 AnnalisaUpdateGreen LockingBeat notes lost!

[Manasa, Jenne, Annalisa]

I was going to find the beat note to start the cavity scan, but I couldn't.

These are the steps I followed:

  • locked the arm with IR to reduce the arm swinging
  • locked the green on the arm
  • started changing the green temperature setting the offset from the slow servo2 in the ALS. The PSL slow actuator ADJ was always set approximately to zero, and the PSL temperature was checked in order to set the auxiliary laser temperature where the beat was expected (as in the plot)

After spanning the temperature by approximately 4degC, we started be suspicious that I couldn't find the beat in the range of temperature where it was supposed to be found, and we started making several trials:

  • PD output disconnected from the beatbox and connected to the cable running to the Control Room
  • Checked that the cable going to the Control Room was working by sending a signal with the Marconi (the cable was working)
  • Put back the amplifier that had been previously removed
  • PD DC output checked with the oscilloscope
  • Spectrum analyzer connected to the PD output without passing trough the cable

The same trials were done also for the X arm, but we didn't succeed in finding the beat for the X neither.

 

  8820   Wed Jul 10 11:27:02 2013 manasaUpdateGreen LockingX arm beatnote found

I found the beat note for X arm. I did not change anything this morning (to the best of my knowledge). Hooking up the spectrum analyzer, I could find the beatnote signal at the PD RF output, after the amplifier and also at the MON port of the beatbox. I still don't know what changed from the last night set of trials

  8821   Wed Jul 10 11:44:02 2013 AnnalisaUpdateGreen LockingY beat note found!

I found the beat note for the Y arm. Nothing was changed with respect to yesterday night, but the beat is back!

  8822   Wed Jul 10 14:49:00 2013 SteveUpdateGreen Locking more fiber protective tubing layed

Quote:

Craig, Gautam and Steve,

Single mode fiber 50m long is layed out into cable tray that is attached to the beam tube of the Y arm.

It goes from ETMY to PSL enclosure. It is protected at both ends with " clear- nylon slit corrugated loom tubing " 1.5" ID

The fiber is not protected between 1Y1 and 1Y4

 Installed 0.5" ID 10 ft long protective tubing at the PSL end of the  ETMY fiber this morning. Here I had to cable tie a bunch of cables at the east side of the PSL enclosure.

They were hanging off the table blocking space were the sliding doors move.

 At the ETMX end of the X-arm fiber received the same protective tubing.

  8824   Thu Jul 11 00:30:27 2013 manasaUpdateGreen LockingX arm ALS post-beatbox makeover

I ran a series of diagnostics on the X arm ALS to look at how the beatbox behaves after the makeover.

Diagnostic tests run:
1. X arm ALS in-loop spectrum
2. X arm ALS out-of loop spectrum
3. X ALS scan of the X arm cavity

The noise suppression looks better after the makeover at the lower frequencies. To suppress the noise at high frequencies, we would have to add more whitening filters.

  8831   Thu Jul 11 14:38:38 2013 AnnalisaUpdateGreen LockingY arm cavity scan

Yesterday I did a cavity scan with IR while holding the Yarm with green.

ALS servo tuning:

  • C1ALS-BEATY_FINE_PHASE

             The gain of the loop is set such that BEATY_FINE_Q_ERR x GAIN = 120k. This is a kind of "empirical low" in order to have the UGF around 1kHz. 

  • C1ALS_YARM

             Start with FM5 [1000:1] enabled, determine the sign of the gain increasing it in small steps and making sure that the mirror doesn't get a kick. Then gradually raise it while looking at the BEATY_PHASE_OUT power spectrum.

             Enable FM7 [RG16.5], FM6 [RG3.2], FM3 [1:5], FM2[0:1], FM10 [40:7].

Plot 1 shows the power spectrum of BEATY_PHASE_OUT (calibrated in Hz).

  1. blue curve - ALS disabled
  2. green curve - in loop measurement, ALS enabled and servo tuned as described above
  3. grey curve - RMS of the in loop measurement
  4. red curve - out of loop measurement (arm locked with IR)
  5. pink curve -  RMS of the out of loop measurement

Offset setting and cavity scan

The C1ALS_OFFSETTER2 was used to set an offset for ALS scan.

  • LPF30m enabled
  • Ramp time set to 150s
  • Offset set to 1500 (approximately 3 FSR in this interval)

Many scans have been done to find the optimal offset conditions, I only attached one (Plot 2).

I also misaligned the END mirror in pitch to enhance the HOMs peaks, but it turned out that it was not enough, because I didn't see a very big difference between the "aligned" and the "slightly misaligned" measurements (Plot 3). 

NEXT STEPS

Increase the cavity misalignment both in pitch and in yaw and repeat the measurement.

 

  8841   Fri Jul 12 23:13:32 2013 manasaUpdateGreen LockingALS sensor noise

[Annalisa, Koji, Manasa]

In order to improve the ALS stability we went ahead to check if we are limited by the sensor noise of ALS.

What we did:
RF signals similar to the beatnote were given at the RF inputs of the beatbox.
The frequency of the RF signal was set such that I_OUT was zero (zero-crossing point of the beatbox).
We measured the noise spectrum of the phase tracker output.

Measurements:

Plot 1: X ALS noise spectrum
Plot 2: Y ALS noise spectrum

Discussion:

The X arm ALS noise is not limited by the sensor noise...which means we shoudl come up with clever ideas to hunt for other noise sources.
But this does not seem to be the case for the Y arm ALS. The Y arm part of the beatbox is noisy for frequencies < 100Hz.


After looking into the details and comparing the X and Y arm parts of beatbox, it looks that amplitude of the beat signal seem to affect the Y arm ALS noise significantly and changes the noise spectrum.

To do:
Investigate the effect/limitations of amplitude of the beatnote on the X arm and Y arm beatbox.

  8842   Sat Jul 13 03:27:20 2013 AnnalisaUpdateGreen LockingY arm caity scan

I started doing a scan of the Y arm cavity with IR with ALS enabled.

ALS servo tuning:

The servo tuning procedure is basically the same as described in elog 8831.

This time I had a stronger beat note(-14 dBm instead of -24 dBm of the last measurement) thanks to a better alignment.

Plot1 shows the Power spectrum of the BEATY_PHASE_OUT. The RMS is smaller by a factor of 2 (400Hz), corresponding to a residual motion of about 25 pm.

Offset setting avity scan

In order to give an offset linearly growing in time, I used the ezcastep script instead of giving the offset in OFFSETTER2. If the ramp time is long enough, it is not necessary to enable the 30mHz filter.

To span 2 FSR, I started from an offset of 450 and I gave a maximum value of 1600 with a delay of 0.2s between two consecutive steps.

Cavity scan

I did a first scan with the cavity well aligned, basically to know the position of the 00 peaks and choose the best offset range (Plot2)

Then I misaligned the TT2, first in PITCH and yhen in YAW, in order to enhance the HOMs. (Plot3 and Plot4)

More investigation and measurements needed. 

 

 

  8844   Sun Jul 14 18:19:00 2013 AnnalisaUpdateGreen LockingArm cavity scan

Yesterday evening Nic and me were in the lab. The Mode Cleaner was unlocked, but after many attempt we could fix it and we did many scans of the Y arm cavity.

Today I was not able to keep the MC locked. Koji helped me remotely, and eventually the MC locked back, but after half an hour of measurements I had to stop.

I made some more scan of the Y arm though. I also tried to do the same for the X arm, but the MC unlocked before the measurement was finished. I'll try to come back in the night.

  8864   Wed Jul 17 22:49:37 2013 KojiUpdateGreen LockingALS Y whitening filter change

[Koji Annalisa]

We did the same mod of the beatbox for the Y arm too. See
http://nodus.ligo.caltech.edu:8080/40m/8855

  8865   Wed Jul 17 22:51:50 2013 KojiUpdateGreen LockingALS Y performance with the new whitening filter

[Manasa Koji]

Summary:
The new whitening filters improved the out-of-loop ALS stability of the Y arm down to 300Hz (20pm_rms in displacement).


- After modifying the whitening filters, the out-of-loop stability of the arms were tested with the IR PDH signals.

- The X arm showed non-stationarity and it made the ALS servo frequenctly fell out of lock.

- For now we decided to use the Y arm for the PRMI+one arm trial.

- The performance of the ALS was tested with several measurements. (attachment 1)

Cyan: Stability of the beatnote frequency with the MC and the arm freely running. The RMS of the day was ~6MHz.

Blue: Sensing limit of the beat box was tested by giving a signal from Marconi. The same amplitude as the X arm beat was given as the test signal.
This yielded the DC output of ~1200 counts.

Green: Out-of-loop estimation of the beatbox performance. This beat note stability was measured by controlling the arm with the IR PDH signal.
Assuming the PDH signal has better SNR than the beat signal, this gives us the out-of-loop estimation of the stability below 150Hz, which is the
unity gain frequency of the ALS loop.
Above 150Hz the loop does not force this noise to the suspension. Just the noise is injected via a residual control gain (<1).

Black: In-loop evaluation of the ALS loop. This becomes the left over noise for the true stability of the arm (for the IR beam).

Red: The arm was brought to the IR resonance using the ALS offset. The out-of-loop stability was evaluated by the IR PDH signal.
This indeed agreed with the evaluation with the other out-of-loop evaluation above (Green) below 150Hz.


Attachment 2 shows the time series data to show how the arm is brought to the resonance.
1 count of the offset corresponds to ~20kHz. So the arm started from 200kHz away from the resonance
and brought to the middle of the resonance.

(Manasa downloaded the 2k sampled data so that we can use this for presentations.)

  8866   Thu Jul 18 01:10:00 2013 kiwamuUpdateGreen LockingALS Y performance with the new whitening filter

 

Awesome !

  8878   Fri Jul 19 12:00:12 2013 manasaUpdateGreen LockingALS Y performance with the new whitening filter

Quote:


(Manasa downloaded the 2k sampled data so that we can use this for presentations.)

 Path to data (retreived using getdata)

/users/manasa/data/130717/YALS_scan

  8886   Mon Jul 22 03:09:51 2013 AnnalisaUpdateGreen LockingY Arm cavity scan

Yesterday and today I was in the lab doing many cavity scan.

First I did many measurement with the cavity aligned in order to get the position of the 00 modes, then I misaligned the beam in many different ways to enhance the higher order modes.

In particular, I first misaligned the mode cleaner to make the beam clipping into the Faraday. To do this, I set to 0 the WFS gain, but I left the autolocker still enabled. In this way, the autolocker couldn't bring the mirrors back to the aligned position.

Then I misaligned also the TT2 to get even more HOMs.

Eventually, Rana came and we misaligned TT1 to clip the beam, and using TT2 we aligned back the beam to the arm.

To increase the SNR, we changed the gain of the TRY PD, setting it to 20dB (which corresponds to a factor 100 in digital scale)

I attached one scan that I did with Rana on Sunday night. I could not upload a better resolution image because the file size was too big, but here's the path to find all of the scans:

../users/annalisa/sweep/Yarm

There are many folders, one per each day I measured. In each folder there are measurements relative to aligned cavity, Pitch and Yaw misalignment.

 RXA EDIT:

The PDA520 used for TRY was set to 0 dB analog gain. This corresponds to ~500 counts out of 32768. The change to 20 dB actually increases the gain by 100. This makes the single arm lock saturate at ~25000 counts (obviously in analog before the ADC). The right setting for our usual running is probably 10 dB.

For the IMC WFS, we had disabled the turn on in the autolocker to use the IMC to steer the beam in the FI, but that was a flop (not enough range, not enough lever arm). In the end, I think we didn't get any clipping.

 

 

  8931   Sun Jul 28 20:13:41 2013 AnnalisaUpdateGreen LockingY Phase tracker calibration

I did a calibration measurement for the Y part of the BeatBox using a Marconi. This is in order to get a more accurate calibration for the arm cavity scan measurement.

The calibration factor I found is:

C1:ALS-BEATX_FINE_PHASE_OUT   50.801 +/- 0.009 deg/MHz

Procedure

During my cavity scan measurement, I had recorded the beat frequency and amplitude from the Spectrum Analyzer at each zero crossing.

I connected the Marconi to the RF in of the Y part of the BeatBox, and I set the Marconi carrier frequency at one of this zero-crossing frequency that I had recorded, while I set the amplitude in way to have on the spectrum analyzer the same beat amplitude that I read during the measurements or, equivalently, in order to have C1:ALS_BEATY_FINE_Q of the order of 1200 (which is the same value I had during my measurements).

I started with

  • Carrier frequency = 80.2 MHz
  • Amplitude = -3dBm

Then I monitored the C1:ALS_BEATY_FINE_I on the oscilloscope and I adjusted the carrier frequency so that I had zero signal on the oscilloscope. Eventually the frequency corresponding to the zero crossing was 79.989 MHz.

I resetted the phase (clear history in the BEATY_FINE_PHASE panel) and I started changing the frequency by steps of 0.2 MHz, and I spanned about 70 MHz (from 32 to 102 MHz).

Resutls

The calibration coefficient I found is not so different from the one that Yuta measured (elog 8199).

Here are the fit parameters:

y = a + bx

a = -4239.7 +/- 0.6 deg

b = 50.801 +/- 0.009 deg/MHz

  9008   Tue Aug 13 21:09:03 2013 manasaUpdateGreen LockingArms ready for ALS

I aligned both the X and Y end green to the arms.

The transmitted green were aligned at the PSL table green optics to the beat PDs.
Beat notes were retrieved.
 
To do:
1. Check Y arm ALS with previous performance.
2. Troubleshoot X arm ALS.
3. Edit the automation scripts for ALS.
4. Modify ALS model to talk to LSC instead of suspension models.
  9014   Thu Aug 15 12:30:17 2013 manasaUpdateGreen LockingLost beat notes

[Koji, Nic, Manasa]

Update from last night.

Koji and I realigned the green optics on the PSL to start working on the ALS.

We set on a beat note search. We couldn't find the beat note between any of the arm green transmission and the PSL green. All we could see was the beat between the X arm and the Y arm green leakage.

Since we had the beatnote between the 2 green transmission beams, we decided to scan the PSl temperature. We scanned the SLOW actuator adjust of PSL; but couldn't locate any beat note. The search will continue again today.

  9015   Thu Aug 15 19:05:07 2013 manasaUpdateGreen LockingALS out of loop noise

Beat notes were recovered for both the arms.

I locked the arms to IR using PDH and measured the ALS out of loop noise at the phase tracker output.

The Y arm has the same 300Hz/rtHz rms. The X arm rms noise measures nearly the same as the Y arm in the 5-500Hz region (X arm has improved nearly 10 times after the last whitening filter stage change  old elog ).

The noise in the ALSX error signals could be related to the bad alignment and conditions at the X end.

  9025   Mon Aug 19 09:36:32 2013 KojiUpdateGreen LockingXend green aligned

[Rana Koji]

This is an elog about the activity on Friday night.

- The X arm green beam was aligned with assist of the ASX system.

- M1 PZT alignment was swept while M2 PZT was under the control of ASX.

- Everytime M1 was touched, M2 was restored by manual alignment so that the REFL beam hits the center of the REFL PD.
  This way we could recover the lock of TEM00. Once TEM00 is recovered, ASX took care of the alignment of M2

- The error signal used by the cavity dither did not give us a good indication where the optimal alignment is.

- Thus the best alignment of M1 had to be manually scanned. The resulting maximum green transmission was ~0.88

- Once the beam was aligned, the out-of-loop stability of the Xarm was measured.
  There has been no indication of the improvement compared to Manasa's measurement taken before our beam alignment.

  9031   Mon Aug 19 14:22:36 2013 ranaUpdateGreen LockingXend green aligned

  9033   Mon Aug 19 16:18:56 2013 manasaUpdateGreen LockingXend green aligned

ASX scripts for PZT dither have been fixed appropriately. Script resides in scripts/ASX.

You can run the scripts from the ASX medm screen now.

  9034   Mon Aug 19 17:40:32 2013 SteveUpdateGreen LockingXend green layout corrections

 Shutter moved, no more clipping.

Pick-off mirror 2" replaced by 1" one. Laseroptik HR 532nm, incident angle 30-45 degrees, AR 532 nm

Green REFL PD moved to 4" close to pick-off mirror. Pd being close to pick-off does not separate multiple reflections on it. I'll replace Laseroptic mirror with Al one. It is not easy to find.

 Hole cut into side wall for doubler oven cable to exit.

 

 

  9035   Mon Aug 19 19:08:35 2013 KojiUpdateGreen LockingXend green layout corrections

- An Aluminum mirror instead of 2" unknown mirror for the pick-off for the rejected beam from the green faraday isolator (Steve)
=> Replaced. To be reviewed

- Faraday mount replacement. Check what we have for the replacement. (Steve)

- The green REFL PD should be closer to the pick-off mirror. (Steve)
=> Moved. To be reviewed

- A beam dump should be placed for the green REFL PD

- Move the green shutter to the place where the spot is small (Steve)
=> Moved. To be reviewed.

- The pole of the PZT mounting should be replaced with a reasonable one. (Steve with Manasa's supervision)

- Tidying up doubling oven cable. Make a hole on the wall. (Steve)
=> Done. To be reviewed.

- Tidying up the PZT cabling (Steve)

- The optics are dirty. To be drag wiped. (Manasa, Masayuki)

  9039   Tue Aug 20 10:59:15 2013 SteveUpdateGreen LockingXend green layout corrections

Quote:

 Shutter moved, no more clipping.

Pick-off mirror 2" replaced by 1" one. Laseroptik HR 532nm, incident angle 30-45 degrees, AR 532 nm

Green REFL PD moved to 4" close to pick-off mirror. Pd being close to pick-off does not separate multiple reflections on it. I'll replace Laseroptic mirror with Al one. It is not easy to find.

 Hole cut into side wall for doubler oven cable to exit.

 

 

 Beam trap for Pd refl is in place. Cabeling is ti·died up.

 Laseroptic 1" mirror is replaced by Al 1" mirror. Problem remains the same. This diffraction patter has to be coming from the Faraday.

  Atm1, good separation when Pd is far 

  Atm2, bad separation when Pd is close 

  9044   Wed Aug 21 00:18:03 2013 MasayukiSummaryGreen LockingX-arm PDH OLTF measurement

[Manasa Masayuki]
Today we measured the openloop transfer function of the PDH green lock of the x-arm.

Edit //manasa// The excitation was given from SR785 source. SR560 was used as the summing node at the PDH servo box output where the loop was broken to measure the OLTF. The SR785 was used to measure the frequency response (CH2/CH1; CH1 A SR560 output and CH2 A PDH servo output) in sweptsine mode.

We measured with two different servo gain. We started with the servo gain of 3 and at that gain the UGF was 1.5 kHz and the phase margin was 50 degree. After that we increase the servo gain to 5.5 and at that gain the UGF was 6.2 kHz and the phase margin was 55 degree. In all the measurement we use the source amplitude of 1.0 mV for all frequencies (from 100 Hz to 100 kHz). We could not increase the gain and also the source amplitude any more because the green was kicked out of lock.

Next work list
1. In the earlier measurements we found the UGF of the PDH green lock of the x-arm as 10 kHz and the phase margin as 45 degree, so we will investigate what has changed from these measurements.elog 4490

2. We will measure the power spectrum of the error signal and the feedback signal.

3. We will calibrate the above signals to compare with ALS out of loop noise.

netgpib was taking forever to transfer data. So the measurements are just photos of the display.

attachment1 - servo gain 3

IMG_1226.JPG

attachment2 - servo gain 5.5

IMG_1228.JPG

  9047   Wed Aug 21 19:37:25 2013 MasayukiSummaryGreen LockingX-arm PDH OLTF measurement

[Manasa, Masyauki]

Today we measured OLTF of PDH green lock of x-arm again. In the previous measurement the excitation signal was injected at the PDH servo box output(elog 9044), but in this measurement we changed the injection point to the RFPD mixer output (just before the servo input).

We measured the OLTF with the servo gain of 6.5 and source amplitude of 5 mV for all frequency band. The measured UGF was 11 kHz and the phase margin was 48 degree.

Next that measurement, we tried to measure the power spectrum density of the error signal and feedback signal. But the alignment was not so good, so we aligned the green light injection point. Tomorrow we will continue the alignment and will measure the PSD.

attatchment1 - OLTF of PDH green lock with servo gain of 6.5

OLTF_PDH_Glock_6_5_2.png

  9054   Thu Aug 22 20:25:28 2013 MasayukiSummaryGreen LockingY-arm PDH OLTF measurement

[Manasa, Masayuki]
We measured the the openloop transfer function of the PDH green lock of the y-arm.The measurement setup was same as yesterday's measurement.elog 9047

In this measurement, the servo gain was 7 and the source amplitude for the excitation was 1 mV. As you can see in below figure, the measured UGF was 15 kHz and the phase margin was 45 degree.

attatchment1 - OLTF with servo gain of 7

OLTF_PDH_Glock_yarm_7.png

  9055   Thu Aug 22 21:16:47 2013 ManasaUpdateGreen LockingGTRY normalized

The Y arm green transmission has been measuring in counts all along. I modified the gain in the ALS-TRY filter module to normalise the transmission.

Transmission has been normalised with GTRY = 1 corresponding to 600 counts. 

  9056   Thu Aug 22 22:05:36 2013 ranaUpdateGreen LockingGTRY normalized

Meh. 600 counts is too weak.  You should fix the electronics so that the maximized green laser transmission gives more like ~10000 counts.

  9083   Wed Aug 28 11:15:02 2013 SteveUpdateGreen LockingXend green layout corrections

Quote:

Quote:

 Shutter moved, no more clipping.

Pick-off mirror 2" replaced by 1" one. Laseroptik HR 532nm, incident angle 30-45 degrees, AR 532 nm

Green REFL PD moved to 4" close to pick-off mirror. Pd being close to pick-off does not separate multiple reflections on it. I'll replace Laseroptic mirror with Al one. It is not easy to find.

 Hole cut into side wall for doubler oven cable to exit.

 

 

 Beam trap for Pd refl is in place. Cabeling is ti·died up.

 Laseroptic 1" mirror is replaced by Al 1" mirror. Problem remains the same. This diffraction patter has to be coming from the Faraday.

  Atm1, good separation when Pd is far 

  Atm2, bad separation when Pd is close 

 The extra high post 3.375"  for PZT is ready. We also have 2 more 2" green Laseroptik mirrors. I'm ready to swap them in.

The  75 mm  focal length  lens  was placed in front of the green REFL PD yesterday.

  9123   Wed Sep 11 23:34:37 2013 MasayukiSummaryGreen LockingALS locking in both arms

[manasa, masayuki]

We locked the XARM and YARM with using ALS control loop and we succeeded to lock stably both arms. The performance of the ALS was tested with a measurement of the calibrated error signal. (attachment 1)

- red and blue : the in-loop noise of ALS of each arm.

- green and purple:Stability of the beat-note frequency with the MC and the arm freely running.

Discussion

In the high frequency region, YARM has larger noise than XARM, and these noises were not there in previous measurements by Koji and Manasa (elog8865). You can see that in both of in-loop noise and free running noise. These noises may be caused by the Green PDH servo or hte phase tracker servo or any other electrical staff. We will start noise budget of these servo.

At higher frequency than UGF of ASL control loop, the loop does not suppress the noises at all, but the inloop and free running noise are not equivalent. I have no idea about that so far.

 

 

 

  9124   Wed Sep 11 23:43:10 2013 KojiSummaryGreen LockingALS locking in both arms

What was the beat freq for each arm?
The HF noise level depends on the frequency of the beat note.
As the BBPD has the freq dependent noise level. (See this entry)

  9125   Thu Sep 12 00:07:26 2013 MasayukiSummaryGreen LockingALS locking in both arms

Quote:

What was the beat freq for each arm?
The HF noise level depends on the frequency of the beat note.
As the BBPD has the freq dependent noise level. (See this entry)

 I'm not sure about the actual number of the beat frequency, but the beat frequency was almost same in both arms. And I took this measurement sometimes with slightly different beat frequency but the noise level didn't change so much.

  9161   Wed Sep 25 23:15:11 2013 MasayukiSummaryGreen LockingFPMI noise caused by ARM locking
I measured some error signal, OLTFs and responses for FPMI noise estimation. Especially we are interested in the noise from in-loop noise of ALS Green PDH control. The strategy and
 
1) Purpose
 Estimation of the FPMI phase shift noise caused by in-loop noise of Green PDH control. 
 
 
2) What we should figure out
 For that estimation we have to figure out the transfer function from the cavity length change to the phase shift which is measured by MICH.
 
 
3) Strategy
 I attached the block diagram of  our interferometer. Our goal is to find the transfer function H_L-l and to calibrate the out of loop noise of interferometer with that TF and error signal of the PDH control.
 H,A and F mean the sensitivity, actuator response and servo filter for each control loop. L_xarm is the disturbance of the cavity length and l- is the differencial motion of the interferometer
fpmibd.pdf
We can get this H_L-l from measurement of the response from calibrated ETM actuation to the MICH error signal. You can get the formula for calculating H_L-l with simple calculation and that is
 
             1 + G_mich       1 + G_xarm      V_mi  
H_L-l = ---------------  -----------------  ------------
              H_mich             A_etmx         V_excetm
 
 
where the each G is OLTF and V_mi/Vexcetm is the response from the ETM actuation to the MICH error signal.
And then  the FPMI noise in the unit of meter / rHz is
 
                           H_L-l
N_fpmi = l_dis + ------------ Vx
                          H_mich
               
This second term is what we are interested in.
 
To estimate these noises
i) We can calibrate the actuators of  ITMX, ITMY and BS with using the MICH as sensor. So we can calibrate the arm error signals by  excitation of arm length using ITMs actuator.
ii) If we know the TFs of arms, we can calibrate the ETMX and ETMY actuators.
iii) We should know the response from ETMX or ETMY actuating to error signal of mich.
iv) Also we should calibrate the error signal of MICH in FPMI locking(H_mich). We can do that by exciting the BS.
 

Then we can estimate the noises.

 
In next entry, I will write about measurement.

 

  9162   Wed Sep 25 23:59:29 2013 MasayukiSummaryGreen LockingFPMI noise caused by ARM locking

 

Measurement with ARMs

i) By locking the MICH with AS55Q signal I measured the actuator response of ITMX ITMY BS for calibration of each actuator. This measurement was done at the same time with elog#9158. The actuator response was
 
BS : 2.2347e-8 / f^2 [m/count]

ITMX: 5.0843e-9 /f^2 [m/count]

ITMY: 4.9677e-9 / f^2 [m/count]

 
 
ii)By locking the Arms for IR with POX,POY. I measured the OLTF and the response from ITM actuation to POX and POY signal. Attachment 1,2 are the plots of fitted OLTF , the measured OLTF, and residual function (model - measure)/model and the attachment 3,4 are the response of each arm. I fitted the three parameters. Those are the gain, time-delay and cavitypole. Each fitted parameter is
 
XARM ;
timedelay:-282.09 usec, cavity pole : 2872.0 Hz
YARM ;
timedelay:-283.84 usec, cavity pole : 2939.9 Hz
 
The cavity pole seems higher than privious measurement (In 2009). Actually the residual function are increase at the higher frequency region than 1kHz, so I guess the fitting is not so good.One possibility is that in the region where cavity pole effect increase we has not much data.
With fitted OLTF and actuator response I calibrated the H_xarm and H_yarm.
 
Hxarm : 2.9796 e11 [count / m]
Hyarm : 6.1394 e11 [count / m]
 
iii) After that I measured the response from ETM actuation to POX and POY signal to calibrate the ETM actuator. The response of each actuator is
 
ETMX:1.2040e-8 / f^2 [m/count]

ETMY:1.4262e-8 / f^2 [m/count]
 
iv) I calibrated the error signal with OLTF and Hxarm,Hyarm. The result is in Attachment 5

 In high frequency region there is the difference between xarm and yarm. These difference are already there in error signal. I'm not sure where these noise comes from. We will make measurement with Green PDH from tomorrow, so  we can also check with those measurement.

In other region the two noises are very close and also very similar to the plot of the seismic motion in the control room (attached on the front of TV screen).

  9163   Thu Sep 26 01:49:28 2013 MasayukiSummaryGreen LockingFPMI noise caused by ARM locking

 

 Measurement with FPMI


i)By locking the FPMI with AS55Q and arms using POX,POY we measured  the OLTF on AS55Q, the response from BS actuation to error signal on AS55Q  for H_mich. The fitted,  measured OLTF and the residual function is in attachment1. I fitted two parameters and they are time-delay and the gain. The time delay is -275 usec. The time delay in three different control are almost same. The response from BS to AS55Q is in attachment 2.


With these two measuremets, I calclated the H_mich in FPMI. This H_mich should be different from simple MI because the cavity  refrectivity is different from the front mirror. Acrually it changed and the value was
Hmich = 4.4026e7

ii) I excited the ETMX and ETMY and measure the response from actuation to the error signal of MICH on AS55Q. The response is in attachment 3 and 4. from these result I calculated the H_L-l by using the formula as I mentioned. The value was
H_Lx-l = 175.7650 (XARM)
H_Ly-l = 169.8451 (YARM)

iii) I measured the error signal of MICH and XARM and YARM and with measured H_L-l, I estimated the FPMI noise caused by ARM locking. You can see in the higher frequency region than 10 Hz is dominated by noise caused by ARM control in-loop noises. 150 Hz and 220Hz are the UGF of each arms, so the two peaks are caused by arm control. You can see the small difference between FPMI noise and  noise from arms. There are two possibilities, one is that these measurement is not same time measurement so they should have small difference. and  other possibility is the error of the caliculation. But I think it doesn't look so bad estimation.

 

Next step

We will do same measurement with lock the arms the ALS system on tomorrow. Then we will check the PDH servo or other noise source and investigate the ALS system

  9170   Fri Sep 27 16:02:23 2013 manasaUpdateGreen LockingY arm ALS phase tracking loop gain changed

[Masayuki, Manasa]

While trying to lock the arms using ALS we found that the locks were not very stable and the in-loop noise was higher than seen before.

I looked into things and checked the out-of loop noise for ALS and found that the Y arm ALS noise (rms) was higher than the X arm.

To troubleshoot, I measured the OLTF of the phase tracking loop. While X arm was healthy, things weren't looking good for the Y arm. Sadly, the Y phase tracking loop gain was set too high with a phase margin of -2 degrees. We brought down the gain from 300 to 150 and set the phase margin close to ~55 degrees.

X arm Phase tracker loop:
UGF = 1.8 K Hz
Phase margin = 50 degrees

Y arm Phase tracker loop:
UGF = 1.6 KHz
Phase margin = 55 degrees

  9171   Fri Sep 27 20:28:10 2013 manasaUpdateGreen LockingALS servo

[Masayuki, Manasa]

I. ALS servo loops
After fixing things with the phase tracking loop, we checked if things were good with the ALS servo loops.
We measured the OLTF of the X and Y arm ALS servo loops. In both cases the phase margin was ~20 degrees. There was no room to set enough phase margin. So we looked at the servo filters. We tried to modify the filters so that we could bring enough phase margin, but could not get at it. So we put back the old filters as they were.

 attachment1: OLTF of the ALS XARM and YARM control loops

attachment2: Current phase budget. FM4 and FM10 are the boost filters.

II. ALS in-loop noise
Also, I found that the overall noise of the ALS servo has gone up by about two orders of magnitude (in Hz/rtHz) over the whole range of frequencies for both the arms from the last time the measurements were made. I suspect this could be from some change in the calibration factor. Did anybody touch things around that could have caused this? Or can somebody recollect any changes that I made in the past which might have affected the calibration? Anyways, I will do the calibration again.

 

 

  9176   Mon Sep 30 17:55:45 2013 manasaUpdateGreen LockingX and Y arm transmission needs to be decoupled

[Masayuki, Manasa]

Problem
We wanted to lock both the arms using ALS and get IR to resonate while arms are held using ALS. The X arm was locked using ALS and offsetter2 was used to scan the arm and find IR resonance. The Y arm was locked using ALS. But as the Y arm was brought closer to IR resonance, the X arm ALS loses lock. (attachment 1)

Discussion
We believe that this comes from the X and Y transmission not being well separated at the PSL table. The PBS is not sufficient to decouple them (A strong beatnote ~35dB between the X and the Y arm green lasers can be seen on the spectrum analyzer).

Solution
Decouple the X and Y arm transmitted beams at the PSL table. I am trying to find a wedged mirror/window that can separate the 2 beams at the PSL table before the beat PD (sadly the laseroptik HR532nm optics have no wedge)

 

  9178   Mon Sep 30 23:56:19 2013 manasaUpdateGreen LockingALS autolocker flowchart

[Masayuki, Manasa] 

Flowchart for ALS autolocker. The error signal thresholds will be decided by trial and error.

 ALSautolocker.png

  9179   Tue Oct 1 09:51:10 2013 ranaUpdateGreen LockingALS autolocker flowchart

  I think we can use the IMC autolocker to start with getting this started. Once Jamie fixes the NDSSERVER environment variable bug, we should be able to use his more slick automation code to make it auto lock.

  9183   Tue Oct 1 17:14:53 2013 masayukiUpdateGreen LockingALS servo filters modified

 

 [Manasa, Masayuki]

[revised at 10/1 pm 5:00]

As we mentioned in previous entry (elog#9171), the phase margin of ALS control was at most 20 degree. We modified the filter of C1ALS_XARM and C1ALS_YARM. The OLTF is in attachment1. Now the phase margins of both arms are more than 35 degree. I modified the FM5 filters of both servo.

FM5 filter is the filter for the phase compensation. It had the one pole at 1000 Hz and one zero at 1Hz. As you can see in attachment2, it start to lose the phase at 50 Hz. But the UGF of our ALS control loop is higher than 100 Hz, so I changed the pole from 1 kHz to 3 kHz in order to get more phase margin at UGF. The new servo have 10dB larger gain than previous filter at higer than 1kHz, but the control loop do nothing in that region, so it's no problem.

We have phase lag between 2 arms. I used same filters for both arms, so I'm wondering where these phase lag came from.

 

  9195   Thu Oct 3 09:01:06 2013 manasaUpdateGreen LockingALS high frequency noise

 As I was trying to solve the 2 arm ALS problem, I found the Y arm ALS not so stable AGAIN :( . I measured the in-loop noise of the X arm as ~400Hz/rtHz (60 picometers).

I went ahead and checked the out of loop noise of the ALS and found there is some high frequency noise creeping in above 20Hz for the Y arm ALS (blue curve). I checked the UGFs and phase margins of the phase tracker loops and found they were good (UGF above 1.4KHz and phase margins between 40 and 60 degrees).

So the suspect now is the PDH servo loop of both the arms which has to be checked.

Attached is the out-of loop noise plots of X and Y arm ALS.

  9197   Thu Oct 3 10:29:03 2013 masayukiUpdateGreen LockingNew ALS autolocker flowchart

 

 [Manasa, Masayuki]

We made a new flowchart of ALS autolocker. We added the additional step to find the beat note frequency. We have to find a way to read the PSL temperature. By reading the PSL temperature we can decide the sweep range for the end green laser temperature with the curve which measured in previous measurement (in this entry)

We have three thresholds of error signal. One is the threshold for checking the arms are stabilized or not. It should be some hundreds count. Another threshold is to check that the suspensions are not kicked. This should be some thousands counts (in flow chart, it is 2K counts). The other is to check the optimal servo gain. If the servo gain is too high, the UGF is also too high and we will not have enough gain margin. The error signal start to oscillate at the UGF. We will check this oscillation and find the optimal gain. In flow chart this threshold is 1K counts.

ELOG V3.1.3-