40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 147 of 344  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  4901   Tue Jun 28 16:52:37 2011 SonaliUpdateGreen LockingRouting of fibre to PSL complete.

1. Suresh and I completed the alignment of the fibre and the three mirrors on the ETMY table.

2. We managed to get an output beam power of around 60% using the Ophir(Orion/PD) power meter to finetune the alignment. The power of the input beam is 74.4 mW and of the output beam is 38.5 mW.

3. The coupler on the output side of the fibre which had been put there to help in the alignment has been removed.

4. The picture of the ETMY layout as of now has been attached.

5. The labels A stands for the mirror used to turn the beam direction and B and C stand for the three mirrors used in the alignment of the beam into the coupler,D.(attachment 3).

6. The fibre we used is 50m in length which was barely sufficient to reach the PSL table.

7. So, the fibre has been routed to the PSL table using the fibre tray running below the Y-arm tube as this was the shortest route possible(even though it is a rather acccident prone zone).

8. The fibre has been tied down at regular intervals so that it does not get snagged and pulled up inadvertently.

9. We will start with the preparation of the layout of the PSL table to superpose the two beams on Monday.

  4977   Fri Jul 15 17:42:21 2011 SonaliUpdateGreen LockingPSL layout for superposition of the PSL,ETMX and ETMY beams.

The fibres carrying the beams from the ETMX as well as the ETMY have been routed to the PSL table now.

A part of the PSL beam has to be superposed on the fibre-outputs to obtain a beat signal. We have located a stray beam on the PSL(which is currently being dumped) which we plan to redirect for the same. The layout of the plan is attached herewith.

  4997   Wed Jul 20 10:10:19 2011 SonaliUpdateGreen LockingWeekly summary

 I finished wih the set-up at the ETMY table. Instead of the neutral Density Filter , I put in a mirror(Y1-1037-45S)  which is reflective for IR , so that only 1% of the light is incident on the fibre  as per Rana's suggestion.

Now, the power incident on the fibre is measured to be 6 mW and the power measured out of the fibre is 2.76 mW after the necessary alignments.

On the PSL able, I have routed the beam that is coming out of the back of the PMC(instead of the dumped light from the oven to prevent any light from reflecting back into the laser), to the area where I am putting the set-up for the superposition of the PSL and the ETMX and ETMY beams.

Today I will proceed with the layout.

  5039   Wed Jul 27 01:57:28 2011 SonaliUpdateGreen LockingWeekly Summary

1. I have used the PMC  trans beam in my set-up as the required PSL beam.

2. I have superposed the ETMX-Fibre output with the PSL beam on the PSL table.

3. I have used suitable beam splitters and lens to match the power and the  sizes of the overlapping beams and have aligned them to the optimum.

4. A lens having f=7.6 cms is used to focus the beam into the PD.

5. Initially, I used the broadband 1611 NewFocus PD to find the IR beat signal by scanning the oven temperature. (using the digital sitemap controls.)

6. I checked the previous elog entries by Suresh and Koji on the green beat signal they had worked on and used their data to get an idea of the temperature range of the oven where I could obtain a beat.

7. I obtained peaks at three different temperatures as had been noted previously and set the temperature so that I am now sitting in the middle stable regime.

8. Then I switched to the 1811 100 MHz PD as it has a larger gain. It has a saturation power of 100 microWatts. The input power at the PD is measured to be 80 microWatts.

9. I was having trouble getting a clean peak due to presence of many harmonics as seen on the spectrum analyser. This happened because there was too much power incident on the PD which led to arising of non-linearity giving rise to harmonics.

10.To reduce the power entering the PD, I put in a ND 1.0 Filter just before the beam enters the PD and obtained a clean signal.

11. I will use  the frequency counter tomorrow to check the resonant frequency and try to connect the output to acquire a digital signal.

12. Otherwise I will proceed to build a Mixer Frequency Discriminator.

13. After the feed-back loop is completed, I will proceed to compare the frequency-noises of the green-beat lock and the IR-beat lock.

  5052   Thu Jul 28 13:51:00 2011 SonaliUpdateGreen LockingZHL-32A-S.

Initially I was using RFPD-1611to get the IR beat frequency. Its gain was not very high, so I was getting a very low signal of power -37 dBm.

I used ZHL-32A-S with a gain of 25 dBm to amplify it before feeding it into the spectrum analyser.

I connected the ground of the amplifier circuit to the red of the power supply, which blew the amplifier.

I learnt that there is a small tab indicating the ground side of the BNC to banana connectors which I should have noticed.

I learnt to plug in the side with th little tab on it into the ground of the power supply. (Learnt it the hard way I guess!!)

 

 

  5057   Thu Jul 28 19:49:12 2011 SonaliUpdatePSLPMC trans beam aligned.

Kiwamu and I aligned the PMC transmitted beam the incident beam going to PMC today.

I learnt how to lock the PMC using the digital controls.

  1695   Wed Jun 24 11:20:40 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I have created the attached EOM circuit with resonances at 11 MHz, 29.5 MHz, and 55 MHz (the magnitude and phase of the voltage across the EOM are shown in the attached plot). The gain is roughly the same for each resonant peak. Although I have managed to get the impedances at all of the resonant frequencies to equal each other, I am having more trouble getting the impedances to be 50 Ohms (they are currently all around 0.66 Ohms).

For the current circuit, initial calculations show that we will need around 4.7 - 14.2 A of current to drive the EOM at the desired voltage (8 - 24 V); this is much higher than the current rating of most of the available transformers (250 mA), but the necessary current will change as the impedance of the circuit is corrected, so this is probably not a cause for concern. For example, the necessary driving voltages for the current circuit are (2.8 - 8.5 V); if we assume that the 50-Ohm impedance will be purely resistive, then we get a current range of 56 - 170 mA.

  1711   Wed Jul 1 11:00:52 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

Since last week, I have come up with a new circuit, which is shown in the attached figure. The magnitude (solid) and phase (dashed) of the voltage across the EOM (red), the ratio between the voltage across the EOM and the voltage across the primary nodes of the transformer (blue), and the impedance through the primary port of the transformer (red) are also shown in an attached figure. As can be seen on the plot, resonance occurs at 11 MHz, 29.5 MHz, and 55 MHz, as specified. Also, at these resonant frequencies, the impedance is about 50 Ohms (34 dB). The gain between the voltage across the EOM and the voltage across the primary nodes of the transformer (or output of the crystal oscillator) is about 12 dB; we'd like a higher gain than this, but this gain is primarily governed by the ratio between the secondary and primary inductances in the transformer, and we are using the largest available ratio (on the Coilcraft website) that has the necessary bandwidth. Because of this, we will likely have to add another component between the crystal oscillator and the EOM circuit, to get the voltage to the desired 8.5 Vp across the EOM (for an optical modulation depth of 0.1 rad).

The current and power through the primary port of the tranformer are 43-85 mA and 25-92 mW, respectively. Since the transformer ratings are 250 mA and 1/4 W for current and power; these values should be safe to use with the intended transformer. Also, the highest power dissipated by a resistor in the circuit (not including the 50 Ohm resistor that is part of the crystal oscillator setup) is around 74 mW.

  1719   Wed Jul 8 10:56:04 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

This week, I've been working on adapting the last week's circuit to make it buildable. Mostly this has involved picking components that are already in the lab, adding tunable components when necessary, and planning roughly how the components should be laid out on a board. I then built the circuit and put it in a box with BNC connectors for easy connection during testing. A picture of the built circuit is attached.

For initial testing, the transformer was removed from the design; since this changed the response of the circuit, I added two resistors to correct the response. A figure showing a schematic of the built circuit is attached. The expected responce of the circuit is also shown; the magnitude (solid) and phase (dashed) of the voltage across the EOM are shown in green, and the impedance of the circuit is shown in blue. While this response has sharp peaks and 50 Ohms (34 dB) of impedance at resonances, the gain is low compared to the circuit with the transformer. This means that, as is, this circuit cannot be used to drive the EOM; it is simply for testing purposes.

  1748   Wed Jul 15 12:11:17 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

This week I've been working on testing the first version of the prototype circuit. Initially, I tested the circuit that I built last week, which had resistors in the place of the transformer. The magnitude and phase of the transfer function, as measured by the Agilent 4395A, are shown in the attached plot (first plot, MeasuredTransferFunction_R.jpg). The transfer function doesn't look like the simulated transfer function (second plot, BuiltCkt_ExpectedResponse.png), but I think I see the three peaks at least (although they're at the wrong frequencies). I spent some time trying to recreate the actual transfer function using LTSpice, and I think it's reasonable that the unexpected response could be created by extra inductance, resistance, capacitance and interaction between components.

When the transformer arrived  yesterday, I replaced the resistors in the circuit with the transformer, and I have measured the following response (last plot, MeasuredTransferFunction.jpg). The gain is much lower than for the circuit with the resistors; however, I am still trying to track down loose connections, since the measured transfer function seems very sensitive to jiggled wires and connections.

Meanwhile, the parts for a flying-component prototype circuit have been ordered, and when they arrive, I'll build that to see if it works a little better.

  1754   Wed Jul 15 18:35:11 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

Using FET probes, I was able to measure a transfer function that looks a little more like what I expected. There are only two peaks, but I think this can be explained by a short between the two capacitors (and two tunable capacitors) in the LC pairs, as shown (in red) in the circuit diagram attached. The measured transfer function (black), along with the simulated transfer functions with (red) and without (blue) the short are shown in the attached plot. The measured transfer function doesn't look exactly like the simulated transfer function with the short, but I think the difference can be explained by stray impedances.

  1775   Wed Jul 22 11:08:36 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I have built a version of the circuit with flying components; the completed circuit is shown in the attached picture. I built the circuit in segments and measured the transfer function after each segment to see whether it matched the LTSpice simulation after each step. The segments are shown in the circuit diagram.

After building the first segment, the measured transfer function looked pretty much the same as the simulated transfer function; it appears shifted in the attached plot, but this is because I didn't do a careful job of tuning at this point, and I'm relatively sure that I could have tuned it to match the simulation. After adding the second segment of the circuit, the measured and simulated transfer functions were similar in shape, but I was unable to increase the frequency of the peaks (through tuning) any more than what is shown in the plot (I could move the peaks so that their frequency was lower, but they are shown as high as they will go). When I added the final segment to complete the circuit, the measured and simulated transfer functions no longer had the same shape; two of the peaks were very close together and I was barely able to differentiate one from the other.

In order to understand what was happening, I tried making modifications to the LTSpice model to recreate the transfer function that was measured. I was able to create a transfer function that closely resembles the measured transfer function in both the circuit as of the 2nd segment and the completed circuit by adding extra inductance and capacitance as shown in red in the circuit diagram. The transfer functions simulated with these parasitic components are shown in red in both plots. While I was able to recreate the response of the circuit, the inductance and capacitance needed to do this were much larger than I would expect to occur naturally within the circuit (2.2uH, 12 pF). I'm not sure what's going on with this.

  1787   Fri Jul 24 17:47:52 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

After speaking with Rana and realizing that it would be better to use smaller inductances in the flying-component circuit (and after a lot of tinkering with the original), I rebuilt the circuit, removing all of the resistors (to simplify it) and making the necessary inductance and capacitance changes. A picture of the circuit is attached, as is a circuit diagram.

A plot of the measured and simulated transfer functions is also attached; the general shape matches between the two, and the resonant frequencies are roughly correct (they should be 11, 29.5, and 55 MHz). The gain at the 55 MHz peak is lower than the other two peaks (I'd like them all to be roughly the same). I currently have no idea what the impedance is doing, but I'm certain it is not 50 Ohms at the resonant peaks, because there are no resistors in the circuit to correct the impedance. Next, I'll have to add the resistors and see what happens.

  1804   Wed Jul 29 12:00:49 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

For the past couple of days I have been trying to understand and perform Koji's method for impedance measurement using the Agilent 4395A Network Analyzer (without the impedance testing kit). I have made some headway, but I don't completely understand what's going on; here's what I've done so far.

I have made several transfer function measurements using the attached physical setup (ImpedanceTestingPhysicalSetup.png), after calibrating the setup by placing a 50 Ohm resistor in the place of the Z in the diagram. The responses of the various impedances I've measured are shown in the attached plot (ImpResponses.png). However, I'm having trouble figuring out how to convert these responses to impedances, so I tried to derive the relationship between the measured transfer function and the impedance by simplifying the diagram Koji drew on the board for me (attached, ImpedanceTestingSetup.png) to the attached circuit diagram (ImpedanceTestingCktDiagram.png), and finding the expected value of VA/VR. For the circuit diagram shown, the equation should be VA/VR = 2Z/(50+Z). 50 Ohms is good to use for calibration because the expected value of the transfer function for this impedance is 1 (0 dB).

So I used this relationship to find the expected response for the various impedances, and I also calculated the impedance from the actual measured responses. I've attached a plot of the measured (red) and expected (black) response (top) and impedance (bottom) for a 1 nF capacitor (1nF.png). The expected and measured plots don't really match up very well; if I add extra inductance (7.6 nH, plots shown in blue), the two plots match up a little better, but still don't match very well. I suspect that the difference may come from the fact that for my analysis, I treated the power splitter as if it were a simple node, and I think that's probably not very accurate.

Anyway, the point of all this is to eventually measure the impedance of the circuit I created on Friday, but I don't think I can really do that until I understand what is going on a little better.

  1815   Fri Jul 31 09:52:38 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I was able to make an impedance measurement of the flying-component circuit using Koji's method for impedance measurement. I first measured the impedance of the circuit with a 10 pF capacitor in the place of the EOM (as shown in the circuit diagram). This impedance plot is attached. I then added resistance to adjust the impedance slightly, attached the circuit to a New Focus KTP 4064 EOM, and took another impedance measurement (circuit diagram and impedance plot attached). The peaks are relatively close to 50 Ohms; they are at least the same order of magnitude.

  1816   Fri Jul 31 11:04:42 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I put the flying-component circuit in a box; a photo is attached. I also measured the impedance; it looks exactly the same as it looked before I put the circuit in the box.

  1834   Wed Aug 5 11:49:49 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I have spent the past couple of days gathering optics and mounts so that I can observe the modulation of the EOM attached to the circuit I built using the optical spectrum analyzer (OSA). A rough diagram of the planned layout is attached.

I also built a short SMA cable so that the EOM did not have to be connected directly to the circuit box. The cable is shown attached to the EOM and circuit box in the attached photo. After checking to make sure that all of the connections in the cable were sound, I remeasured the input impedance of the circuit; the impedance measurement (black) is shown in the attached plot with the impedance before the SMA cable was added with and without the box (green and blue, respectively--these two are almost identical). The new impedance has a strange shape compared to the original measurements; I'd like to understand this a little better, since adding extra inductance in LTSpice doesn't seem to have that effect. Since I had already taken apart the setup used for the previous impedance measurements, I had to rebuild and recalibrate the setup; I guess the difference could be something about the new calibration, but I don't really think that that's the case.

  1835   Wed Aug 5 15:18:12 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

Quote:

I have spent the past couple of days gathering optics and mounts so that I can observe the modulation of the EOM attached to the circuit I built using the optical spectrum analyzer (OSA). A rough diagram of the planned layout is attached.

I also built a short SMA cable so that the EOM did not have to be connected directly to the circuit box. The cable is shown attached to the EOM and circuit box in the attached photo. After checking to make sure that all of the connections in the cable were sound, I remeasured the input impedance of the circuit; the impedance measurement (black) is shown in the attached plot with the impedance before the SMA cable was added with and without the box (green and blue, respectively--these two are almost identical). The new impedance has a strange shape compared to the original measurements; I'd like to understand this a little better, since adding extra inductance in LTSpice doesn't seem to have that effect. Since I had already taken apart the setup used for the previous impedance measurements, I had to rebuild and recalibrate the setup; I guess the difference could be something about the new calibration, but I don't really think that that's the case.

 

After investigating this a bit further, I discovered that some of the components in the circuit were pressed firmly up against the inside of the box, and when they were moved, the impedance plot changed shape dramatically. I think that originally, the components were not pressed against the box, but the box's SMA joint was rather loose; when I connected this to the SMA cable, I tightened it, and this seems to have twisted the circuit around inside the box, pushing the components up against the side. I have fixed the twisting, and since the SMA joint is now tight, the circuit should no longer have any twisting problems.

A new plot is attached, showing the impedance of the circuit with nothing attached (blue), with the SMA cable and EOM attached (green), and with the EOM attached directly to it taken last friday with the old calibration of the setup (red). All three curves look roughly the same; the center peak is shifted slightly between the three curves, but the circuit with SMA and EOM is the version we'll be using, and it's central peak is close to the correct value.

  1848   Thu Aug 6 19:54:04 2009 StephanieUpdatePSLHEPAs back to normal

Quote:

Stephanie has needed the doors to the PSL open all day, and still has them open, so I just turned the HEPAs on high. 

 

 

I turned the HEPAs back down to ~50.

  1886   Tue Aug 11 14:15:28 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I was able to observe the three sets of modulation sidebands created by the EOM + triply resonant circuit yesterday. Quantitative results will be posted later.

  1891   Wed Aug 12 12:08:16 2009 StephanieUpdateGeneralMultiply Resonant EOM Update

I measured the magnitude of modulation as a function of frequency using the optical spectrum analyzer and an oscilloscope while generating signals using a Marconi signal generator; the results are shown in the attached plot and are compared to the expected modulation given the measured transfer function of the circuit and the nominal modulation index of the EOM used (13 mrad/V). Using the oscilloscope, I found the resonant peaks to be at 11.11 MHz, 29.57 MHz, and 54.70 MHz. There are several different colors on the plot; this is because I had to take the data in several different segments and had to switch to measuring a different sideband partway through the measurment. I also separately found the modulation at each resonant peak for each sideband. The magnitude of modulation was measured  by finding the ratio between the magnitude of the carrier and sideband powers using an oscilloscope, and calculating the magnitude of modulation from this. This method was also used to quantify the dependence of modulation magnitude on input power at each resonant peak; these results are also attached. These same results can also be plotted as modulation magnitude as a function of voltage into the resonant circuit; this is also attached (I'm not sure which is more useful).

In order to produce these results (get the measurements in mrad/V) it was necessary to measure the gain of the amplifier. I used the signal generator to input signals of varying power and measured the output signal voltage using the oscilloscope; I then repeated this process at each resonant frequency. From this I was able to calculate the gain of the amplifier to be 28.1 dB at 11.11 MHz, 27.4 dB at 29.57 MHz, and 25.7 dB at 54.70 MHz. These values are in the same ballpark as the values in the Mini Circuits data sheet (all values are ~25-28 MHz).

  16318   Thu Sep 9 09:54:41 2021 StephenSummaryBHDBHD OMC invacuum wiring - cable lengths

[Koji, Stephen - updated 30 September]

Cable lengths task - in vacuum cabling for the green section (new, custom for 40m) and yellow section (per aLIGO, except likely with cheaper FEP ribbon cable material) from 40m/16198. These arethe myriad of cables extending from the in vacuum flange to the aLIGO-style on-table Cable Stand (think, for example, D1001347), then from the cable stand to the OMCs.

a) select a position for the cable stand.

 - Koji and I discussed and elected to place in the (-X, -Y) corner of the table (Northwest in the typical diagram) and near the table edge. This is adjacent to the intended exit flange for the last cable.

b) measure distances and cable routing approximations for cable bracket junctions

- Near OMC bracket to the cable stand, point to point = 17.2, routing estimate = 24.4.
- Far OMC bracket to the cable stand, point to point = 20.5, routing estimate = 32.2.

  - Recommendation = 48" for all green section cables (using one length for each OMC, with extra slack to account for routing variation).

c) (outdated - see item (b) and attachment 3) measure distances (point to point) and cable routing approximations for all items.

 +X OMC (long edge aligned with +Y beam axis) (overview image in Attachment 1)

- QPDs to the cable stand, point to point = 12, routing estimate = 20.
- DCPDs to the cable stand, point to point = 25, routing estimate = 32.
- PZTs to the cable stand, point to point = 21, routing estimate = 32.

+Y OMC (long edge aligned with +Y beam axis) (overview image in Attachment 1)

- QPDs to the cable stand, point to point = 16, routing estimate = 23.
- DCPDs to the cable stand, point to point = 26, routing estimate = 38.
- PZTs to the cable stand, point to point = 24, routing estimate = 33.

Cable stand to flange (Attachment 2) (specific image in Attachment 2)

- point to point = 35, routing estimate = 42

  - Recommendation = 120" for all yellow section cables, per Koji's preferences for zigzag cable routing on stack and coiling of slack.

  16370   Fri Oct 1 12:12:54 2021 StephenUpdateBHDITMY (3002) CAD layout pushed to Box

Koji requested current state of BHD 3D model. I pushed this to Box after adding the additional SOSs and creating an EASM representation (also posted, Attachment 1). I also post the PDF used to dimension this model (Attachment 2). This process raised some points that I'll jot down here:

1) Because the 40m CAD files are not 100% confirmed to be clean of any student license efforts, we cannot post these files to the PDM Vault or transmit them this way. When working on BHD layout efforts, these assemblies which integrate new design work therefore must be checked for most current revisions of vault-managed files - this Frankenstein approach is not ideal but can be managed for this effort. 

2) Because the current files reflect the 40m as built state (as far as I can tell), I shared the files in a zip directory without increasing the revisions. It is unclear whether revision control is adequate to separate [current 40m state as reflected in CAD] from [planned 40m state after BHD upgrade]. Typically a CAD user would trust that we could find the version N assembly referenced in the drawing from year Y, so we wouldn't hesitate to create future design work in a version N+1 assembly file pending a current drawing. However, this form of revision control is not implemented. Perhaps we want to use configurations to separate design states (in other words, create a parallel model of every changed component, without creating paralle files - these configurations can be selected internal to the assembly without a need to replace files)? Or more simply (and perhaps more tenuously), we could snapshot the Box revisions and create a DCC page which notes the point of departure for BHD efforts?

Anyway, the cold hard facts:

 - Box location: 40m/40m_cad_models/Solidworks_40m (LINK)

 - Filenames: 3002.zip and 3002 20211001 ITMY BHD for Koji presentation images.easm (healthy disregard for concerns about spaces in filenames)

  2130   Wed Oct 21 16:18:12 2009 SteveSummarySAFETYLIGO Safety Officers visited the 40m

David Nolting, chief LIGO Safety Officer and his lieutenants from LLO and LHO paid homage to the 40m lab this morning.

They give us a few recommendation: update safety documents, move optical table from the front of ETMX-rack and label-identify absorbent plastics on enclosure windows-doors.

We'll correct these short comings ASAP

 

  6254   Fri Feb 3 20:58:56 2012 SteveConfigurationGeneralIlluminator Picture
  7172   Tue Aug 14 08:43:42 2012 SteveUpdateIOOlaser off and on

The janitor accidentally hit the laser emergency kill switch at room 103  entry door. It did shut down the PSL laser. The laser was turned back on.

  7178   Tue Aug 14 14:26:40 2012 SteveUpdateCamerascameras touched up

 I optimized the TM views with illuminator light on quad1  It actually looks better there.

I'll post a dark-  OSEM light only in jpg tomorrow.  ETMY camera is malfunctioning in dark condition now.

 

  7215   Fri Aug 17 08:33:46 2012 SteveUpdateCamerasvideo cameras in the dark

Quote:

 I optimized the TM views with illuminator light on quad1  It actually looks better there.

I'll post a dark-  OSEM light only in jpg tomorrow.  ETMY camera is malfunctioning in dark condition now.

 

ALL  illuminator lighting are off. ITMX and ETMY looks back lighted. I will check on their apertures.

In order to focus on 1064 resonant spots I tried to restore and align the arms  by script. I only got flashes.

  7217   Fri Aug 17 10:38:15 2012 SteveUpdateCamerasvideo cameras in the dark
> I used the LED illuminations at ETMX and BS yesterday for a tour.
> I am afraid that I left them on.

It was turned off before the picture was taken.
All LED illuminations were turned off. I checked them a few times.
  7232   Mon Aug 20 09:49:01 2012 SteveUpdateCamerasvideo cameras in the DARK

Quote:

 The problem with the glow on the ETMY face is due to the red light being scattered off of the optical table from the HeNe laser for the OL. Why is the red light hitting the table?

One way to fix the problem for the camera image is to insert a long pass filter (if Steve can find one).

 Edmund Optics: NT62-874

 Edmund Optics: NT65-731

Edmund Optics: NT32-759 

 

 Atm1, condition: all oplev lasers are off or blocked, green shutters are closed at the ends, PSL out put shutter is closed, all outside LED illuminating are off, all room lights are off

                         Only the OSEMs are on. ETMY and ITMX are still look like illuminated.

Atm2, condition: open PSL shutter. ETMY at 11 o'clock  and ETMX 1 o'clock bright scattered spot of 1064 nm are visible

Atm3, condition: closed PSL shutter and restored all oplev He/Ne lasers, it is visible at ETMY

Next: I will disconnect power to OSEMs at ETMY

  7233   Mon Aug 20 11:36:44 2012 SteveUpdateSUSETMX is not happy

ETMX has some periodic oscillation. It's damping was found tripped this morning. 

  7242   Tue Aug 21 09:14:01 2012 SteveUpdateSUSoplevs centered

Oplevs centered in flashing condition, except PRM and SRM.  IP POS centered also,

I like this new summing screen of Jenne.

  7244   Tue Aug 21 15:26:04 2012 SteveUpdatePEMtemp sensor for vacuum

Temperature sensor for vacuum. How many : 2 or 3 ?  $350 each

Glass encapsulated thermistor #55007  with Ceramabond 835-m glued onto spade connector and hooked up to controller DP25-TH-A with analoge output.

This zero to 10Vdc can go to ADC

  7254   Thu Aug 23 10:08:13 2012 SteveUpdatePEMseismometers?

Quote:

It seems as though there is something funny going on around ~1.5 Hz, starting a little over an hour ago.

We see it in the BLRMS channels, the raw seismometer time series, as well as in various suspensions and LSC control signals.  It's also pretty easy to see on the camera views of all the spots (MC, arms, transmissions....AS is a little harder to tell since it's flashing, but it's there too).

The plots I'm attaching are only for ~10min after the jump happened, but there has been no change in the BLRMS since it started.  Usually, we'd see an earthquake in all the channels, and even big ones ring down after a little while.  This is concentrated at a pretty narrow frequency (some of Den's plots for later have this peak), and it's not ringing down, so it's not clear what is going on.

Here is a whole pile of plots.  Recall that the T-240 is plugged into the "STS_3" channels, and we don't have BLRMS for it, so you can look at the time series, but not any frequency specific stuff.

Atm1,  I'm not sure about the seismic data.   Baja earthquake magnitude 3.0 at  yesterday morning.Seismometers do not see them !

Atm2,  No posted seismic activity.  Someone is jump walking in the lab? Why are there time delays between the suspensions?

  7255   Thu Aug 23 10:38:12 2012 SteveUpdateGeneralvent prepartion for fast-track vent

Quote:

We are discussing venting first thing next week, with the goal of
diagnosing what's going on in the PRC.

Reminder of the overall vent plan:

https://wiki-40m.ligo.caltech.edu/vent

Since we won't be prepared for tip-tilt installation (item 2), we should
focus most of the effort on diagnosing what's going on in the PRC.  Of
the other planned activities:

(1) dichroic mirror replacement for PR3 and SR3

  Given that we'll be working on the PRC, we might consider going ahead
  with this replacement, especially if the folding mirror becomes
  suspect for whatever reason.  In any case we should have the new
  mirrors ready to install, which means we should get the phase map
  measurements asap.

(3) black glass beam dumps:

  Install as time and manpower permits.  We need to make sure all needed
  components are baked and ready to install.

(4) OSEM mount screws:

  Delay until next vent.

(5) new periscope plate:

  Delay until next vent.

(6) cavity scattering measurement setup

  Delay until next vent.

 Bob is back. Cleaning and baking all our posts and clamps. They will be ready for use Tuesday next week. Therefore beam dumps will be available for installation.

  7268   Fri Aug 24 09:21:45 2012 SteveUpdateIOOMC2 damping restored

Quote:

I turned on some filters and gain in the SUS-MC2_MCL filter bank tonight so as suppress the seismic noise influence on MC_F. This may help the MC stay in lock in the daytime.

Koji updated the mcdown and mcup scripts to turn the MCL path on and off and to engage the Boost filters at the right time.

The attached PNG shows the MCL screen with the filters all ON. In this state the crossover frequency is ~45 Hz. MC_F at low frequencies is reduced by more than 10x.

I also think that this may help the X-Arm lock. The number of fringes per second should be 2-3x less.

 

  7272   Fri Aug 24 16:03:39 2012 SteveUpdateVACVacuum related work at atm

Vacuum related work at atmosphere:

Atm1,  Check all chamber dog clamps tightness with torque wrench,

Atm2,  Replace old, black molibdenum disulfite bolts -nut with new silicon bronze nuts and clean SS bolts.

Atm3,  Replace CC1 cold cathode gauges: horizontal and vertical.

  7281   Mon Aug 27 08:34:18 2012 SteveUpdatePEMearthquakes

Shasky day yesterday postpones venting. We had about 11 shakes larger than mag 4.0 Mag5.5 was the largest at  13:58 Sunday, Aug 26 at  the Salton Sea area.

Atm3,  ITMX and ETMX  did not come back to it's position

  7282   Mon Aug 27 09:24:17 2012 SteveUpdateSUSEQ damage

  It looks like we may lost 1 (or 3 )  magnets? Do not panic, it's not for sure

 

  7285   Mon Aug 27 15:46:55 2012 SteveUpdateSAFETYsafety training

 Rijuparna Chakraborty and Elli Elenora King received 40m specific  basic safety training in the 40mLab

  7293   Tue Aug 28 09:37:33 2012 SteveUpdateVACRGA scan at day 56

RGA scan,  Maglev pumping speed at day 56

CC1 is dying. CC4 is real.

 

  7307   Wed Aug 29 12:46:49 2012 SteveUpdateVACVent completed in 4 hrs

 

ANTS ALERT please watch out for ants. We have them in the control room.

 

 

  7315   Thu Aug 30 08:12:39 2012 SteveUpdateGeneralIn vac plans for tomorrow, 8/30

 

 1,PRM spot can be viewed directly from the window south-east of ITMX chamber.  I can easy set up the mobile- Watek for this reason or you can just use an IR viewer.

   Remember, we have 2 SOS centering targets ready to use , that Rana was suggesting.

2, PR2 spot centering can be viewed directly through window north-west of ITMX.

3, We should put back the BS view pick-up mirror for the vertical camera on the BS chamber and adjust its upper pick-up.

4, The BS centering can be viewed with the mobile-Watek placed inside the BS chamber immediately.

  7316   Thu Aug 30 08:37:11 2012 SteveUpdateSUSETMX and ITMX needs more attention

Quote:

ETMX appears to be fine.  It was stuck to its OSEMs in the usual way.  I touched it and it dislodged and is now swinging freely.  Damping loops have been re-engaged.

Screenshot.png

Earthquake m4.1 test for ETMX and moves ITMX.  ITMX-LR sensor 0.3V

  7325   Fri Aug 31 07:32:49 2012 SteveUpdateSUStarget for BS

Quote:

We installed beam targets on PRM and BS suspension cages.

On both suspensions one of the screw holes for the target actually houses the set screw for the side OSEM.  This means that the screw on one side of the target only goes in partial way.

The target installed on BS is wrong!  It has a center hole, instead of two 45 deg holes.  I forgot to remove it, but it will obvious it's wrong to the next person who tries to use it.  I believe we're supposed to have a correct target for BS, Steve?

The earthquake stop screws on PRM were too short and were preventing installation of the PRM target.  Therefore, in order to install the target on PRM I had to replace the earthquake stops with ones Jenne and I found in the bake lab clean room that were longer, but have little springs instead of viton inserts at the ends.  This is ok for now, but

WE NEED TO REMEMBER TO REPLACE EARTHQUAKE STOPS ON PRM WHEN WE CLOSE UP.

We checked the beam through PRM and it's a little high to the right (as viewed from behind).  Tomorrow we're going to open ITMX chamber so that we can get a closer look at the spot on PR2.

 The two eye  target for  the BS is in the clean tool box. It actually has irises.

  7327   Fri Aug 31 10:24:36 2012 SteveUpdateVACchamber dog clamps checked

Quote:

I tightened as many of the dog clamps on the bottom of the BS, ITMX and ITMY chambers as I could find.  I used a torque wrench at 45 ft-lbs.  Some of the bolts of the dogs were too long, and I couldn't find an extender thing to accommodate the bolt so I could reach the nut.  None of the bolts moved that I was able to reach.

Steve, we're not doing final final alignment today (we will do it tomorrow), so please go around and double-check my work by checking all of the dogs first thing in the morning.  Thanks.

 Almost all chamber dog clamps on the floor checked. There are a few exception where it is impossible to to get to the nut. 

Only the OOC nuts turned little bit. So our elastomer discs are holding up well. This means that the chamber anchoring to the floor is good.

  7329   Fri Aug 31 17:26:54 2012 SteveUpdateGeneralBS camera

Steve and Eric

Placed pick up mirror for BS face and PRM back. I will ask Jamie to clamp it.

There will be an other camera set up to view the face of PRM

  7331   Fri Aug 31 17:50:41 2012 SteveUpdateSUSSOS centering target

The SOS centering target is 1.9 mm lower than it should be! 

The hole is 10mm for the  ~6 mm beam

 

 

 

  7333   Tue Sep 4 10:29:41 2012 SteveUpdateSUSPRM damping restored
  7343   Wed Sep 5 09:50:25 2012 SteveOmnistructureVACbetter in-air "lite" access connector needed

Quote:

We really need something better to replace the access connector when we're at air.  This tin foil tunnel crap is dumb.  We can't do any locking in the evening after we've put on the light doors.  We need something that we can put in place of the access connector that allows us access to the OMC and IOO tables, while still allowing IMC locking, and can be left in place at night.

 It is in the shop. It will be ready for the next vent. Koji's dream comes through.

ELOG V3.1.3-