40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 138 of 354  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  10333   Tue Aug 5 19:05:41 2014 AkhilUpdateGeneralBeat Note Testing on EPICS Channels

 Finally,  the efforts put in the Frequency Counter paid off . I tested the working of both the FC and EPICS channels that I created by displaying the beat note on MEDM screens. EricQ helped me locking the X arm ( Y arm free) thus acquiring only the X arm beat note from the frequency counter. We plotted the beat note on MEDM and clearly could see a stable beat note when the arm was locked. Now it can be said that the FC(two of course) can replace the spectrum analyzer outside and also get the beat-note frequencies  into EPICS channels. The channel names of these two beat note frequencies are:

X Arm:          C1:ALS-XBEAT_FREQ_MHZ

Y Arm:          C1:ALS-YBEAT_FREQ_MHZ

(Note: There are many problems in alignment of the arms and we could have beat note only for some time after putting a lot of effort).

  10334   Tue Aug 5 19:20:05 2014 AkhilUpdateGeneralPID loop Design for beat note stabilization

 Today I and EricQ went inside the lab and set up the cables running from the a DAC channel into  PZT input so that we can use the PID controller to tune in the PZT offset to maintain the beat note within a detectable range (This is plan B as the main plan of actuating on the laser temperature can be achieved only after the fiber setup with the PSL is ready). I obtained all the poles and zeroes of plant and started designing a PID loop to test it with the existing system.

I will put in my PID values into the already existing PERL controller code (that is used for controller design in the 40m) and run tests with the PID loop while actuating on the PZT offset. 

 

  10336   Wed Aug 6 10:10:45 2014 HarryUpdateGeneralWeekly Plan 8.6.14

Last Week

 

Took first round of PER measurements after a long setup.

Started setting up to take measurement of the other polarization--ran into issues with mounts again. (Spinning of their own free will again.)

Devised a new scheme for taking more robust measurements of PER--still in progress.

Next Week

Finish data analysis of these latest PER measurements

Hopefully finally move on to frequency noise characterization

Materials Needed

None for PER

Unknown for frequency noise

 

  10347   Thu Aug 7 14:50:43 2014 HarryUpdateGeneralPER Measurement

 Purpose

I wanted to do a more robust measurement of PER of PM fibers for FOL, so I thought up this scheme.

Methods

I put together a setup as depicted below in order to take measurements of PER.

PERFinalSetup.png

The first thing to do was to calibrate the whole setup. In order to do so, I first used the quarter and half wave plates closest to the NPRO to eliminate as much ellipticity from the output beam as possible, and then rotate the newly linearized light to be in alignment with the transmittance of the first polarizing beam splitter (P-Polarization).

I then aligned the fiber's fast axis with the P-Polarization on both the input and output sides. This was important so that no virtual ellipticity would be measured in the final measurement of PER.

I then mode matched and fiber coupled the first PBS output into the fibers, to about 30 mW (~60% coupling).

Photodiode Calibration

I wanted to measure both intensity of P and S simultaneously, so as to minimize the random little time-varying changes that would affect the measurements, so I used a powermeter and a PD, calibrated with the aformentioned powermeter.

In order to be able to compare the photodiode (PDA520) output to the powermeter (Orion) output, I fixed them each in their positions, and varied the laser power to produce the type of linear relationship we expect to see between PD Voltage and Optical Power. In this case, the conversion was P = V*2.719.

PDCalibration.png

PER Measurement

As opposed to the first method, which took only one datum, this method records P and S simultaneously, at different points through rotation of a linearly polarized beam.

Using the second HWP, I rotated the linearly polarized beam before it entered the fiber, at each point, recording the outputs of the PD and the Powermeter.

These data were then converted to be the same units, and fit to a sine wave.

Polarization_Intensity_Variation.png

As you can see, the intensities vary nearly identically, at a half wavelength phase difference, which is what one expects in this case. The PER of each polarization can be calculated by dividing the maximum value of one by the minimum of the other, and vice versa. The fact that these oscillate as we expect shows that the beam is relatively well linearized, and essentially that everything is working as it is assumed to be.

By looking at these fits, however, it is visible that they do not overlap with the actual extrema of the data. So, in order to produce more realistic values of extrema, those particular regions were fit to second order polynomials.

Extrema.png

The values of these extrema yield the following measurements:

(SMin / PMax) = 0.007 +/- .004  --->  -21.54 +/- 2.48 dB

(PMin / SMax) = 0.022 +/- .009  --->  -16.58 +/- 1.78 dB

Conclusion

The problem I find with these measurements is that they're hard to reproduce.

Plus they seem high, since non-PM fibers advertise extinction ratios around -30 dB., plus I measured it at roughly -24 dB the first time I tried.

Moving Forward

 

The next thing to do in terms of fiber characterization is to measure the frequency noise they introduce.

With respect to FOL, I just need some time to work on the PSL table, and at the Y end to couple the dumped SHG light, and then we can start using 1064nm beat notes to test//implement the feedback control system.

Attachment 5: PEReport.zip
  10349   Thu Aug 7 17:09:53 2014 HarryUpdateGeneralAUX Coupling In Progress

 I'm currently in the process of coupling dumped SHG light from the Y arm end table into fibers for FOL.

The main point is that the NPRO at that end in shuttered, because I wasn't sure whether or not leaving it open would've set anything on fire.

  10353   Fri Aug 8 14:42:41 2014 AkhilUpdateGeneralPID loop Design for beat note stabilization

 The attached in a zip file are the Simulink feedback loop models for the FOL for both X and Y ends. The controller PID values are estimated by setting a temperature count reference point to 5344, which corresponds to 100 MHz frequency.  The plant transfer function is as calculated in my previous elogs.

 We were not  able to test the PID loop , with the green laser by PZT actuation because of the misalignment of the arms and non-existence of the beat note since last few days. However, we have a complete idea of the design and PID parameters that will be used for the FOL with infrared laser. So we decided that it would be better to test the loop by temperature actuation after the fiber optics is installed and the coupling of infrared laser into the fiber is complete. As of now, we have planned to place the FOL box inside so that it can be used to obtain the green laser beat note on the StripTool graphs. 

Attachment 1: PID.zip
  10357   Fri Aug 8 19:42:59 2014 JenneMetaphysicsGeneralkitchen sink flooding

 When I got back to the lab, there was enough water that it was seeping under the wall, and visible outside. Physical plant says it will take an hour before they can come, so I'm getting dinner, then will let them in.

  10358   Fri Aug 8 20:22:12 2014 JenneMetaphysicsGeneralkitchen sink water off

Quote:

 When I got back to the lab, there was enough water that it was seeping under the wall, and visible outside. Physical plant says it will take an hour before they can come, so I'm getting dinner, then will let them in.

 The guy from physical plant came, and turned off the water to the kitchen sink.  He is putting in a work order to have the plumbers come look at it on Monday morning.  It looks like something is wrong with the water heater, and we're getting water out of the safety overpressure valve / pipe.

The wet things from under the sink are stacked (a little haphazardly) next to the cupboards.

  10360   Sun Aug 10 00:54:54 2014 HarryUpdateGeneralAUX Couping

The Y End laser dumped SHG light has been coupled into the yellow fiber that terminates at the PSL table.

It's not super stably coupled, and only at 5mW. I'll be interested to see what it is on monday.

  10367   Tue Aug 12 02:09:39 2014 ericqUpdateGeneralReasonable alignment restored

I took over the IFO, after Jenne's locking efforts, which included manual alignment, since the ASS was doing bad things. 

For whatever reason, the Yarm ASS TT gains needed to be flipped back to go in the right direction. I've restored the old BURT snap file, and the ASS seems to work for now.  

Furthermore, I added some FMs to the Yarm ASS to be able to ramp down gains, to be done as new offsets are ramped in, so that a smooth offset transition is possible. The new version of the script works reasonably, but could be smoother still... Once I iron this out, I'll do the same change to the Xarm, and update the buttons. 

In any case, I was able to run ASS on both arms; single arm lock maxed out at around 0.85, maybe because we're only getting 0.78 from the PMC and 16k from the MC? I then aligned and locked the PRM, then reentered the oplevs on all of the PRMI optics. Oddly, the ETMs were at single uRads on their oplevs.

With this arm alignment, I was able to get the green TRX to ~0.55, and thus the beatnote to around -25dBm, which is still lower than we'd like. I didn't touch the Y green alignment, though it is pretty bad, at transmission of below 0.2 when "locked" on the 00 mode. 

When I try to lock things, the initial ALS CARM and DARM locking seems to go fine, actuating on the ETMs for both DoFs, but ETMX is getting kicked during the resonance search every time. Maybe improving green alignment / increasing beatnote amplitudes will hopefully help some.

I'm leaving the interferometer with the PRM aligned, so that all optics (except SRM) are near the center of their oplev range. I'm curious as to what their variance will be over the next day; this can inform whether we need to improve the ETMY oplev's angular range or not. 

  10369   Tue Aug 12 14:29:01 2014 ericqUpdateGeneralReasonable alignment restored

I'm leaving the interferometer with the PRM aligned, so that all optics (except SRM) are near the center of their oplev range. I'm curious as to what their variance will be over the next day; this can inform whether we need to improve the ETMY oplev's angular range or not. 

 Here's an 12 hour minute-trend of all of the oplevs. The worst offenders are ITMY pitch and yaw, and ITMX pitch. 

Additionally, ETMY's yaw range is +-30urad, and here we see it wandering by 10 urad in a half day. We probably need more range.  

OLtrend.png

  10371   Tue Aug 12 23:07:24 2014 HarryUpdateGeneralPSL Telescope

I put the PSL telescope in place, and started coupling to it.

Unfortunately, I was only able to couple about 55 uW into the "fiber coupler" (read: fiber coupled splitter). See picture below:

PSLTelescopePic.png

Additionally, I'm not sure why this is, but both of the splitters we ordered don't split equally, but to 90% and 10% in each output port.

We also found that, since we aren't using the fibers we originally intended to, the specs are a little different, and the waist we're trying to have at the collimator face is now 283 um.

  10372   Wed Aug 13 03:03:37 2014 ericqUpdateGeneralGreen beatnote troubles

[Jenne, Rana, ericq]

No luck locking tonight, as spent a while trying to figure out the complete absence of the green beatnotes. Long story short, we ended up having to adjust the pointing on the PSL table.

Unrelated to this, we also turned on the noise eater on the PSL laser because why not. 


We hooked the BBPDs directly up to a 300MHz scope to try to see the beat as it happened. We witnessed a very strange intermittent ~800MHz oscillation on the Y BBPD, and weirder still, on both the RF and DC outputs of the PD, and the frequency was independent of the laser temperatures. This is to be investigated in the future, but was not related to the beat note state. 

Some progress was made when we took some components out, and looked at the far field of the PSL-Ygreen overlap, and saw some misalignment, and corrected it. Putting the end laser temperature in the usual area allowed the beat note to be found, with the eventual amplitude of ~-40dBm directly out of the BBPD. The Y green alignment was pretty bad throughout, so this can be improved to bring the beat amplitude up. We should also check and make sure we're well aligned to the SHG with the PSL light. We're leaving the X beat for tomorrow, now knowing that we should be able to get it with careful alignment. 

  10373   Wed Aug 13 10:49:39 2014 HarryUpdateGeneralWeekly Update

 In the past week, I designed and assembled coupling telescopes for the PSL and Y Arm Lasers

The Y Arm was coupled to ~5mV, and the PSL remains uncoupled.

 

For the next week, I'm planning on working on things like my presentation and/or final report.

Though as of last night, my computer refuses to turn on, so there may be some further "troubleshooting" involved in that whole process.

  10376   Wed Aug 13 16:12:55 2014 HarryUpdateGeneralFOL Layout Diagram

Per Q's request, I've made up a diagram of the complete FOL layout for general reference.

FOLLayout2.png

  10377   Wed Aug 13 17:37:43 2014 JenneUpdateGeneralGame plan

2014_Aug_13.pdf

Here's the game plan for things that we need to do to get this IFO locked up. 

Red is for things that should be done today, or tomorrow if they don't get finished today (eg. laser mode hopping temperature check).  Orange is for things that will become red once the current red things are gone (eg. inferring the POP QPD gouy phase, and moving it to minimized PRM information).  Green is for things that we'd like to do, but aren't high priority (eg. X green mode matching).  Blue is for things that we should remember, but not plan on working on soon (eg. putting PZTs on the Yend table for green).

TODAY so far:

Q already did the tweak up of the PSL SHG crystal alignment.  HE SHOULD ELOG ABOUT THIS.  What was the final power of green that you got?  Do we have any record of a previous measurement to compare to?

Q helped me install PDA55s on each of the lasers (I did the ends, he did the PSL) so that we could do the mode hop temperature check.  For the Yend, I took the leakage transmission through the first Y1 steering mirror after the laser. This beam was dumped, so I replaced the dump with a PDA55. For the Xend, the equivalent mirrors are too close to the edge of the table, so I put in a spare Y1, and reflect most of the light to a beam dump.  The leakage transmission then goes to a PDA55.  Note that for both of these cases, no alignment of main laser path mirrors was touched, so we should just be able to remove them when we're through.  For the PSL, I believe that Q took the rejected light from one of the PBSes before the PMC.  He mentioned that he bumped something, so had to realign the beam into the PMC, but that he was able to get the transmission back up to 0.802, when we were seeing it in the mid 0.7's for the last several days.

The end temporary PDs are using the TRX / TRY cables, so we will be looking at the C1:LSC-TR[x,y] channels for the power of the end lasers.  The PSL's temporary PD is connected to the PMC REFL cable.  For the end PDs, since I had filter banks available, I shuttered the end lasers and removed the dark offset.  I then changed the gains to 1, so the values are in raw counts.  The usual transmission normalization gains are noted in one of the control room notebooks.

I did a slow ezcastep and ramped the temperature of all 3 lasers over about an hour.  I'll write a separate elog about how that went.

  10382   Thu Aug 14 02:51:46 2014 JenneUpdateGeneralGame plan

[Jenne, Rana]

* Decided that earlier mode hop scan won't give us the information that we were hoping for.  We need to think about where we can actually see the frequency change.  Can we use the IR beatnote that we will soon have to do this?  We'd only be able to scan one laser temp at a time, but that's okay.  Leave, say, the PSL temperature alone, and scan one of the end laser temps.  Using the PSL as the reference, we will be able to see if the frequency of the end laser goes crazy and jumpy as we pass through a certain temp.  Then, repeat while holding the end laser constant and scan the PSL.  Thoughts?

* Meditated on PSL oplev servo, but I need to make a Matlab script that can evaluate different loops according to a cost function based on elog 9690

* Aligned IFO to IR, then greens to arms (got back to 0.9 for GTRY, but only about 0.5 for GTRX, with the PSL green shutter closed).  Then aligned green beams on the PSL table, since the PSL green pointing had changed a bit from Q's crystal alignment tweak-up earlier today.  Beatnotes are nice and big (see elog 10381 - The Yarm is the larger beatnote, and the Xarm is the smaller one.)

* Was not able to lock ALS comm/diff and hold long enough to get both arms to IR resonance.  Also, saw that TRY's RIN was more than 50%(!!!).  We took a look, and there seems to be much more low frequency noise than there was when the spectrum in the control room was taken for the multicolor metrology paper:

Y_ALS_FINE_PHASE_OUT_noisy_13Aug2014.pdf

* Tried to balance the ALS comm/diff input matrix, with not a lot of success.  First of all, it looks like the Xarm has overall about 10 times more noise!  We were exciting MC2 in position (~88 Hz, about 130 counts I think), and then looking at DARM_IN1 for the peak.  When DARM_IN1 was just one of the 2 ALS error signals (i.e. one matrix element set to zero), versus when both matrix elements were set to 1, we saw a factor of only about 3 in reduction of the peak height.  We were hoping to have better cancellation of this pure CARM signal in the DARM channel.  The Xarm green PDH loses lock every ~5 or 10 minutes, and when we relock it, this cancellation seems different, so we want to try again tomorrow when the ALS is locked on comm / diff, rather than just the free running ALS that we have now.  Although, if the balance of the input matrix changes lock-to-lock, we may need to consider redoing the green PSL table layout so we get a pure DARM beatnote signal like they have at the sites.

* We want to change how the watch script for ALS works, although this is a low-priority task.  Rather than looking at the control signal, we should maybe look at the sum of all the coil outputs, multiplied by a pendulum TF, and use that as a rough displacement sensor.  We want to be careful of pushing too hard at low frequencies, but we want to allow higher frequency actuation without having the watch script shut things down.

* Also, I should put on the to-do list the revamp of the ALS find IR resonance script.

  10383   Thu Aug 14 14:58:03 2014 JenneUpdateGeneralUpdated game plan

2014_Aug_14.pdf

(Updated as of 4pm)

  10385   Thu Aug 14 15:42:29 2014 KojiUpdateGeneralUpdated game plan

 - ALS

End PDH UGF improvement / post mixer LPF investigation (with in 2 weeks)

- MC/FSS

Riju measured the MC REFL PD transimpedance. See ELOG and related.

- ASC

Why do we want to see less PRM motion? I thought PRC motion was causing
LSC issue of the central part. We wanted to maximize the PRM effect, don't we?
(Or is this to supress ETM motion during full lock?)

  10386   Thu Aug 14 15:51:37 2014 JenneUpdateGeneralUpdated game plan

Quote:

 - ALS

End PDH UGF improvement / post mixer LPF investigation (with in 2 weeks)

- MC/FSS

Riju measured the MC REFL PD transimpedance. See ELOG and related.

- ASC

Why do we want to see less PRM motion? I thought PRC motion was causing
LSC issue of the central part. We wanted to maximize the PRM effect, don't we?
(Or is this to supress ETM motion during full lock?)

 End PDH - good point, thanks.

ASC - Yes, this is so that we can use the POP QPD to feed back to the common ETMs after the CARM offset is already quite small.  We will not use POP DC QPD for PRC any more. 

Also, for future PRC ASC, I keep coming back to this in my head, but maybe it is less painful to install oplevs for PR2, PR3 than it would be to make an RF QPD.  Neither is going to be trivially easy.  But if we had sensors of the tip tilt motions, we could feed all of that back to the PRM to stabilize the PRC.

  10387   Thu Aug 14 18:02:11 2014 KojiUpdateGeneralUpdated game plan

Got the idea of ASC.

- Oplevs for PR2, PR3 => PR2 seems OK. PR3 almost impossible. well turned out not too crazy. We need outside electronics.

- RF QPD => not trivial and very technical but possible. All outside work.

- Better TT => might be a good solution.

  10388   Thu Aug 14 18:05:05 2014 JenneUpdateGeneralUpdated game plan

Quote:

- Oplevs for PR2, PR3 => Almost impossible.

 Because of the limited table space inside?  That's the main reason I can think of that this method is hard.  Am I missing something?

  10389   Thu Aug 14 18:10:46 2014 HarryUpdateGeneralFiber Temperature Effects Setup

Purpose

We want to characterize the sort of response the fibers have to temperature gradients along them (potentially altering indices of refraction, etc.)

Experimental Setup

I have constructed a sort of two chambered "calorimeter" (by which I mean some coolers and other assorted pieces of recycling.)

The idea is that half of the length of PM fiber resides in one chamber, and the other in the other.

One chamber will remain at an uncontrolled, stable temperature (as measured by thermocouple probe) while the other's temperature is varied using a heat gun.

Using this setup, one can measure losses in power, and effects on polarization within the fiber.

Caveat

This is currently living on the electronics bench until tomorrow morning, and is a little fragile, just in case it needs to be moved.

Attachment 1: tempAffectsSetup.zip
  10400   Fri Aug 15 13:29:31 2014 JenneUpdateGeneralGame plan: 15 Aug

40mToDoList.pdf

The game plan graffle file is now in the 40m dropbox, so anyone can edit it.  Please just make sure to keep the date in the top right corner accurate.

  10403   Fri Aug 15 17:24:44 2014 HarryUpdateGeneralFiber Temp.

 Earlier today Q and I somewhat resurrected my old PER measurement setup so I could run the temperature characterization experiment.

Unfortunately, when I tried to use the fiber illuminator, no light came from the other end, causing me to fail my primary goal for the summer of "don't break anything." The fiber has been re-spooled and labeled appropriately. Also sorry.

In addition to this, Q and I scavenged parts from the telescopes on the PSL and Y End tables, which were either not functional, or needed to have their mode matching adjusted, since we're using the non-PM fibers for FOL, which have a different numerical aperture, and thus slightly different output modes.

Specifically, this is involved removing the rotational mounts, and appropriate beam dumping.

My "calorimeter" still remains intact, in case anyone wants to make this measurement in the future, as this is my last day in the lab.

It's also effective at keeping drinks cold, if you'd rather use it for that.

  10404   Fri Aug 15 20:26:37 2014 ericqUpdateGeneralGame plan

Quote:

Q already did the tweak up of the PSL SHG crystal alignment.  HE SHOULD ELOG ABOUT THIS.  What was the final power of green that you got?  Do we have any record of a previous measurement to compare to?

As Jenne mentioned, I did this. 

Specifically, I first tweaked the mirror pointing the IR into the SGH in pitch and yaw to maximize the green power, and then adjusted the little set screws on the side of the SHG to maximize further. Power after the harmonic separator was of order 150uW. On the Y Green BBPD, I got ~48uW, instead of the 40uW Rana, Jenne, and myself saw the other night. 

HOWEVER,

now that I look through old ELOGs, I find some posts by Kiwamu saying the power should be around 650uWand that he was able to get 640uW out. So: I should do this again, systematically, more carefully, etc., etc. (Linked ELOG also states that optimum SHG temperature is alignment dependent...)

 

 

  10405   Fri Aug 15 20:38:17 2014 ericqUpdateGeneralELOG dump

 A few things that I have neglected to ELOG yet:

  • scripts/offsets/LSCoffsets is a new script that uses ezcaservo to set FM offsets of our LSC PDs. It still warns about large changes, and lets you revert. It reads the FM gain to pick the right gain for the ezcaservo call. 

  • MC refl DC was all over the place today, and has recently been "fuzzier" on the wall StripTool than I like. I touched the MC2 pointing a little bit, and the WFS seemed to find a sweet spot where the refl got steady back at around and under 0.5. I then ran "offload WFS" to try and stay there. 

  • Incidentally, the PMC transmission drifted up to 0.81 at some point today. This is weird, since not too long ago, we were not able to reach this level even with careful alignment. This coincided with the MC power being back up to ~17k, and arms locking at around 0.95. 

  • Last week I quickly tried cranking up the x-end green modulation frequency to ~1.3MHz (corresponding to a notch in the PZT AM response), and using a 550k lowpass on the mixer output, instead of a 70k, to try to buy more phase and increase the UGF. It didn't work. I didn't have a way to tune the mixer phase angle, and the mixer output was super noisy, but there were instants where I could convince myself that a mode was briefly locked to the arm... I'm going to do the Right Thing and characterize the loop properly, to figure out how to get at least 10kHz of control bandwidth out of these things. 

  10423   Fri Aug 22 13:51:00 2014 JenneUpdateGeneralUpdated game plan

40mToDoList.pdf

  10435   Thu Aug 28 08:31:16 2014 SteveUpdateGeneralone good day
Attachment 1: 1goodDay.png
1goodDay.png
Attachment 2: 1gooday.png
1gooday.png
  10440   Tue Sep 2 16:22:24 2014 JenneUpdateGeneralGame plan: 2 Sept

Slightly updated Game Plan.  Mostly, Q is continuing to check out the Xend PDH box saturation, and I am thinking on what our requirements are for ALS, and thus for the green PDH boxes.

40mToDoList.pdf

  10445   Wed Sep 3 14:07:18 2014 ranaConfigurationGeneralnetgpibdata is working again now

Quote:

I gave the IPs to the bridges. According lines of /etc/hosts in linux1 were updated.

192.168.113.230 WET54G1
192.168.113.231 WET54G2

 I was going through some old Koji elogs to check them for correctness (as I do weekly). I noticed that back in Dec 2013, he made the above illegal modification of IP numbers. 192.168.113.230 was actually the IP for farfalla. Maybe that's why they were conflicting and farfalla not working and Q observing/imagining wireless GPIB dropouts?

I used the Wiki instructions to update the 2 bind9 files with a new number for farfalla (192.168.113.212) which was previously the number for the long dead op240m. Farfalla is restarted and sort of working. 

  10505   Mon Sep 15 14:37:49 2014 SteveUpdateGeneralOphir pmeter has no filter already

Quote:

Ophir power meter gets new filter with calibration. This is not cheap. It was the second time we lost it.

Filter leash is attached.

 Some one already took  off the filter and did not care to put it back on. This is carelessness!

  10515   Wed Sep 17 18:36:03 2014 KojiHowToGeneralHow to run DTT measurement automatically
  • Suppose you have a dtt template name test.xml
  • The file test.dtt

    open
    restore test.xml
    run -w
    save test2.xml
    quit
     
  • Run diag < test.dtt
  • The result is saved in test2.xml
  10528   Tue Sep 23 17:56:13 2014 Jenne, EricQUpdateGeneralVent prep for SRC length change

As Q mentioned in elog 10527, (prompted by Koji's email this afternoon) we are prepping the IFO for vent.  Here is a copy of the pre-vent checklist from the wiki, updated as we work:

 

Pre-vent checklists

 
  1. Center all oplevs/IPPOS/IPANG
  2. Align the arm cavities for IR and align the green lasers to the arms.
  3. Make a record of the MC pointing
  4. Align the beam at the PSL angle and position QPDs
  5. Reduce input power by adjusting wave plate+PBS setup on the PSL table BEFORE the PMC. (Using the WP + PBS that already exist after the laser.)
  6. Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  7. Close shutter of PSL-IR and green shutters at the ends
  8. Make sure the jam nuts are protecting bellows

Notes:

1 & 2:  Locked arms on IR, ran ASS.  Unlocked IFO, aligned PRM for good POP flashes, aligned SRM for symmetric AS flashes.  Aligned all oplevs.  Used PZTs to align Xgreen to arm. Used knobs to align Ygreen to arm.  With PS:L green shutter closed, Xgreen  = 0.520, Ygreen = 0.680.

3:  Moved MC servo output cable that goes to ADC from OUT2 (which we had been using for monitoring AO path signals) back to its usual OUT1 (which is MC_L).  This is used in the spot position measurement script.  Spots at:  [2.32, -0.50, 1.97, -1.11, 0.26, -1.86] mm.

4: Done -Q

5:  Removed a PD that was monitoring the light coming backwards through the Faraday that sits just after the laser, just in case (confirmed that beam dump behind PD was catching beam).  Other port of PBS just had regular black hole dump.  Adjusted half wave plate until we had ~90mW just before injection into the vacuum.

6: Completed. Locked MC manually at transmission of ~1150, but low power autolocker isn't working. This isn't a critical thing, and can be fixed at any point during the vent. -Q

7: Shutters closed. Ready for Steve to check nuts and begin venting! -Q

  10529   Wed Sep 24 08:39:32 2014 Jenne, EricQUpdateGeneralVent prep for SRC length change

Quote:

As Q mentioned in elog 10527, (prompted by Koji's email this afternoon) we are prepping the IFO for vent.  Here is a copy of the pre-vent checklist from the wiki, updated as we work:

 

Pre-vent checklists

 
  1. Center all oplevs/IPPOS/IPANG
  2. Align the arm cavities for IR and align the green lasers to the arms.
  3. Make a record of the MC pointing
  4. Align the beam at the PSL angle and position QPDs
  5. Reduce input power by adjusting wave plate+PBS setup on the PSL table BEFORE the PMC. (Using the WP + PBS that already exist after the laser.)
  6. Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  7. Close shutter of PSL-IR and green shutters at the ends
  8. Make sure the jam nuts are protecting bellows

Notes:

1 & 2:  Locked arms on IR, ran ASS.  Unlocked IFO, aligned PRM for good POP flashes, aligned SRM for symmetric AS flashes.  Aligned all oplevs.  Used PZTs to align Xgreen to arm. Used knobs to align Ygreen to arm.  With PS:L green shutter closed, Xgreen  = 0.520, Ygreen = 0.680.

3:  Moved MC servo output cable that goes to ADC from OUT2 (which we had been using for monitoring AO path signals) back to its usual OUT1 (which is MC_L).  This is used in the spot position measurement script.  Spots at:  [2.32, -0.50, 1.97, -1.11, 0.26, -1.86] mm.

4: Done -Q

5:  Removed a PD that was monitoring the light coming backwards through the Faraday that sits just after the laser, just in case (confirmed that beam dump behind PD was catching beam).  Other port of PBS just had regular black hole dump.  Adjusted half wave plate until we had ~90mW just before injection into the vacuum.

6: Completed. Locked MC manually at transmission of ~1150, but low power autolocker isn't working. This isn't a critical thing, and can be fixed at any point during the vent. -Q

7: Shutters closed. Ready for Steve to check nuts and begin venting! -Q

 

  10534   Wed Sep 24 18:17:46 2014 ericqUpdateGeneralAlignment Restored

Interferometer alignment is restored

ASS has been run on each arm, recycling mirrors were aligned by overlapping on AS camera. 


Notes:

  • Mode cleaner alignment took some manual tweaking, locked fine around 1k counts. Still no autolocker.
  • At this point, some light was visible on AS and REFL, which was a good sign regarding TTs. 
  • Used green light to align ETMs to support a green 00 mode. 
  • Ensured no recylcying flashes were taking place on AS camera and PRM face camera.
  • Arms were locked using AS55, with the other ITM misalgined, for better SNR than PO[XY]. ASS brought arm powers to ~0.06, which is about what we would expect from 1k MC2 trans instead of 16k.
    • ASS Yarm required debugging, see below.
    • ETMX was getting kicks again. Top Dsub connector on the flange near the ground closer to the end table was a little loose. We should fasten it more securely.
  • At this point, michelson alignment was good. Brought in PRM to see PRC flashes, REFL spot was happy. Brought in SRM to AS sppot. 
  • Saved all optic positions. 
  • Oplevs:
    • PRMs new aligned state is falling off the QPD.
    • ETMs and BS oplev centering are fine, rest are less good, but still on the detector.

 


ASS-RFM issue:

ETMY was not getting its ASC pitch and yaw signals. C1SCY had a red RFM bit (although, it still does now...)

I took a look at the c1rfm simulink diagram and found that C1RFM had an RFM block called C1:RFM-TST_ETMY_[PIT/YAW] and C1SCY had one called C1:TST-SCY_ETMY_[PIT/YAW]. 

It seems that C1TST was illegally being used in a real signal chain, and Jenne's recent work with c1tst broke it. I renamed the channels in C1RFM and C1SCY to C1:RFM-SCY_ETMY_[PIT/YAW], saved, compiled, installed, restarted. All was well.

There are still some  in SCY that have this TST stuff going on, however. They have to do with ALS, it seems, but are SHMEM blocks, not RFM. Namely:

  • C1:TST-SCY_TRY
  • C1:TST-SCY_GLOBALPOS
  • C1:TST-SCY_AMP_CTRL

 

  10535   Wed Sep 24 18:56:45 2014 ericqUpdateGeneralOttavia slowness

Ottavia was having some severe interaction latency today. Xorg was taking up >90% of the CPU, just sitting around. The machine was logged in to a desktop session with lots of graphical effects turned on. I changed the system default session to "gnome-fallback" in /etc/lightdm/lightdm.conf, which was already set as the default for controls, but wouldn't get chosen for the autologin that happens on boot. 

Hopefully this helps ottavia stay usable...

  10541   Thu Sep 25 19:42:12 2014 ericqUpdateGeneralVent progress

[q, Jenne, Manasa]

ELOG Outline

  • Aligned arms
  • Took a bunch of photos of ITMY chamber. 
  • Used Crystallaser to reverse trace POY beam path
  • Realized real POY flashes were visible
  • Tried adjusted POY steering to give us enough room to move SRM forward 3 in
  • Not enough steering room
  • Placed beam centering targets just before OM3 and after OM4, on far side of BS table
  • Twisted SR2 by ~5 degrees
  • Moved SRM laterally ~3 inches (beam had been hitting optic center, then suspension cage after SR2 twist)
  • Moved SRM foward about 3 inches, adjusted angle for coarse retroreflection
  • Measured distances between suspensions
  • Tried running Gabriele's distance reconstruction code, results not looking so good; redundancy checks are off by ~1cm
  • Started roughly repositioning OM1 and OM2 to get through beam targets
  • Closed light doors
  • ITMY pointing has gone bad, no green or IR resonance to be seen, still have IR and Green in Xarm, so TTs, BS are ok
  10544   Fri Sep 26 12:25:34 2014 ericqUpdateGeneralVent progress

I figured out that didn't change the initial guess for the fit routine in Gabriele's code. I also changed the fminsearch criteria to least squares fitting, instead of minimax. The consistency checks now look just as good as the previous time we did these kind of measurements, no disagreements bigger than 1.6mm. 

Thus, the current estimate of the SRC length after yesterday's motions is 5402mm, where we desire 5399mm. So, we will try to move SRM 3mm closer to SR2, after confirming that we are not clipping the POY beam. After all that, we will level the table.

  10545   Fri Sep 26 16:10:14 2014 ericqUpdateGeneralVent update

Today so far:

  • I moved SRM forward by 3mm
  • Then I leveled the ITMY table 
  • At this point, bringing the ITMY oplev beam back onto its QPD got me back to green locking and IR flashes 
  • AS and POY beams are both making it out to their tables, as seen by IR card. (Though not to their in-air optics)

Here's my quick brain dump of things to do before we can pump down (anyone see anything missing?):

  • Check the clearance of the POY beam at the SRM cage
  • Re-do distance reconstruction measurements, confirm desired SRC length
  • Lock the SRM cage down fully (right now, has 2 clamps on, and one laying unused)
  • Align SRM for SRC flashes
  • Adjust SRM OSEM positions as needed
  • Adjust SRM oplev beam path, measure lever arm for calibration
  • Confirm beam spots on output mirrors in ITMY and BS chambers are ok
  • Take pictures of ITMY chamber. 
  • Closeup checklist
  10546   Fri Sep 26 17:13:39 2014 ericqUpdateGeneralVent update

Quote:
  • Check the clearance of the POY beam at the SRM cage
  • Re-do distance reconstruction measurements, confirm desired SRC length

POY has >2 inches of clearance from the SRM cage. 

Distance reconstruction indicates an SRC length of 5399mm, which was exactly our target. 

  10549   Mon Sep 29 12:47:51 2014 ericqUpdateGeneralVent update

Quote:
  •  Lock the SRM cage down fully (right now, has 2 clamps on, and one laying unused)
  • Align SRM for SRC flashes
  • Adjust SRM OSEM positions as needed
  • Adjust SRM oplev beam path, measure lever arm for calibration
  • Confirm beam spots on output mirrors in ITMY and BS chambers are ok

 [Koji, ericq]

We have completed the above points; the ITMY table is still level.

Despite what the wiki says, the SRM LR OSEM open voltage is ~1.97V instead of ~1.64, so we shot for half of that. 

The in-air steering of the SRM oplev return beam needs adjustment. I'll estimate the beam path length when I'm taking pictures and closing up. 

Left to do:

  • Now that AS is back on diode, lock arms and align everything. Confirm everyone's happiness. 
  • Take numerous pictures of ITMY chamber.
  • Center oplevs
  • Put doors on
  • Close shutters
  • Pump down
  • Replace MC refl Y1 with the beamsplitter
  • Turn PSL power back up

Related In-Air work:

  • Fix POY steering
  • Fix SRM oplev return steering
  10550   Mon Sep 29 17:10:51 2014 ericqUpdateGeneralVent update

Everything is aligned, AS and POY make it out of vacuum unclipped, OSEM readings look good.

I set up the SRM oplev, centered all oplevs.

Tomorrow, we just have to take pictures of the ITMY chamber before we put the heavy doors on. 

  10551   Mon Sep 29 18:12:24 2014 ericqUpdateGeneralVent update

I closed the PSL shutter as we didn't want to burn the mirror surface when we are not working.

  10552   Tue Sep 30 11:53:29 2014 ericqUpdateGeneralVent update

 

Photos have been taken of the ITMY chamber, and uploaded to picasa. Here's a slideshow:

  10567   Mon Oct 6 10:04:58 2014 manasaUpdateGeneralUnexpected power shutdown

We had a unexpected power shutdown for 5 sec at ~ 9:15 AM.

Chiara had to be powered up and am in the process of getting everything else back up again.

Steve checked the vacuum and everything looks fine with the vacuum system.

  10569   Mon Oct 6 10:28:18 2014 manasaUpdateGeneralUnexpected power shutdown

Quote:

We had a unexpected power shutdown for 5 sec at ~ 9:15 AM.

Chiara had to be powered up and am in the process of getting everything else back up again.

Steve checked the vacuum and everything looks fine with the vacuum system.

 The last time we had a power failure IFO recovery elog

  10570   Mon Oct 6 11:09:52 2014 JenneUpdateGeneralUnexpected power shutdown: slow computers

As per other slow computers, which Chris figured out in elog 10189, I added all the rest of the slow computers to Chiara's /etc/hosts file, so that they would come up when Manasa went and keyed the crates. 

Computers that were already there:

  • c1auxex
  • c1psl
  • c1iscaux

Computers that I added today:

  • c1susaux
  • c1auxey
  • c1iscaux2
  • c1pem1
  • c1aux
  • c1iool0
  • c1vac1

Manasa keyed all of these crates *except* for the vac computer, since Steve said that the vacuum system is up and running fine.

  10571   Mon Oct 6 17:04:51 2014 ericqUpdateGeneralUnexpected power shutdown

I brought back the PMC, MC and Arms.

PMC:

  • Same as when we replaced the busted sorensen, the kepco regulators in 1X1 (which power the FSS HV amp, PMC PZT and WFS) needed to be brought back up in the proper order. (Middle two are  + and - for the FSS, need to be rolled up in unison). Also the same as that occasion, sticky sliders prevented the full voltage range on the PMC PZT from being accessible. I touched every button on the PMC and FSS screens, which seemed to fix it. 
  • I then realigned the PMC to ~0.80 transmission

MC:

  • Needed to do some hand alignment to get a lock
  • Measured spot positions, they were all under 2mm
  • Despite centering the beams on the WFS and setting the offsets, WFS would not turn on successfully
  • Also, the autolocker on megatron isn't doing anything but blinking
  • Also also, MC2 is exhibiting some intermittent alignment wandering. The SUSDOF traces look like flat ramps lasting a few minutes. 

Arms:

  • No green was evident anywhere, but it didn't take to much alignment tweaking to get IR flashes
  • No signals were evident on RFPDs, confirmed light on PDs and power to demod boards. 
  • Turned out the 11MHz Marconi was not doing anything, and needed to be reset to the modulation frequency in ELOG 10314 (which reminds me that I need to update the sticker on the marconi)
  • Locked arms, ASS'ed, oplev spots were acceptable. 

 

  10572   Mon Oct 6 17:36:17 2014 ericqUpdateGeneralUnexpected power shutdown

The autolocker is now working, but I didn't change anything to make it so. I was just putting in some echo statements, to see where it was getting hung up, and it started working... This isn't the first time I've had this experience. 

It turns out IOO had a bad BURT restore. I restored from 5AM this morning, the WFS are ok now. 

ELOG V3.1.3-