40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 119 of 335  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  16673   Tue Feb 15 19:40:02 2022 KojiUpdateGeneralIMC locking

IMC is locking now. There was nothing wrong: just a careful alignment + proper gain adj

=== Primary Alignment ===

- I used WFS error signals as the indicator of the PDH error signals. Checked C1:IOO-WFS1_(I/Q)n_ERR and ended up C1:IOO-WFS1_I4_ERR as it showed the largest PDH error PP.

- Then used MC2 and MC3 to align the IMC by maximizing the PDH error and the MC trans (C1:IOO-MC_TRANS_SUM_ERR)

=== Locking procedure ===

Note that the MC REFL path is still configured for the full power input

- (Only at the beginning) Run scripts/MC/mcdown for initialization / Run scripts/MC/MC2tickleOFF just in case

- Enable IOO-MC-SW1 (MC SERVO switch right after "IN1 Gain (dB)").
- Disable 40:4000 boost
- Increase VCO Gain from -15 to 0
- Jiggle IN1 Gain from low to +31 until the lock is achieved

- As soon as the lock is acquired, enable 40:4000
- Increase VCO Gain to +10
- Turn up "SUPER BOOST" from 0 to 3

=== Lock loss procedure ===

Note that the MC REFL path is still configured for the full power input

- Disable IOO-MC-SW1
- Disable 40:4000 boost
- Reduce VCO Gain 0
- Turn down "SUPER BOOST" to 0

- Then jiggle IN1 Gain again to lock the IMC

=== MC2 spot ===

- It was obvious that the MC2F spot was not on the center of the optic.
- I tried to move the spot on the camera as much as possible, but this did not make the trans beam to the center of the MC end QPD
- I had the impression that the trans beam started to be clipped when the beam was moved towards the end QPD,

We need to reestablish the reasonable/consistent MC2 spot on the mirror, the MC end optics, and the QPD.
We will need to use MC2 dithering and A2L coupling to determine the center of the mirror

But as long as the transmission is maximized, the transmitted beam thru MC1 and MC3 follows the input beam. So we can continue the vent work

The current maximized transmission was ~1300. MC1 refl CCD view was largely off -> The camera path was adjusted.

=== MC2 alignment note ===

During the alignment, I noticed a sudden change of the MC2 alignment. There might be some hysteresis in the MC2 suspension. If you are locking the IMC and noticed significant misalignment, the first thing to try is to touch MC2 alignment.

  16684   Sat Feb 26 23:48:14 2022 KojiUpdateSUSETMY SUS Electronics Replacement

[Ian, Koji] - Activity on 25th (Fri)

We continued working on the ETMY electronics replacement.

- The units were fixed on the rack along with the rack plan.

- Unnecessary Eurocard modules were removed from the crate.

- Unnecessary IDC cables and the sat amp were removed from the wiring chain. The side cross-connects became obsolete and they also were removed.

- A 18V DC power strip was attached to one of the side DIN rails.

Warning:

- Right now the ETMY suspension is free and not damped. We are relying on the EQ stops.

Next things to do:

- Layout the coil driving cables from the vacuum feedthru to the sat amp (2x D2100675-01 30ft ) [40m wiki]

- Layout DB cables between the units

- Layout the DC power cables from the power strip to the units

- Reassign ADC/DAC channels in the iscey model.

- Recover the optic damping

- Measure the change of the PD gains and the actuator gains.

  16685   Sun Feb 27 00:37:00 2022 KojiUpdateGeneralIMC Locking Recovery

Summary:

- IMC was locked.
- Some alignment change in the output optics.
- The WFS servos working fine now.
- You need to follow the proper alignment procedure to recover the good alignment condition.

Locking:
- Basically followed the previous procedure 40m/16673.
- The autolocker was turned off. Used MC2 and MC3 for the alignment.
- Once I hit the low order modes, increased the IN1 gain to acquire the lock. This helped me to bring the alignment to TEM00
- Found the MC2 spot was way too off in pitch and yaw.
- Moved MC1/2/3 to bring the MC2 spot around the center of the mirror.
- Found a reasonably good visibility (<90%) at a MC2 spot. Decided this to be the reference (at least for now)

SP Table Alignment Work
- Went to the SP table and aligned the WFS1/2 spots.
- I saw no spot on the camera. Found that the beam for the camera was way too weak and a PO mirror was useless to bring the spot on the CCD.
- So, instead, I decided to catch an AR reflection of the 90% mirror. (See Attachment 1)
- This made the CCD vulnerable to the stronger incident beam to the IMC. Work on the CCD path before increasing the incident power.

MC2 end table alignment work
- I knew that the focusing lens there and the end QPD had inconsistent alignment.
- The true MC2 spot needs to be optimized with A2L (and noise analysis / transmitted beam power analysis / etc)
- So, just aligned the QPD spot using today's beam as the temporary target of the MC alignment. (See Attachment 2)

Resulting CCD image on the quad display (Attachment 3)

WFS Servo
- To activate the WFS with the low transmitted power, the trigger threshold was reduced from 5000 to 500. (See Attachment 4)
- WFS offset was reset with /opt/rtcds/caltech/c1/scripts/MC/WFS/WFS_RF_offsets
- Resulting working state looks like Attachment 5

  16686   Sun Feb 27 01:12:46 2022 KojiUpdateGeneralIMC manual alignment procedure

We expect that the MC sus are susceptible to the temperature change and the alignment drifts away with time.

Here is the proper alignment procedure.

0) Assume there is no TEM00 flash or locking, but the IMC is still flashing with higher-order modes.

1) Use the CCD camera and WFS DC spots to bring the beam to the nominal position.

2) Use only MC2 and MC3 to align the cavity to have low-order modes (TEM00,01,02 etc)

3) You should be able to lock the cavity on one of these modes. Minimize the reflection (maximize the transmission) for that mode.

4) This should allow you to jump to a better lower-order mode. Continue alignment optimization only with MC2/3 until you get TEM00.

5) Optimize the TEM00 alignment only with MC2/3

6) Look at the MC end QPD. use one of the scripts in scripts/MC/moveMC2 . Note that the spot moves opposite to the name of the scripts. i.e. MC2_spot_down moves the spot up, MC2_spot_right moved the spot left, etc...
These scripts move MC1/2/3 and try to keep the good MC transmission.

7) moveMC2 scripts are not perfect. As you use them, it makes the MC alignment gradually degraded. Use MC2 and MC3 to recover good transmission.

8) If MC2 spot is satisfactory, you are done.

-------------

Step 6-8 can be done with the WFS on. This way, you can skip step 7 as the WFS servo takes care of it. But if the spot move is too fast, the servo can't keep up with the change. If so, you have to wait for the settling of the servo. Once the spot position is satisfactory, MC servo relief should be run so that the servo offset (in actuation) can be offloaded to the bias slider.

 

  16690   Tue Mar 1 19:26:24 2022 KojiUpdateSUSETMY SUS Electronics Replacement

The replacement key switches and Ne Indicators came in. They were replaced and work fine now.

The power supply units were tested with the X end HeNe display. It turned out that one unit has the supply module for 1350V 4.9mA while the other two do 1700V 4.9mA.
In any case, these two ignited the HeNe Laser (1103P spec 1700V 4.9mA).

The 1350V one is left at the HeNe display and the others were stored in the cabinet together with spare key SWs and Ne lamps.

  16695   Thu Mar 3 04:11:36 2022 KojiUpdateSUSETMY 1Y4 Electronics Replacement

For the Y-end electronics replacement, we want to remove unused power supplies. In fact, we already removed the +/-5V supplies from the stack. I was checking what supply voltages are used by the Eurocard modules. I found that D990399 QPD whitening board had the possible use of +/-5V.

The 40m Y-end version can be found here D1400415. The +/-5V supply voltages are used at the input stage AD620 and the QPD bias voltage of -5V.

AD620 can work with +/-15V. Also the bias voltage can easily be -15V. So I decided to cut the connector legs and connected +5V line to +15V, and -5V line to -15V.

With this modification, I can say that the eurocards only use the +/-15V voltages and nothing else.

The updated schematics can be found as D1400415-v6

  16696   Thu Mar 3 04:24:23 2022 KojiUpdateSUSETMY 1Y4 Electronics Replacement

The DC power strip at Y-end was connected to the bottom two Sorensen power supplies. They are configured to provide +/-18V.

 

  16701   Fri Mar 4 18:12:44 2022 KojiUpdateVACRGA pumping down

1. Jordan reported that the newly installed Pirani gauge for P2 shows 850Torr while PTP2 show 680 Torr. Because of this, the vacuum interlock fails when we try to open V4.

2. Went to c1vac. Copied the interlock setting file interlock_conditions.yaml to interlock_conditions_220304.yaml
3. Deleted diffpressure line and pump_underspeed line for V4
4. Restarted the interlock service

controls@c1vac:/opt/target/python/interlocks$ sudo systemctl status interlock.service  
controls@c1vac:/opt/target/python/interlocks$ sudo systemctl restart interlock.service
controls@c1vac:/opt/target/python/interlocks$ sudo systemctl status interlock.service

5. The above 2~4 was unnecessary. Start over.


Let RP1/3 pump down TP1 section through the pump spool. Then let TP2 pump down TP1 and RGA.

1. Open V7. This made P2 a bit lower (P2 is alive) and P3.
2. Connected the main RP tube to the RP port.
2. Started RP1/3. PRP quickly reaches 0.4Torr.
3. Opened V6 this made P3 and O2 below 1Torr.
4. Close V6. Shutdown RP1/3. Disconnect the RP tube.
5. Turn on auxRP at the wall powe
6. Turn on TP2. Wait for the starting up.
7. Open V4. Once the pressure is below Pirani range, open VM3.
8. Keep it running over the weekend.

9. Once TP2 reached the nominal speed, the "StandBy" button was clicked to lower the rotation speed (for longer life of TP2)

  16702   Sat Mar 5 01:58:49 2022 KojiSummaryCDSpaola rescue

ETMY end ThinkPad "paola" could not reboot due to "Fan Error". It seems that it is the failure of the CPU fan. I really needed a functional laptop at the end for the electronics work, I decided to open the chassis. By removing the marked screws at the bottom lid, the keyboard was lifted. I found that the CPU fan was stuck because of accumulated dust. Once the fan was cleaned, the laptop starts up as before.

  16703   Sat Mar 5 02:03:46 2022 KojiUpdateSUSETMY 1Y4 Electronics Replacement

Oplev saga

Summary

- The new coil driver had not enough alignment range to bring the oplev beam back to the QPD center
- The coil driver output R was reduced from 1.2k to 1.2k//100 = 92.3 +/- 0.4 Ohm
- Now the oplev spot could be moved to the center of the QPD

- The damping gains (POS/PIT/YAW) and the oplev gains were reduced by a factor of 1/10.
- The damping and the oplev servos work now. Fine gain tuning is necessary.

To Do:
- DC value / TF measurements
- Adjust damping gains
- RFM issue
- Connection check
- Cable labeling


== Alignment Range ==

- Since c1auxey was removed, we no longer have C1:SUS-ETMY_PIT_COMM and C1:SUS-ETMY_YAW_COMM. At this moment, all the alignment is taken with the offset input from the fast real-time system via C1:SUS-ETMY_PIT_OFFSET and C1:SUS-ETMY_YAW_OFFSET.

- The oplev spot could not be moved on the center of the QPD without exceeding the DAC output range (~+ or -32000) for the coils. (Attachment 1)

- This is because the old system had a slow but large current range (Rout = 100) and a small current range for the fast control. Until we commission the new HV BIAS Driver, we have to deal with the large DC current with the HAM-A coil driver.

== Modification to the output resistances ==

The following units and the channels were modified. Each channel had a differential current driver and two output resistances of 1.2K. 100Ohm (OHMITE 43F100, 3W) wire wound resistors were added to them in parallel, making the resulting output R of ~92Ohm.

- ETMY HAM A Coil Driver 1: S2100622 (Attachments 2/3) CH1/2/3
- ETMY HAM A Coil Driver 2: S2100621 (Attachments 4/5) CH3

- This modification allowed me to align the oplev spot to the center of the QPD. C1:SUS-ETMY_PIT_OFFSET and C1:SUS-ETMY_YAW_OFFSE are +2725 (8%FS) and -2341 (7%FS), respectively.
- The previous alignment slider values were -0.9392 and 0.7615 (out of 10). These are the reasonable numbers, considering the change of the Rout from 100 to 92Ohm, and the sign flip.
(By the way, autoBurt files for c1auxex and c1auxey were not properly configured and the history of C1:SUS-ETM*_*_COMM was not recorded.)

== Damping Servos ==

- Now, the POS/PIT/YAW servos experience ~x10 gains. So temporarily these gains were reduced (POS 20->2, PIT 6->0.6, YAW 4->0.4) and the loops are stable when engaged.
- Also the gains of the OPLEV servos were reduced from -4.5 to -0.45. The loops are stable when engaged.

== Snapshot of the working condition ==

Attachent 6 shows the screenshot for the snapshot of the working condition.


To Do

- The damping servos were tested without proper PD whitening compensation.
  -> It turned out this is not necessary as our modified PD whitening has the pole and zero at the same freqs as before.

- Compare the DC values of the OSEM outputs and compensate for the gain increase by the "cts2um" filter.

- The end RTS suffers from the RFM issue. There is no data transmitted from the vertex to the end. I suspect we need to restart the c1rfm process. But this will likely suspend all the vertex real-time machines. Careful execution is necessary.

- c1iscey has all the necessary analog connections. But they are not tested. When we lock the green/IR cavity, we'll need them.

- The cable labeling is only half done.

  16707   Mon Mar 7 14:52:34 2022 KojiUpdateVACOngoing work to get the FRG gauges readouts to EPICs channels

Great trouble shoot!

> I guess, the only remaining issue now is the incorrect atmospheric pressure reading of 1000 Torrs. 

This is just a calibration issue. The controller should have the calibration function.
(The other Pirani showing 850Torr was also a calibration issue although I didn't bother to correct it. I think the pirani's typically has large distribution of the calibration values and requires individual calibration)

  16708   Mon Mar 7 14:55:33 2022 KojiUpdateIOOIMC unlocked again, completely misaligned

Hmm, the bias values were reset at 2022-03-03-20:01UTC which is 2022-03-03-12:01 PST with no apparent disruption of the data acquisition (= no resetting of the RTS). Not sure how this could happen.

 

  16711   Mon Mar 7 18:53:16 2022 KojiUpdateBHDRe-susspension of AS1

Not sure if that small difference can cause the alignment inability. Particularly, the removed metal was just below the wire. This means that there is no misalignment effect at the first order.

Here is my idea:
You may be able to assist the alignment by adding washers on one side of the four holes to this "H" shaped parts. The holes are away from the center line, adding some weight definitely do some misalignment.

 

  16719   Wed Mar 9 12:57:52 2022 KojiUpdateBHDSimplified BHD readout sketch on ITMY table

- BHD beams were already mixed in the chamber. So we don't need a BS on the table. (Probably there is no BS already)

- We don't need to split each BHD beam. One PD per BHD beam is OK for now.

- Check if the BHD paths have reasonable angles from the windows so that the beams do not hit the chamber wall.

- We need the POY path. POY indeed goes to the BS table

  16752   Fri Apr 1 17:02:02 2022 KojiUpdateOptical LeversSimplified sketch on MC table

We are supposed to have BS Oplev Beams. We don't like the shallow angle reflections (i.e. AOI>45deg).

The laser is too big but I suspect the other components are too small. So it'd be check the actual size of the components including the optical mounts that are missing on the figure so far.

  16753   Fri Apr 1 22:22:29 2022 KojiUpdateOptical LeversSimplified sketch on MC table

Possibility to swap BS and ITMX tables:
BS table, which Tega said MC table, is 2ft x 4ft. The ITMX table is 3ft x 5ft and only the central 2ft x 4ft area is used. The area around the BS table is the narrowest for the east arm. We need at least (2+delta) ft of the hallway width so that we can move the instrument. I'm not yet sure if the ITMX table can be placed there without precise investigation.
 

  16758   Wed Apr 6 01:20:48 2022 KojiSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Xarm

PR2/PR3 Output R for fame OSEMS reduced from 1.2K to 1.2K//100Ohm

I put the R=100Ohm for PR3 with the functions of the units mistakenly swapped. This affects imbalanced actuation of PR3 right now as well as too strong SD

PR2 Coil Driver 1 (UL/LL/UR) / S2100616 / PCB S2100520 / R_OUT = (1.2K // 100) for CH1/2/3

PR2 Coil Driver 2 (LR/SD) / S2100617 / PCB S2100519 / R_OUT = (1.2K // 100) for CH3

PR3 Coil Driver 1 (UL/LL/UR) / S2100619 / PCB S2100516 / R_OUT = (1.2K // 100) for CH3 only

PR3 Coil Driver 2 (LR/SD) / S2100618 / PCB S2100518 / R_OUT = (1.2K // 100) for CH1/2/3

----

The output R was reduced from 1.2k to 1.2k//100 = 92 Ohm.

This means that the face coil gains were increased by a factor of 13.

The original gains for PR2 Pos/Pit/Yaw were {0.7, 0.3, 0.2}. To keep the same loop gain, the new gains were supposed to be {0.054, 0.023, 0.015}.
With the new gain, the oscillations were very slowly reduced. Therefore, I increased the gains to have the gain margin of 2. (i.e. increased the gains until I have the oscillation, and then made it half.)
The new values were {0.2, 0.1, 0.05}. The side gain was 20 and unchanged

For PR3 the same operation has been done.

The original gains for PR3 Pos/Pit/Yaw were {1, 0.52, 0.2}. They were supposed to be reduced to  {0.077, 0.04, 0.015}.
The gains were increased to {0.5, 0.1, 0.1}. The side gain was also increased from 1 to 5.

  16760   Wed Apr 6 22:51:47 2022 KojiSummaryBHDPart IIa of BHR upgrade - IR laser alignment on Xarm

[Yuta Koji]

We took out the two coil driver units for PR3 and the incorrect arrangement of the output Rs were corrected. The boxes were returned to the rack.

In order to recover the alignment of the PR3 mirror, C1:SUS_PR3_SUSPOS_INMON / C1:SUS_PR3_SUSPIT_INMON / C1:SUS_PR3_SUSYAW_INMON were monitored. The previous values for them were {31150 / -31000 / -12800}. By moving the alignment sliders, the PIT and YAW values were adjusted to be {-31100 / -12700}. while this change made the POS value to be 52340.

The original gains for PR3 Pos/Pit/Yaw were {1, 0.52, 0.2}. They were supposed to be reduced to  {0.077, 0.04, 0.015}.
I ended up having the gains to be {0.15, 0.1, 0.05}. The side gain was also increased to 50.

----

Overall, the output R configuration for PR2/PR3 are summarized as follows. I'll update the DCC.

PR2 Coil Driver 1 (UL/LL/UR) / S2100616 / PCB S2100520 / R_OUT = (1.2K // 100) for CH1/2/3

PR2 Coil Driver 2 (LR/SD) / S2100617 / PCB S2100519 / R_OUT = (1.2K // 100) for CH3

PR3 Coil Driver 1 (UL/LL/UR) / S2100619 / PCB S2100516 / R_OUT = (1.2K // 100) for CH1/2/3

PR3 Coil Driver 2 (LR/SD) / S2100618 / PCB S2100518 / R_OUT = (1.2K // 100) for CH3

  16771   Mon Apr 11 21:44:14 2022 KojiSummaryBHDPart IIa of BHR upgrade - POY11 debugging

We took out the right most PD interface board D990543 and removed the 74LS04 chips. In fact two out of 4 were already replaced with enabling wires, however it seemed that one of the remaining two got failed.
These remaining two chips were removed and the enabling signals were connected to VCC (+5V). This operation made the status LED light not functional. (We didn't bother to fixed them by connecting them to the GND)

The new schematic diagram was attached here, and the corresponding DCC entry (https://dcc.ligo.org/D1900318-v1) was modified. Attachments #2-3 show the circuit after the changes, and the front view respectively.

  16776   Wed Apr 13 18:55:54 2022 KojiUpdateCamerasCamera Battery Test

I believe that the Nikon has an exposure problem and that's why we bought the Canon.

 

  16787   Mon Apr 18 23:22:39 2022 KojiUpdateGeneralTool box and Work Station Organization

Whoa! Thanks!

  16791   Wed Apr 20 16:11:08 2022 KojiUpdateSUSOutpur resistors updated for LO1 coil drivers / for SR2, LO2, AS1, and AS4 in progress

[JC Koji]

To give more alignment ranges for the SUS alignment, we started updating the output resistors of the BHD SUS coil drivers.
As Paco has already started working on LO1 alignment, we urgently updated the output Rs for LO1 coil drivers.
LO1 Coil Driver 1 now has R=100 // 1.2k ~ 92Ohm for CH1/2/3, and LO1 Coil Driver 2 has the same mod only for CH3. JC has taken the photos and will upload/update an elog/DCC.

We are still working on the update for the SR2, LO2, AS1, and AS4 coil drivers. They are spread over the workbench right now. Please leave them as they're for a while.
JC is going to continue to work on them tomorrow, and then we'll bring them back to the rack.

  16792   Wed Apr 20 18:50:03 2022 KojiUpdateBHDPart V of BHR upgrade - PR2 weirdness

It seemed that it comes from the servo oscillation. This does not happen when the output limitters were set to be 100-ish. But even so the gains looked quite low.

I turned on the Cheby rool-offs for all the DOFs, and this allowed me to increase the damping gain A LOT.
The gains were 2~5 but now they are now 20-25 for the face OSEMs and 150 for SD.

The attached is the example of the damping when all the damping loops are on.

I think we need to tune the servo loops carefully for all the SUSs by actually looking at the openloop transfer functions rather than a personal feeling. => To Do

  16793   Thu Apr 21 10:35:23 2022 KojiUpdateCDSDAQ seemed down

Yesterday, when I worked on the damping servo, I found that any of the daqvtools (ndscope, dtt, dataviewer,...) is not available.  We may need to restart the fb and rt machines.

  16795   Thu Apr 21 15:22:44 2022 KojiUpdateSUSOutpur resistors updates for SR2, LO2, AS1, and AS4 done

[JC Koji]

Quick report: JC has done all the mods for the coil driver circuit in the morning and we worked on the reinstallation of them in the afternoon.
I'll check the damping loops / sus servo settings. JC is going to make an ELOG entry and DCC updates for more precise record of the mods.

  16801   Thu Apr 21 20:33:31 2022 KojiUpdateBHDAS1 UR OSEM problem localized in the chamber

Tega and Paco reported that the UR OSEM of AS1 lost the response.

- I have checked the LED MON (left) of the satellite amp for AS1. CH1/2/3 had 5V -> This indicates that the OSEM LEDs are (most likely) functioning.
- Then I went to the ITMY flange and connected the OSEM emulator instead of the Dsub25 cable. The attachment shows that the UR OSEM LED/PD worked fine with the OSEM emulator. WIth the vacuum flange connected it lost the response.

This indicates that the AS1 UR OSEM problem is localized in the chamber. Please check if the DSUB pins are touching the table or something else.

 

  16809   Mon Apr 25 14:49:02 2022 KojiUpdateGeneralNitrogen Tank

For your (and mine) info:

N2 pressure can be monitored on the 40m summary page: https://nodus.ligo.caltech.edu:30889/detcharsummary/day/20220425/vacuum/
(you need to hit "today" to go to the current status)

 

  16839   Mon May 9 22:19:06 2022 KojiUpdateBHDBHD Platform Progress status

[Don, Koji]

Don is working on finalizing the BHD Platform design. All the components on the BHD platform are almost populated and aligned.

Don is still working on the table legs so that we can detach the legs when we need to float the table in the future.
The BHD BS mount will have a third picomotor so that we can steer 3 dof with the mount while the remaining dof needs to be provided by the OMC.
The BHD BS position is going to be adjusted so that the incident and trans beams have sufficient clearance.
The OMC legs (kinematic mounts) need more work so that we can adjust their positions for initial setup while they can be the reference for the reproducible placement of the OMCs.
The OMCs are rigidly held with the legs. For the damping of the 1-kHz body bode, which has a relatively high Q, there will be a dissipative element touching the glass breadboard.

  16840   Mon May 9 23:18:44 2022 KojiUpdateBHDBHD Platform Progress status

I quickly ran the FEA model to check the resonant freqs of the BHD platform.
The boundary conditions were:

  • The platform was not loaded
  • FIxed constraints were given to the five legs

Don has optimized the cut-out size for the OMCs to increase the rigidity of the plate. Also, the ribbed grid is made at the bottom side.

The lowest mode is at 168Hz. Because there is no leg around, it seems reasonable to have this kind of mode as the fundamental mode.
The other mode lined up at 291Hz, 394Hz, 402Hz, ...
The mode freqs will be lower once the platform is loaded. But as the unloaded platform mode, these mode freqs sound pretty good numbers.

  13941   Mon Jun 11 18:10:51 2018 Koji UpdateelogComparison of the analytical and finesse values of TMS and FSR.

Hmm? What is the definition of the percentage error? I don't obtain these numbers from the given values.
And how was the finesse value obtained from the simulation result? Then what is the frequency resolution used in Finesse simulation?

  2613   Thu Feb 18 15:39:16 2010 Koji and SteveConfigurationVACvalve condition: ALL OFF

As preparation for the upcoming planned power outage we turned turbos, RGA off and closed valves.

IFO chamber is not pumped now. Small leaks and out gassing will push the pressure up slowly. At 3 mTorr of P1 the PSL output shutter

will be closed by the interlock.

It is OK to use light in the IFO up to this point.

  7736   Wed Nov 21 01:31:37 2012 Koji, AyakaUpdateLockingalignment on ETMX table

Since the transmission beam on ETMXT camera seemed to be clipped, we checked the optics on ETMX table.

We aligned the lens so that it is orthogonal to the beam, then the beam shape looks fine.

output.nv12.bmp

Also we removed some an-used optics which were used for fiber input.

  2259   Thu Nov 12 17:24:29 2009 Koji, Joe, PeterConfigurationCDSETMY CDS test started

We started the test of the new CDS system at ETMY.

The plan is as follows:
We do the ETMY test from 9:30 to 15:00 at ETMY from Nov 12~17. This disables the ETMY during this period.
From 15:00 of the each day, we restore the ETMY configuration and confirm the ETMY work properly.


Today we connected megatron to the existing AA/AI modules via designated I/F boxes. The status of the test was already reported by the other entry.

During the test, c1iscey was kept running. We disabled the ETMY actuation by WatchDog. We did not touch the RFM network.

After the test we disconnected our cables and restored the connection to ICS110B and the AI/AA boards.

The WatchDog switches were released.

The lock of the ETMY was confirmed. The full interferometer was aligned one by one. Left in the full configuration with LA=off.

  3054   Tue Jun 8 00:38:22 2010 Koji, KiwamuUpdateIOOimproved Gaussian beam in new IOO

The shape of the beam spot in the new input optics got much much better 

As Alberto and Kiwamu found on the last week, the beam spot after MMT1 had not been good. So far we postponed the mode measurement due to this bad beam profile.

Today after we did several things in the vacuum chamber, the beam spot became really a good Gaussian spot. See the attachment below.

There were two problems which had caused the bad profile:

(1)  a steering mirror after MMT1 with the incident angle of non 45 deg

(2) clipping at the Faraday.

 

Also MCT_QPD and MCT_CCD were recovered from misalignment  

Tomorrow we are going to restart the mode matching. 

 


(what we did)

* We started from checking the shape of the beam going out from the BS chamber. There still were some stripes which looked like an interference on the spot. 

* We found a steering mirror after MMT1 had the incident angle of non 45 deg. In fact the mirror had a large transmission. After we made the angle roughly 45 deg, the stripes disappeared.

However the spot still didn't look a good Gaussian, it looked slightly having a bump on the horizontal profile.

* Prior to moving of some optics in the vacuum, we ran the A2L_MC scripts in order to check the beam axis. And it was okay.

* To recover the MCT, we steered one of the vacuum mirrors which was located after the pick off mirror.  And after aligning some optics on the AP table, finally we got MCT recovered.

 * We rearranged MC_refl mirrors according to the new optical layout that Koji has made. At the same time the mirrors for IFO_refl was also rearranged coarsely.

 * We leveled the optical table of the MC chamber by moving some weights. Then we locked the MC again and aligned it. We again confirmed that the beam axis was still fine by running the A2L scripts.

 * We found the beam going through Faraday was off-centered by ~5mm toward the west. So we moved it so that the beam propagates on the center of it. 

 * Then looking at the beam profile after MMT1, we found that the profile became really nicer. It showed a beautiful Gaussian. 

In the attachment below, the top panel represents the horizontal profile and the bottom one represents the vertical profile.

The blue curves overlaid on the plot are fitted Gaussian profile, showing beautiful agreements with the measured profile.

  2915   Wed May 12 02:35:13 2010 Koji, Rana, KiwamuUpdateGreen LockingReflection from ETM and ITM !

We succeeded in getting the reflected green beam from both ITMY and ETMY.

After we did several things on the end table, we eventually could observe these reflections.

Now the spot size of the reflection from ITMY is still big ( more than 1 cm ), so tomorrow modematching to the 40m cavity is going to be improved by putting mode matching telescopes on right positions.

An important thing we found is that, the beam height of optics which directly guides the beam to the cavity should be 4.5 inch on the end table.

 


(what we did)

* Aidan, Kevin and Kiwamu set the beam to be linearly polarized by rotating a QWP in front of the Innolight. This was done by monitoring the power of the transmitted light from the polarizer attached on the input of the Faraday of 1064 nm. Note that the angle for QWP is 326.4 deg.

* We put some beam damps against the rejected beam from the Faraday

* To get a good isolation with the Faraday we at first rotated the polarization of the incident beam so to have a minimum transmission. And then we rotated the output polarizer until the transmission reaches a minimum. Eventually we got the transmission of less than 1mW, so now the Faraday should be working regardless of the polarization angle of the incident beam. As we predicted, the output polaerizer seems to be rotated 45 deg from that of the input.

* Rana, Koji and Kiwamu aligned the PPKTP crystal to maximize the power of 532 nm.  Now the incident power of 1064 nm is adjusted to 250mW and the output power for 532 nm is 0.77mW. Actually we can increase the laser power by rotating a HWP in front of the Faraday.

* We injected the green beam to the chamber and aligned the beam axis to the ETMY without the modematching lenses, while exciting the horizontal motion of the ETM with f=1Hz from awg. This excitation was very helpful because we could figure out which spot was the reflection from the ETM.

* Once we made the reflected beam going close to the path of the incident beam, we then put the modematching lenses and aligned the steering mirrors and lenses. At this time we could see the reflected beam was successfully kicked away by the Faraday of 532 nm.

* Koji went to ITMY chamber with a walkie-talkie and looked at the spot position. Then he told Rana and Kiwamu to go a right direction with the steering mirrors. At last we could see a green beam from ITM illuminating the ETM cage.

* We excited the ITMY with f=2Hz vertically and aligned the ITM from medm. Also we recovered a video monitor which was abandoned around ETMY chamber so that we could see the spot on the ETM via the monitor. Seeing that monitor we aligned the ITM and we obtained the reclection from the ITM at the end table.

* We also tried to match the mode by moving a lens with f=400mm, but we couldn't obtain a good spot size.

 

  2290   Wed Nov 18 11:27:33 2009 Koji, josephbConfigurationSUSETMY suspension conencted to megatron ADC/DAC

Quote:

Koji, Rana

The megatron DAC was temporaly connected to the suspension electronics for the DAC test. We went down to ETMY as we could not excite the mirror.

The DAC is putting correct voltages to the channels. However, the anti imaging filter test output does not show any signal.
This means something wrong is there in the DAC I/F box or the cables to the AI circuit. We will check those things tomorrow.

The ETMY was restored to the usual configuration.

 

It appears the front panel for the DAC board is mis-labeled.  Channels 1-8 are in fact 9-16, and 9-16 are the ones labeled 1-8.  We have put on new labels to reduce confusion in the future.

  2291   Wed Nov 18 12:33:30 2009 Koji, josephbConfigurationSUSETMY suspension conencted to megatron ADC/DAC

Hurraaaah!
We've got the damping of the suspension.
The Oplev loops has also worked!

The DAC channnel swapping was the last key!

DataViewer snapshot to show the damping against an artificial excitation was attached

Quote:

Quote:

Koji, Rana

The megatron DAC was temporaly connected to the suspension electronics for the DAC test. We went down to ETMY as we could not excite the mirror.

The DAC is putting correct voltages to the channels. However, the anti imaging filter test output does not show any signal.
This means something wrong is there in the DAC I/F box or the cables to the AI circuit. We will check those things tomorrow.

The ETMY was restored to the usual configuration.

 

It appears the front panel for the DAC board is mis-labeled.  Channels 1-8 are in fact 9-16, and 9-16 are the ones labeled 1-8.  We have put on new labels to reduce confusion in the future.

 

  12640   Wed Nov 23 20:08:51 2016 Koji, ranaUpdateIOOMC WFS Demod/Whitening boards removed from the IOO rack

We removed one set of the MC WFS demod board and whitening board from the IOO rack for the investigation.
The MC WFS servo loops are disabled with the EPICS screens.
Let us know when you need the MC WFS boards to be returned to the rack.


This is to investigate the signal chain and fix some issues. We ramped down the -100 V supply for the WFS QPD bias (why is it so big?), but everything else is still on. Koji is doing demod board. Rana will upload a marked up WFS whitening board schematic soon.

  10162   Wed Jul 9 11:41:12 2014 KoushikUpdatePSLPMC local oscillator is going wonky

Quote:

Koushik replaced an ERA-5 in the PC path. We put the module back to the rack and found no change.
The epics LO level monitor monitor is still fluctuating from 6~11dBm. We need more thorough investigation
by tracing the signals everywhere on the board.

Despite the poor situation of the modulation, PMC was locking (~9PM). Rana suspect that the PMC demodulation
phase was not correctly adjusted long time. 

Koushik has the measured power levels and the photos of the board. I'll ask him to report on them.

 Updates from Koushik:

The power levels measured (before and after relacement of ERA-5) are as follows:

LO to Servo : Vout = 2.3 Vpp / Pout = 11.21 dBm at f = 35.5 MHz

RF to PC   :   Vout = 354 mVpp / Pout = -5.1 dBm at f= 35.5 MHz

The measurements were done using an oscilloscope with 50 ohms load impedance. Unfortunately the photos are not available from the camera.

  14621   Sat May 18 12:19:36 2019 KruthiUpdate CCD calibration and telescope design

I went through all the elog entries related to CCD calibration. I was wondering if we can use Spectralon diffuse reflectance standards (https://www.labsphere.com/labsphere-products-solutions/materials-coatings-2/targets-standards/diffuse-reflectance-standards/diffuse-reflectance-standards/) instead of a white paper as they would be a better approximation to a Lambertian scatterer.

Telescope design:
On calculating the accessible u-v ranges and the % error in magnification (more precisely, %deviation), I got %deviation of order 10 and in some cases of order 100 (attachments 1 to 4), which matches with Pooja's calculations. But I'm not able reproduce Jigyasa's %error calculations where the %error is of order 10^-1. I couldn't find the code that she had used for these calculations and I even mailed her about the same. We can still image with 150-250 mm combination as proposed by Jigyasa, but I don't think it ensures maximum usage of pixel array. Also for this combination the resulting conjugate ratio will be greater than 5. So, use of plano-convex lenses will reduce spherical aberrations. I also explored other focal length combinations such as 250-500 mm and 500-500mm. In these cases, both the lenses will have f-numbers greater than 5. But the conjugate ratios will be less than 5, so biconvex lenses will be a better choice.

Constraints: available lens tube length (max value of d) = 3" ; object distances range (u) = 70 cm to 150 cm ; available cylindrical enclosures (max value of d+v) are 52cm and 20cm long (https://nodus.ligo.caltech.edu:8081/40m/13000).

I calculated the resultant image distance (v) and the required distance between lenses (d), for fixed magnifications (i.e. m = -0.06089 and m = -0.1826 for imaging test masses and beam spot respectively) and different values of 'u'. This way we can ensure that no pixels are wasted. The focal length combinations - 300-300mm (for imaging beam spot), and 100-125mm (for imaging test masses) - were the only combinations that gave all positive values for 'd' and 'v', for given range of 'u' (attachments 5-6). But here 'd' ranges from 0 to 30cm in first case, which exceeds the available lens tube length. Also, in the second case the f-numbers will be less than 5 for 2" lenses and thus may result in spherical aberration.

All this fuss about f-numbers, conjugate ratios, and plano-convex/biconvex lenses is to reduce spherical aberrations. But how much will spherical aberrations affect our readings? 

We have two 2" biconvex lenses of 150mm focal length and one 2" biconvex lens of focal length 250mm in stock. I'll start off with these and once I have a metric to quantify spherical aberrations we can further decide upon lenses to improve the telescopic lens system.

  14633   Thu May 23 10:18:39 2019 KruthiUpdateCamerasCCD calibration

On Tuesday, I tried reproducing Pooja's measurements (https://nodus.ligo.caltech.edu:8081/40m/13986). The table below shows the values I got. Pictures of LED circuit, schematic and the setup are attached. The powermeter readings fluctuated quite a bit for input volatges (Vcc) > 8V, therefore, I expect a maximum uncertainity of 50µW to be on a safer side. Though the readings at lower input voltages didn't vary much over time (variation < 2µW), I don't know how relaible the Ophir powermeter is at such low power levels. The optical power output of LED was linear for input voltages 10V to 20V. I'll proceed with the CCD calibration soon.

Input Voltage (Vcc) in volts Optical power
0 (dark reading) 1.6 nW
2 55.4 µW
4 215.9 µW
6 0.398 mW
8 0.585 mW
10 0.769 mW
12 0.929 mW
14 1.065 mW
16 1.216 mW
18 1.330 mW
20 1.437 mW
22 1.484 mW
24 1.565 mW
26 1.644 mW
28 1.678 mW

  14639   Sun May 26 21:47:07 2019 KruthiUpdateCamerasCCD Calibration

 

On Friday, I tried calibrating the CCD with the following setup. Here, I present the expected values of scattered power (Ps) at \thetas = 45°, where \thetas is scattering angle (refer figure). The LED box has a hole with an aperture of 5mm and the LED is placed at approximately 7mm from the hole. Thus the aperture angle is 2*tan-1(2.5/7) ≈ 40° approx. Using this, the spot size of the LED light at a distance 'd' was estimated. The width of the LED holder/stand (approx 4") puts a constraint on the lowest possible \thetas. At this lowest possible \thetas, the distance of CCD/Ophir from the screen is given by \sqrt{d^2 + (2'')^2}. This was taken as the imaging distance for other angles also.

In the table below, Pi is taken to be 1.5mW, and Ps and \Omega were calculated using the following equations:

  \Omega = \frac{CCD \ sensor \ area}{(Imaging \ distance)^2}            P_{s} = \frac{1 }{\pi} * P_{i} *\Omega *cos(45^{\circ})  

d (cm)

Estimated spot diameter (cm)

Lowest possible \thetas  (in degrees)

Distance of CCD/Ophir from the screen (in cm) \Omega (in sr)

Expected Ps at   \thetas = 45° (in µW)

1.0 1.2 78.86 5.2 0.1036 34.98
2.0 2.0 68.51 5.5 0.0259 8.74
3.0 2.7 59.44 5.9 0.0115 3.88
4.0 3.4 51.78 6.5 0.0065 2.19
5.0 4.1 45.45 7.1 0.0041 1.38
6.0 4.9 40.25 7.9 0.0029 0.98
7.0 5.6 35.97 8.6 0.0021 0.71
8.0 6.3 32.42 9.5 0.0016 0.54
9.0 7.1 29.44 10.3 0.0013 0.44
10.0 7.8 26.93 11.2 0.0010 0.34

 

                                 

 

 

 

 

 

 

 

 

 

On measuring the scattered power (Ps) using the ophir power meter, I got values of the same order as that of  expected values given the above table. Like Gautam suggested, we could use a photodiode to detect the scattered power as it will offer us better precision or we could calibrate the power meter using the method mentioned in Johannes's post: https://nodus.ligo.caltech.edu:8081/40m/13391.

 

  14644   Fri May 31 01:38:21 2019 KruthiUpdateCamerasTelescope

[Kruthi, Milind]

Yesterday, we were able to capture some images of objects at a distane of approx 60cm (see the attachment), with the GigE mounted onto the telescope. I think, Johannes had used it earlier to image the ETMX (https://nodus.ligo.caltech.edu:8081/40m/13375). His elog entry doesn't say anything about the focal length of the lenses that he had used. The link to the python code he had used to calculate the lens solution wasn't working. After Gautam fixed it, I took a look at it. He has used 150mm (front lens) and 250mm (back lens) as the focal length of lenses for the calculation. Using the lens formula and an image of a nearby light source, with a very rough measurement, I found the focal lengths to be around 14 cm and 23 cm. So, I'm assuming that the lenses in the telescope are of same focal lengths as in his code, i.e 150mm and 250mm.

  14651   Tue Jun 4 00:11:45 2019 KruthiUpdateCamerasGigE setup

Chub and I are trying to figure out a way to co-mount GigE into the existing cylindrical enclosure. I'm attaching a picture of the current setup that is being used for imaging MC2. As of now, I have thought of 3 possible setups (schematics attached); but I don't know how feasible they are. Let us know if you have any other ideas.


Update: The setup 3 would require us to use the 52cm long enclosure. It has a long breadboard welded to it, which makes it very convienient, but the whole setup becomes quite heavy and it's not that safe to install such heavy enclosure on top of the vaccuum system. Also, aligning its components would be more complicated than other setups.

I decided to start with the simple one, therefore, I tried implementing setup 1. Fitting in the analog camera horizontally alongside the telescope turned out to be tricky. Though I did manage to fit it in, it didn't leave any room to change the orientation of the beamsplitter. Like Koji suggested, I'll be trying the setup 2.

  14660   Sun Jun 9 21:24:00 2019 KruthiUpdateCamerasGigE setup

I managed to fit all the parts into the cylindrical enclosure without having to drill a hole in the enclosure to mount the analog camera (pictures attached); thanks to Koji for helping me find some fancy mechanical components (swivel post clamps, right angle post clamps and brackets). On Thursday, with Chub's help, I took a look at all the current analog camera positions with respect to the cylindrical enclosures. I think this setup gives me enough flexibility to align the components, as necessary, to be able to image the test masses/mirrors in all the cavities. I'll set it up for MC2 tomorrow.

 

  14663   Tue Jun 11 00:25:05 2019 KruthiUpdateCamerasGigE setup

[Kruthi, Milind]

Today, with Milind's help, I installed the analog camera into the MC2 enclosure [picture attached]; but it is not yet focused. We replaced the bulky angular bracket with a simple one, this saved a lot of space inside and it's easier to align other components now. I'll finish setting it up tomorrow.


Telescope design for MC2:  Instead of using two 3" long stackable lens tubes (SM2L30), we can use one 3" lens tube with an adjustable lens tube (SM2V10), as shown in the picture. This gives a flexibility to change the focal plane distance by 1" and also reduces the overall length of telescope from 9 inches to 6-7 inches. I decided to use two 150mm biconvex lens instead of a combination of 150mm and 250mm lenses, as the former combination results in lower focal plane distance for a given distance between the lenses.

Specifications of current telescope system (for future reference):

Focal length of lenses used  150mm & 150mm
Distance between the lenses 1cm - 2cm (Wasn't able to make more accurate measurement)

With the above telescope, assuming the MC2 mirror to be at a distance of approx 75cm, the focal plane distance will range from 7.9cm to 8.1cm. Using the adjustable lens tube, we can further make the fine adjustment.

  14665   Wed Jun 12 02:15:50 2019 KruthiUpdateCamerasGigE setup

[Koji, Kruthi]

Yesterday, Koji helped me clean all the optics that are being used for the setup. We tried aligning the cameras with the previous configuration we had, but after connecting the analog camera cables there wasn't much room to align the beam splitter. Today, I tried a different configuration and tested the alignment of analog camera, GigE, beam splitter and the mirror using a laser beam [pictures attached]. But the MC2 isn't locked to test if the whole setup is actually aligned with the mirror inside the vacuum. 

Also, with this setup, just by using posts of different lengths with the middle 90º-post-clamp, we will be able to move all the components. This way, we can easily image the beam spot in all the cavities.

  14666   Wed Jun 12 21:55:34 2019 KruthiUpdateCamerasGigE setup

I'm attaching a picture of the screen. I just positioned the enclosure by turning it a bit and I suppose we can see the mirror inside the vacuum now (the MC2 is still not locked). 

Quote:

[Koji, Kruthi]

Yesterday, Koji helped me clean all the optics that are being used for the setup. We tried aligning the cameras with the previous configuration we had, but after connecting the analog camera cables there wasn't much room to align the beam splitter. Today, I tried a different configuration and tested the alignment of analog camera, GigE, beam splitter and the mirror using a laser beam [pictures attached]. But the MC2 isn't locked to test if the whole setup is actually aligned with the mirror inside the vacuum. 

Also, with this setup, just by using posts of different lengths, we will be able to image the beam spot in all the cavities.

 

  14674   Fri Jun 14 00:40:33 2019 KruthiUpdateCamerasGigE setup

Today, I tried aligning it further; I'm attaching a picture of it. We are not able to see all the 4 OSEMs yet. In the reference picture I had taken, before taking off the previous analog setup, the OSEMs are not seen. So, I don't really understand what the other 2 spots seen on the current screen are. Are they actually OSEMs?

I need a laptop next to MC2, so that I can have a look at it and make further alignments. So, I tried accessing the GigE attached to the telescope using Paola. The pylon app in it, throws an error, few seconds after running it in continuous shot mode, and disconnects the GigE; everything works fine on Rossa though. I'll put up further details soon.

Quote:

don't need to lock - make sure the 4 OSEMs are centered on the camera field just as we have for the arm cavity mirrors

Quote:

I'm attaching a picture of the screen. I just positioned the enclosure by turning it a bit and I suppose we can see the mirror inside the vacuum now (the MC2 is still not locked). 

 

 

  14676   Sat Jun 15 00:03:26 2019 KruthiUpdateCamerasGigE setup

The analog camera is aligned and we are able to see all the 4 OSEMs (pictures attached). Due to secondary reflection from the beamspiltter (BS1-1064-33-2037-45S), when the MC2 is locked, we are getting a ghost image of the beam spot along with the primary image. 


The pylon app in Paola was reporting an error saying "0xE1000014: The buffer was incompletely grabbed". I followed the instructions given in this site, and changed the 'Packet Size' to 1500 and 'Inter-Packet Delay parameter' to a value greater than 20,000 (µs). This did the trick and I was able to use the continuous shot mode without any interruption. I'm attaching a picture of MC2 that I captured using GigE.

Quote:

Today, I tried aligning it further; I'm attaching a picture of it. We are not able to see all the 4 OSEMs yet. In the reference picture I had taken, before taking off the previous analog setup, the OSEMs are not seen. So, I don't really understand what the other 2 spots seen on the current screen are. Are they actually OSEMs?

I need a laptop next to MC2, so that I can have a look at it and make further alignments. So, I tried accessing the GigE attached to the telescope using Paola. The pylon app in it, throws an error, few seconds after running it in continuous shot mode, and disconnects the GigE; everything works fine on Rossa though. I'll put up further details soon.

Quote:

don't need to lock - make sure the 4 OSEMs are centered on the camera field just as we have for the arm cavity mirrors

Quote:

I'm attaching a picture of the screen. I just positioned the enclosure by turning it a bit and I suppose we can see the mirror inside the vacuum now (the MC2 is still not locked). 

 

 

 

ELOG V3.1.3-