40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 118 of 335  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  11099   Thu Mar 5 04:29:13 2015 ericqUpdateLSCLocking work tonight

Brief elog of my activities tonight:

I was able to transition the digitial CARM control to REFL11 through the common mode board a total of one time, lock broke after a few seconds.

My suspicion was that when we did this on Monday, we unintentionally had a reasonable DARM offset, which reduced the finesse enough to let us take linear transfer functions and hop over. So, tonight, I intentionally looked at transitioning to CM_SLOW at some DARM offset. Using DARM offset of a few times 0.1 really calms the "buzzing" down, and makes it fairly straightforward to measure linear CARM sensing TFs. However, the CARM optical plant seems to change a fair amount depending on the DARM offset, in such a way that I was not able to compensate well enough to repeatedly transition.


Before I did anything else tonight, I measured the ALS noise down to 0.1 Hz, as a benchmark of how things are behaving.

With the arms locked on POX/POY, the HZ calibrated ALS channels reported

  • ALSX : 471Hz RMS
  • ALSY: 298 Hz RMS

Then, with the arms CARM/DARM locked on ALS, the PDH signals reported (using a line and the HZ channels for conversion)

  • Xarm : 552 Hz RMS
  • Yarm : 264 Hz RMS

Not bad! I roughly estimate this to mean ~90pm RMS CARM/DARM motion. (If X was as good as Y, it would be ~50pm...)


Some things I feel are worth noting:

  • In an effort to avoid the ETMX issues that Jenne had last night. I used MC2 to actuate CARM, and 2xETMY to actuate DARM. None of my locklosses appeared to be due to saturation of DARM, so I think it worked fine. The main drawback seems to be that if you have a violent lock loss, you may have to wait a bit for the IMC to relock; this only happened once tonight.
  • After the IR resonance finding scripts, I would run a z servo to try and get the PDH signal to cross zero. This made the ALS CARM and DARM zeros closer to the real resonating zeros than I usually see.
  • It is lately possible to sit at higher powers (albeit with very high RIN) for sizable amounts of time. In my last lock, I was in the range of 10-60x single arm power for around 30 minutes before I blew it with a failed transition attempt.
  • The set points for the QPD servos don't change much from lock to lock. I didn't have any problem using them tonight.

Tomorrow, I'll post some transfer functions of the difference between the ALS and CARM plants that I measured.

  1382   Tue Mar 10 04:55:41 2009 YoichiUpdateLockingLocking: 3.7kHz large oscillation
Yoichi, Jenne, Alberto,

As I reported on the last Thursday, there is a large oscillation in CARM and DARM error signals (attm1).
I put notch filters (3.75kHz, Q=10, 30dB) in the CARM and DARM loops. This let us go up to the arm power of more than 20 and stay there for a while.
The dashed curves in the attm1 are the spectra when the notches are off, and the solid curves are when the notches are used.
We could somewhat suppress the DARM peaks but not CARM.
Of course this is clearly not a good solution. We should find the cause of the oscillation and kill it.

Attm2 is the spectrum of the PO_DC signal flowing in the CM board measured by the SR785. More specifically, CH1 is TP1A and CH2 is TP2A of the CM board.
This was taken right after the AO path was engaged. At this stage, the AO path gain is very low. But you can already see a seed of the oscillation in the spectrum.

Attm3 shows the same spectra taken after the arm power is increased to 4 but before the PO_DC hand off. You can see large peaks around 3.75kHz.
After this, the peaks grow as the power goes up.

Attm4 is the loop gain of the AO path after the PO_DC hand off (arm power = 4).
Attm5 is the zoom of the same TF around 3.7kHz. Clearly there is something wrong at this frequency. We should check the CM board and the MC board as well as the SPOB PD.

One time I was able to go up to arm power = 27 or so. At this power level, the DARM loop started to oscillate, probably, around the UGF.
However because of the 3.7kHz problem, we can't stay at this power level long enough to make diagnostic measurements (like open loop TF).
We should tackle the 3.7kHz issue first.
Attachment 1: CARM_DARM_Spectra.pdf
CARM_DARM_Spectra.pdf
Attachment 2: PODC_Spe_AOPath_Engaged.png
PODC_Spe_AOPath_Engaged.png
Attachment 3: PODC_Spe_before_PODC_handoff.png
PODC_Spe_before_PODC_handoff.png
Attachment 4: AOGain3.png
AOGain3.png
Attachment 5: AOGain2.png
AOGain2.png
  4415   Fri Mar 18 17:25:21 2011 josephbUpdateCDSLockins in c1sus update, suspension screens updated

I updated our lockin simulink pieces to use the newer, more streamlined lockin piece that is currently in CDS_PARTS (with new documentation block!).  It means we are no longer passing clock signals through three levels of boxes.

In order to use the piece, you need to right click on it after copying from CDS_PARTS and go to Link Options->Disable Link.  This forces the .mdl to save all the relevant information about the block rather than just a pointer to the library.  I talked with Rolf and Alex today and we discussed setting up another model file, non-library format for putting generically useful user blocks into, rather than using the CDS_PARTS library .mdl.

The BS, ITMX, ITMY, PRM, SRM, ETMX, ETMY now have working lockins, with the input matrix to them having the 2nd input coming from LSC_IN, the 3rd from the oplev pitch, and the 4th from oplev yaw.

This necessitated a few name changes in the medm screens.  I also changed the lockin clock on/off switch to a direct amplitude entry, which turns green when a non-zero value is entered.

Currently, the Mode cleaner optic suspension screens have white lockins on them.  I started modifying a new set of screens just for them, and will modify the generate_master_screens.  Unfortunately, this requires modifying two sets of suspension screens going forward - the main interferometer optics and the MC optics.

  10818   Fri Dec 19 15:59:49 2014 JenneUpdateLSCLockloss from Wed

I swapped out one of the channels on Q's lockloss plotter - we don't need POP22Q, but I do want the PC drive.  

So, we still need to look into why the PC drive goes crazy, and if it is related to the buildup in the arms or just something intrinsic in the current FSS setup, but it looks like that was the cause of the lockloss that Q and Diego had on Wednesday.

1102929772_PCdriveRailed.png

  10783   Thu Dec 11 17:45:54 2014 ericqUpdateComputer Scripts / ProgramsLockloss plotting

 With some advice from Jamie, I've gotten the lock loss plotting script that is used at LHO working on our machines. The other night, I modified the ALSwatch.py script to log lockloss times. Tying it together, I've written a small wrapper script that grabs the last time from the lockloss log, and plots it. 

It is: scripts/LSC/LocklossData/lastlock.sh

Jamie's going to make an adjustment to the pydv codebase that will let me implement the auto y-scaling that we like. We also will need to get a feel for the right timing window, once we see what kind of delay in the ALSwatch script is typical. 

Here's an example of the output, with the window of [-10,+2] seconds from the logged GPS time:

figure.png

 

  10929   Thu Jan 22 03:21:24 2015 JenneUpdateLSCLocks with large MICH offsets

[Jenne, Diego, EricQ]

Tonight we worked on the acquisition sequence (including re-re-re-commissioning the UGF servos, hopefully for the last time...) for the PRFPMI with large MICH offsets. 

The procedure is all in the carm_up script, as far as things work.

We had some locklosses, but they were mostly due to non-carefulness on my part during the transitions between error signals, or the UGF servos getting upset because the oscillator peaks had gotten lost in the noise.  The one that I show here is our very last one of the night, where we are hitting the rails for the MICH signal, which is then causing the other loops to have to do weird things to try to compensate, and they lose lock.

Here also is a StripTool shot during that lock stretch.  I was in the middle of increasing the MICH offset to 75% of the fringe.  The yellow trace (called MICH_B_MON) is ASDC/POPDC normalized so that it always goes 0-1.  I was pleased to see that perhaps REFL11I and AS55Q are turning over, although as Q will tell us in a more detailed elog tomorrow, having a large MICH offset does weird things and moves the DARM zero-point.  So, maybe we aren't actually anywhere awesome yet. 

After some MICH offset, the maximum arm power is always going to be about 50, so arm powers of 8 or 10 equates to 100 pm.  We didn't get there tonight while on IR signals.


The locking sequence is now something like this:

  • Lock carm and darm on ALS, find resonances, move to 3 counts (roughly 3nm) offset.
  • Set PRMI up to acquire on REFL33I and ASDC/POPDC at 25% MICH fringe.  (After a while, I assume perhaps because the alignment is no longer tip-top, I have been by-hand reducing the MICH offset from -700counts which is 25% to -200counts, and then immediately putting it back to -700 after the PRMI acquires.)
  • Engage all 4 UGF servos
  • Reduce the CARM offset a bit, to 1.0 count, which gives arm powers of about 0.4 (with 50 being the max possible)
  • Transition CARM from ALS to sqrtInvTrans
  • Transition DARM from ALS to DC trans:  (TRY-TRX)/(TRX+TRY)
  • Reduce the oscillator amplitudes of the UGF servos
  • Reduce the CARM offset to powers of about 1
  • Ramp to 50% MICH fringe

After this, we tried a few times to lower the CARM offset, but kept losing lock, I think because the UGF servos went crazy.  The final lock, shown above, we lost because the MICH output was hitting the rails.

The problem with the MICH servo right now is the low SNR of the POPDC being used to normalize ASDC.  The control output is enormous, even if we have the 400Hz lowpass on.  We need to rethink our MICH servo, starting with a lower UGF, so that we're not injecting all this sensing noise all over the place. 


For tomorrow:

  • Re-look at MICH loop, to prevent sensing noise injection.
  • How does the large MICH offset affect our zero points for CARM and DARM?  Can we stay on DC transmission signals through 30 or 100 pm?
  • What to do next?  One or two of the locklosses were because the CARM detuned double cavity pole wasn't de-Q-ed enough, so still hit 0dB and created an unstable unity gain point.  Can we go to higher MICH offset, maybe 75%? 
  • Still need to figure out where our missing phase is for our LSC loops.  CARM and DARM are short on phase, and we could definitely use some more.  So, I will work on trying to give us filters that don't eat too much phase, but we still need to find that missing ~14 deg. 
  14374   Thu Dec 20 17:17:41 2018 gautamUpdateCDSLogging of new Vacuum channels

Added the following channels to C0EDCU.ini:

[C1:Vac-P1b_pressure]
units=torr
[C1:Vac-PRP_pressure]
units=torr
[C1:Vac-PTP2_pressure]
units=torr
[C1:Vac-PTP3_pressure]
units=torr
[C1:Vac-TP2_rot]
units=kRPM
[C1:Vac-TP3_rot]
units=kRPM

Also modified the old P1 channel to

[C1:Vac-P1a_pressure]
units=torr

Unfortunately, we realized too late that we don't have these channels in the frames, so we don't have the data from this test pumpdown logged, but we will have future stuff. I say we should also log diagnostics from the pumps, such as temperature, current etc. After making the changes, I restarted the daqd processes.


Things to add to ASA wiki page once the wiki comes back online:

  1. What is the safe way to clean the cryo pump if we want to use it again?
  2. What are safe conditions to turn the RGA on?
  14376   Fri Dec 21 11:11:51 2018 gautamUpdateCDSLogging of new Vacuum channels

The N2 pressure channel name was also wrong in C0EDCU.ini, so I updated it this morning to the correct name and units:

[C1:Vac-N2_pressure]
units=psi

Now it too is being recorded to frames.

  1908   Fri Aug 14 23:45:14 2009 ChrisUpdateGeneralLong Range Readout

The EUCLID-style Michelson readout is on the SP table now and is aligned.  See image below.  I took several power spectra with the plotter attached to the HP3563 (not sure if there's another way to get the data out) and I'm still waiting to calibrate (since dP/dL isn't constant as it isn't locked, this is taking a bit longer).  When put into XY mode on the oscilliscope (plotting Voltage at PD2 on the x and Voltage at PD3 on the y), a Lissajous figure as in the first plot below.  It's offset and elliptical due to imperfections (noise, dc offset, etc) but can ideally be used to calculate the L_ target mirror movement.  By rotating the first quarter wave plate by ~80.5deg counter-clockwise (fast axis was originally at Pi/8, now at 103deg), I was able to turn the Lissajous figure from an ellipse into a more circular shape, which would ideally allow for us to use a circular approximation (much simpler) in our displacement calculations.

Attachment 1: Table_Setup.png
Table_Setup.png
Attachment 2: Ellipse.jpg
Ellipse.jpg
Attachment 3: Circle.jpg
Circle.jpg
  7208   Thu Aug 16 19:12:30 2012 JenneUpdateLockingLong arm lock stretches

YARM_awesome_lock_stretch.png

After Rana and Yoichi tweaked the arm locking filters, we have had some pretty awesome lock stretches. 5-day minute trend.

  13327   Thu Sep 21 15:23:04 2017 gautamOmnistructureALSLong cable from LSC->IOO

[steve,gautam]

We laid out a 45m long BNC cable from the LSC rack to the IOO rack via overhead cable trays. There is ~5m excess length on either side, which have been coiled up and cable-tied for now. The ends are labelled "TO LSC RACK" and "TO IOO RACK" on the appropriate ends. This is to facilitate hooking up the output of the DFD for making a PM measurement of the AUX X laser. There is already a long cable that runs from the IOO rack to the X end.

  11751   Wed Nov 11 11:41:42 2015 gautamUpdateGeneralLong cable laid out for 1pps signal

In order to synchronise the FS725 Rb clock with our GPS timing signals, I laid out a longish cable running from 1X7 to the IOO rack via the overhead cable guide. There was a T-connector attached to the 1pps output of the GPS timing unit, with one of the outputs unused - I have connected one end of the cable I laid out to this output, with the other end going to the 1pps input of the FS725. I am now waiting for the FS725 to sync to the external reference, before running the calibration of the phase tracker once again using the same method detailed here, using the 10MHz output from the FS725 to serve as a reference for the Fluke RF signal generator...

  1894   Wed Aug 12 23:45:03 2009 ChrisUpdateGeneralLong range michelson

Today I set up the EUCLID long range michelson design on the SP table; It's the same as the setup posted earlier, but without the pickoff (at PD1), which can be added later, and a few other minor changes (moved lenses, mirrors, PDs - nothing major).  I hooked up the two PD's to the oscilliscope and got a readout that pointed to more power hitting PD2 than PD3.

Attachment 1: Actual_Sensor.png
Actual_Sensor.png
  11698   Mon Oct 19 15:23:22 2015 ericqUpdateLSCLonger DRFPMI lock

Here is a longer lock, about 100 seconds RF only, from later that same night. The in-loop CARM and DARM error signals have the order of magnitude of 1nm per count. 

From ~-150 to -103, we were fine tuning the ALS offsets to try and get close to the real CARM/DARM zero points then blending the RF CARM signal. 

At -100, the CARM bandwidth increases to a few kHz and stabilizes the arm powers. By -81, the error signals are all RF. At -70, I turned on the transmon QPD servos, which brought the power up a bit. 

If I recall correctly, lock was lost because I put waaaay too big of an excitation on DARM with the goal of running its UGF servo for a bit. The number I entered was appropriate for ALS, but most certainly too huge for AS55...

  13898   Wed May 30 16:12:30 2018 Jonathan HanksSummaryCDSLooking at c1oaf issues

When c1oaf starts up there are 446 gain channels that should be set to 0.0 but which end up at 1.0.  An example channel is C1:OAF-ADAPT_CARM_ADPT_ACC1_GAIN.  The safe.snap file states that it should be set to 0.  After model start up it is at 1.0.

We ran some tests, including modifying the safe.snap to make sure it was reading the snap file we were expecting.  For this I set the setpoint to 0.5.  After restart of the model we saw that the setpoint went to 0.5 but the epics value remained at 1.0.  I then set the snap file back to its original setting.  I ran the epics sequencer by hand in a gdb session and verified that the sequencer was setting the field to 0.  I also built a custom sequencer that would catch writes by the sdf system to the channel.  I only saw one write, the initial write that pushed a 0.  I have reverted my changes to the sequencer.

The gain channel can be caput to the correct value and it is not pushed back to 1.0.  So there does not appear to be a process actively pushing the value to 1.0.  On Rolfs sugestion we ran the sequencer w/o the kernel object loaded, and saw the same behavior.

This will take some thought.

  5864   Thu Nov 10 16:44:54 2011 MirkoUpdateAdaptive FilteringLooking into MC_F & PSL misalignment

 [Den, Mirko]

While doing the things below we accidentally misaligned the PSL laser. Thanks to Suresh and Jenne for realigning!!

There are a lot of strange features in MC_F (see for example http://nodus.ligo.caltech.edu:8080/40m/5738 )
To get some better understanding of the signals in the control loop we looked some more into what happens to the MC feedback signal after it exits the MC servo board (D040180 see DCC).

10112011076.jpg
The MC_F signal is actually the servo signal: http://nodus.ligo.caltech.edu:8080/40m/5695
The Thorlabs temperature controller is actually used in the PZT path!

 We measured the LP filter in the PZT path (that is kind of mislabeled as temp.)

10112011073.jpg

 

  5867   Thu Nov 10 22:00:38 2011 MirkoUpdateAdaptive FilteringLooking into MC_F & PSL misalignment

Quote:

 [Den, Mirko]

While doing the things below we accidentally misaligned the PSL laser. Thanks to Suresh and Jenne for realigning!!

There are a lot of strange features in MC_F (see for example http://nodus.ligo.caltech.edu:8080/40m/5738 )
To get some better understanding of the signals in the control loop we looked some more into what happens to the MC feedback signal after it exits the MC servo board (D040180 see DCC).

10112011076.jpg
The MC_F signal is actually the servo signal: http://nodus.ligo.caltech.edu:8080/40m/5695
The Thorlabs temperature controller is actually used in the PZT path!

 We measured the LP filter in the PZT path (that is kind of mislabeled as temp.)

10112011073.jpg

 

 

We looked into the signal from the MC servo board at different position at the PSL table.


We looked into the FB going into the temp. and PZT parts of the FB.
Temp.:
Screenshot.png

PZT:

Screenshot-1.png
We also looked at the signal in just in front of the FSS box No idea why the elog doesn't preview these pdfs.

Signal_at_MC_servo_board_and_PSL_table_2_1.pdf

Signal_at_MC_servo_board_and_PSL_table_2_2.pdf

Signal_at_MC_servo_board_and_PSL_table_2_3.pdf

Signal_at_MC_servo_board_and_PSL_table_2_4.pdf
Lots of extra noise there. We will check out where that comes from.

  15276   Fri Mar 13 20:00:50 2020 JonUpdateComputersLoopback monitoring for slow machines

Summary

Today I finished implementing loopback monitors of the up/down state of the slow controls machines. They are visible on a new MEDM screen accessible from Sitemap > CDS > Slow Machine Status (pictured in attachment 1). Each monitor is a single EPICS binary channel hosted by the slow machine, which toggles its state at 1 Hz (an alive "blinker"). For each machine, the monitor is defined by a separate database file named c1[machine]_state.db located in the target directory.

This is implemented for all upgraded machines, which includes every slow machine except for c1auxey. This is the next and final one slated for replacement.

Implementation

The blinkers are currently implemented as soft channels, but I'd like to ultimately convert them to hard channels using two sinking/sourcing BIO units. This will require new wiring inside each Acromag chassis, however. For now, as soft channels, the monitors are sensitive to a failure of the host machine or a failure of the EPICS IOC. As hard channels, they will additionally be sensitive to a failure of the secondary network interface, as has been known to happen.

Each slow machine's IOC had to be restarted this afternoon to pick up the new channels. The IOCs were restarted according to the following procedure.

c1auxex

  • Disabled OPLEV servos on ETMX
  • Zeroed slow biases
  • Disabled watchdog
  • Restarted IOC
  • Reverted 1-3

​c1vac

  • Closed V1, VM1
  • Restarted IOC
  • Returned valves to original state

c1psl

  • Disabled IMC autolocker
  • Closed PSL shutter
  • Restarted IOC
  • Reverted 1-2

c1iscaux

  • ​Restarted IOC

c1susaux

  • Disabled IMC autolocker
  • Closed shutter
  • Disabled OPLEV servos on: MC1, MC2, MC3, BS, ITMX, ITMX, PRM, SRM
  • Zeroed slow biases
  • Disabled watchdogs
  • Restarted IOC
  • Reverted 1-5

The intial recovery of c1susaux did not succeed. Most visibly, the alignment state of the IFO was not restored. After some debugging, we found that the restart of the modbus service was partially failing at the final burt-restore stage. The latest snapshot file /opt/rtcds/caltech/c1/burt/autoburt/latest/c1susaux.snap was not found. I manually restored a known good snapshot from earlier in the day (15:19) and we were able to relock the IMC and XARM. GV and I were just talking earlier today about eliminating these burt-restores from the systemd files. I think we should.

Attachment 1: Screen_Shot_2020-03-13_at_7.59.55_PM.png
Screen_Shot_2020-03-13_at_7.59.55_PM.png
  718   Tue Jul 22 22:25:31 2008 ranaUpdateLSCLooptickle for existing 40m
John and I have adapted the Stefan-Looptickle model of the 40m upgrade to have the parameters of the old one.
(old one = what we have had for the last 4 years).

Its in the /cvs/cds/caltech/iscmodeling directory on the CDS computers but you can also check it out from the
MIT CVS repo; its part of the whole shebang.

It makes the attached theoretical NB. Feel free to modify it.
Attachment 1: nb.png
nb.png
  14307   Mon Nov 19 22:01:50 2018 gautamUpdateVACLoose nut on valve

As I was turning off the lights in the VEA, I heard a rattling sound from near the PSL enclosure. I followed it to a valve - I couldn't see a label on this valve in my brief effort to find one, but it is on the south-west corner of the IMC table, so maybe VABSSCI or VABSSCO? The power cable is somehow spliced with an attachment that looks to be bringing gas in/out of the valve (See Attachment #1), and the nut on the bottom was loose, the whole power cable + mettal attachment was responsible for the rattling. I finger-tightened the nut and the sound went away.

Attachment 1: IMG_7171.JPG
IMG_7171.JPG
  11876   Fri Dec 11 23:12:09 2015 KojiSummaryCOCLoss map measurement document

Yutaro left detailed slides for his loss map measurement

https://dcc.ligo.org/LIGO-G1501547

  11776   Tue Nov 17 20:40:08 2015 yutaroSummaryASCLoss maps of arm cavities

In preparation for the measurement of loss maps of arm cavities, I measured the relationship between:

the offset just after the demodulation of dithering loop (C1:ASS-YARM_ETM_PIT_L_DEMOD_I_OFFSET and C1:ASS-YARM_ETM_YAW_L_DEMOD_I_OFFSET)

and

the angle of ETMY measured with oplev (C1:SUS-ETMY_OL_PIT_INMONC1:SUS-ETMY_OL_PIT_INMON and C1:SUS-ETMY_OL_PIT_INMONC1:SUS-ETMY_OL_PIT_INMON)

while the dithering script is running. With the angle of ETMY, we can calculate the beam spot on the ETMY assuming that the beam spot on the ITMY is not changed thanks to the dithering. What we have to do is to check the calbration of oplev with another way to measure the angle, to see if the results are reliable or not.

I will report the results later.

  11779   Wed Nov 18 11:22:13 2015 yutaroUpdateASCLoss maps of arm cavities

I got linear relation between these. The results and method are below.

Quote:

In preparation for the measurement of loss maps of arm cavities, I measured the relationship between:

the offset just after the demodulation of dithering loop (C1:ASS-YARM_ETM_PIT_L_DEMOD_I_OFFSET and C1:ASS-YARM_ETM_YAW_L_DEMOD_I_OFFSET)

and

the angle of ETMY measured with oplev (C1:SUS-ETMY_OL_PIT_INMONC1:SUS-ETMY_OL_PIT_INMON and C1:SUS-ETMY_OL_PIT_INMONC1:SUS-ETMY_OL_PIT_INMON)

while the dithering script is running. With the angle of ETMY, we can calculate the beam spot on the ETMY assuming that the beam spot on the ITMY is not changed thanks to the dithering. What we have to do is to check the calbration of oplev with another way to measure the angle, to see if the results are reliable or not.

I will report the results later.

 

RESULTS

 

 

METHOD

I added offset (C1:ASS-YARM_ETM_PIT_L_DEMOD_I_OFFSET and C1:ASS-YARM_ETM_YAW_L_DEMOD_I_OFFSET) to shift the beam spot on ETMY. For each data point, I measured the difference in angle of ETMY with oplev before and after adding offset. The precedure for each measurement I employed is following:

-- run dither

-- wait until error signals of dithering settle down

-- freeze dither

-- measure angle (10s avg)

-- add offset

-- wait until error signals of dithering settle down

-- freeze dither

-- measure angle (10s avg)

The reason why I measured the angle without offset for each measurement is that the angle which oplev shows changed with time (~several tens of minutes or something). 

 

DISCUSSION

At the maximum values of offsets, the arm transmission power started to degrade, so the range where I can do this measurement is limited by these values as for now. However, we have to shift the beam spot more in order to make loss maps of sufficiently broad area on the mirror (the beam width (w) on ETM; w ~ 5 mm). Then, we have to find out how to shift the beam spot more.  

  

Attachment 1: ETM_PIT_up.png
ETM_PIT_up.png
  16253   Wed Jul 21 18:08:35 2021 yehonathanUpdateLoss MeasurementLoss measurement

{Gautam, Yehonathan, Anchal, Paco}

We prepared for the loss measurement using DC reflection method. We did the following changes:

1. REFL55_Q was disconnected and replaced with MC_T cable coming from the PD on the MC2 table. The cable has a red tag on it. Consequently we lost the AS beam. We realigned the optics and regained arm locks. The spot on the AS QPD had to be corrected.

2. We tried using AS55 as the PD for the DC measurement but we got ratios of ~ 0.97 which implies losses of more than 100 ppm. We decided to go with the traditional PD520 used for these measurements in the past.

3. We placed the PD520 used for loss measurements in front of the AS55 PD and optimized its position.

4. AS110 cable was disconnected from the PD and connected to PD520 to be used as the loss measurement cable.

5. In 1Y2 rack, AS110 PD cable was disconnected, REFL55_I was disconnected and AS110 cable was connected to REFL55_I channel.

So for the test, the MC transmission was measured at REFL55_Q and the AS DC was measured at REFL55_I.

We used the scripts/lossmap_scripts/armLoss/measArmLoss.py script. Note that this script assumes that you begin with the arm locked.

We are leaving the IFO in the configuration described above overnight and we plan to measure the XARM loss early AM. After which we shall restore the affected electrical and optical paths.


We ran the /scripts/lossmap_scripts/armLoss/measureArmLoss.py script in pianosa with 25 repetitions and a 30 s "duty cycle" (wait time) for the Y arm. Preliminary results give an estimated individual arm loss of ~ 30 ppm (on both X/Y arms) but we will provide a better estimate with this measurement. 

  16254   Thu Jul 22 16:06:10 2021 PacoUpdateLoss MeasurementLoss measurement

[yehonathan, anchal, paco, gautam]

We concluded estimating the XARM and YARM losses. The hardware configuration from yesterday remains, but we repeated the measurements because we realized our REFL55_I_ERR and REFL55_Q_ERR signals representing the PD520 and MC_TRANS were scaled, offset, and rotated in a way that wasn't trivially undone by our postprocessing scripts... Another caveat that we encountered today was the need to add a "macroscopic" misalignment to the ITMs when doing the measurement to avoid any accidental resonances.

The final measurements were done with 16 repetitions, 30 second duration, and the logfiles are under scripts/lossmap_scripts/armLoss/logs/20210722_1423.txt and scripts/lossmap_scripts/armLoss/logs/20210722_1513.txt

Finally, the estimated YARM loss is 39\pm7 ppm, while the estimated XARM loss is 38\pm8 ppm. This is consistent with the inferred PRC gain from Monday and a PRM loss of ~ 2%.


Future measurements may want to look into slow drift of the locked vs misaligned traces (systematic errors?) and a better way of estimating the statistical uncertainty (e.g. by splitting the raw time traces into short segments)

  16256   Sun Jul 25 20:41:47 2021 ranaUpdateLoss MeasurementLoss measurement

What are the quantitative root causes for why the statistical uncertainty is so large? Its larger than 1/sqrt(N)

  16257   Mon Jul 26 17:34:23 2021 PacoUpdateLoss MeasurementLoss measurement

[gautam, yehonathan, paco]

We went back to the loss data from last week and more carefully estimated the ARM loss uncertainties.

Before we simply stitched all N=16 repetitions into a single time-series and computed the loss: e.g. see Attachment 1 for such a YARM loss data. The mean and stdev for this long time series give the quoted loss from last time. We knew that the uncertainty was most certainly overestimated, as different realizations need not sample similar alignment conditions and are sensitive to different imperfections (e.g. beam angular motion, unnormalizable power fluctuations, etc...).


Today we analyzed the individual locked/misaligned cycles individually. From each cycle, it is possible to obtain a mean value of the loss as well as a std dev *across the duration of the trace*, but because we have a measurement ensemble, it is also possible to obtain an ensemble averaged mean and a statistical uncertainty estimate *across the independent cycle realizations*. While the mean values don't change much, in the latter estimate we find a much smaller statistical uncertainty. We obtain an XARM loss of 37.6 \pm 2.6 ppm and a YARM loss of 38.9 \pm 0.6 ppm. To make the distinction more clear, Attachment 2 and  Attachment 3 the YARM and XARM loss measurement ensembles respectively with single realization (time-series) standard deviations as vertical error bars, and the 1 sigma statistical uncertainty estimate filled color band. Note that the XARM loss drifts across different realizations (which happen to be ordered in time), which we think arise from inconsistent ASS dither alignment convergence. This is yet to be tested.


For budgeting the excessive uncertainties from a single locked/misaligned cycle, we could look at beam pointing, angular drift, power, and systematic differences in the paths from both reflection signals. We should be able to estimate the power fluctuations by looking at the recorded arm transmissions, the recorded MC transmission, PD technical noise, etc... and we might be able to correlate recorded oplev signals with the reflection data to identify angular drift. We have not done this yet.

Attachment 1: LossMeasurement_RawData.pdf
LossMeasurement_RawData.pdf
Attachment 2: YARM_loss_stats.pdf
YARM_loss_stats.pdf
Attachment 3: XARM_loss_stats.pdf
XARM_loss_stats.pdf
  14815   Mon Jul 29 13:32:56 2019 gautamUpdateLoss MeasurementLoss measurement PD installed in AS path

[yehonathan, gautam]

  • we placed a PDA520 photodiode in the AS beampath, so AS110 and AS55 no longer see any light.
  • ITMX and ETMX were misaligned (since the plan is to measure the Y arm loss).
  • The PDA520 and MC2 transmission are currently going to the Y arm ALS beat channels in the DAQ system. Unfortunately, we have no control over the whitening gains for these channels because of the c1iscaux2 situation.
  14448   Mon Feb 11 19:53:59 2019 gautamSummaryLoss MeasurementLoss measurement setup

To measure the Y-arm loss, I decided to start with the classic reflectivity method. To prepare for this measurement, I did the following:

  1. Placed a PDA 520 in the AS beam path on the AS table.
  2. Centered AS beam on above PDA 520.
  3. Monitored signal from PDA520 and the MC transmission simultaneously in the single-bounce from ITMY config (i.e. all other optics were misaligned). Convinced myself that variations in the two signals were correlated, thus ruling out in this rough test any interference from ghost beams from ITMX / PRM etc.
  4. For the DAQ, I decided to use the two ALS Y arm channels in 1Y4, mainly because we have some whitening electronics available there - the OMC model would've been ideal but we don't have free whitening channels available there. So I ran long BNCs to the rack, labelled them.
  5. It'd be nice to have these signals logged to frames, so I added DQ-channels for the IN1 points of the BEATY_FINE filters, recording at 2048 Hz for now. Of course this necessitated restart of the c1lsc model, which caused all the vertex FEs to crash, but the reboot script brought everything back smoothly.
  6. Not sure what to make of the shape of the spectrum of the AS photodiode, see Attachment #1 - looks like some kind of scattering shelf but I checked the centering on the PD itself, looks good. In any case, with the whitening gains I'm using, seems like both channels are measuring above ADC noise.
  7. Found that the existing misalignment to the ETMY does not eliminate signatures of cavity flash in the AS photodiode. So I increased the amount of misalignment until I saw no evidence of flashes in the reflected photodiode.
  8. Johannes' old scripts didn't work out of the box - so I massaged it into a form that works.
  9. Re-centered Oplevs to try and keep them as well centered in the linear range as possible, maybe the DC position info from the Oplevs is useful in the analysis.

I'm running a measurement tonight, starting now (~1130PM), should be done in ~1hour, may need to do more data-quality improvements to get a realistic loss number, but I figured I'd give this a whirl.

I'm rather pleased with an initial look at the first align/misalign cycle, at least there is discernable contrast between the two states - Attachment #2. The data is normalized by MC transmission, and then sig.decimated by x512 (8**3).

Attachment 1: DQcheck.pdf
DQcheck.pdf
Attachment 2: initialData.pdf
initialData.pdf
  14449   Tue Feb 12 18:00:32 2019 gautamSummaryLoss MeasurementLoss measurement setup

Another arm loss measurement started at 6pm.

  13235   Mon Aug 21 20:11:25 2017 johannesSummaryGeneralLoss measurements plan

There are three methods we (will soon) have available to evaluate the round-trip dissipative losses in the arms that do not suffer from the ITM loss dominance:

  • DC reflection method:
    • Compare reflected light levels from [ITM only] vs [arm cavity on resonance]
  • Basler CCDs:
    • Infer large (or small) angle scatter loss with calibrated CCDs
  • Reflection ringdowns:
    • Need AS port light injection, principle is similar to DC method but better (?)

DCREFL

The DC method comparing reflectivities has been used in the past and is relatively easy to do. After the recent vacuum troubles the first step should be to re-perform these as CDS permits (needs some ASS functionality and of course the MC to behave). It wouldn't hurt to know the parameters this depends on, aka mode overlap and modulation depths with better certainty. Maybe the SURF scripts for mode-spectroscopy can be applied?

CCDs

With the new CCD cameras calibrated, pre-vent we can determine the magnitude of the large-angle scatter loss (assuming isotropic scatter) of ETMX and possibly ETMY. Can we look past ETMX/ETMY from the viewports? Then we can probably also look at the small angle scatter of ITMX and ITMY. If not, once we open one of the chambers there's the option of installing mirrors as close as possible to the main beam path. The easiest is probably to look at ITMX, since there is plenty of space in the XEND chamber, and the camera is already installed.

ASPORT

This requires a lot of up-front work. We decided to use the spare 200mW NPRO. It will be placed on the PSL table and injected into an optical fiber, which terminates on the AS table. The again free space beam there needs to be sort-of mode-matched into the SRC ("sort-of" because mode-spectroscopy). We want to be able to phaselock this secondary beam to the PSL with at least a couple kHz bandwidth and also completely extinguish the beam on time-scales of a few microseconds. We will likely need to purchase a few components that we can salvage from other labs, I'm still going through the inventory and will know more soon (more detailed post to follow). We need to settle for the polarization we want to send in from the back.

 

Tentative Schedule (aggressive)

Week Aug 21 - Aug 27:

  • Update mode-overlap estimates
  • Obtain current DC refl estimates
  • Spatial profile of auxiliary NPRO
  • Fiber setup concept; purchasing
  • CCD software prep work

Week Aug 28 - Sep 3:

  • Re-evaluate modulation indices if necessary
  • Optical beat AS Port Auxiliary Laser (ASAL) - PSL
  • PLL setup
  • CCD large angle prep work

Week Sep 4 - Sep 10:

  • PLL CDS integration
  • Amplitude-modulation preparation
  • CCD large angles

Week Sep 11 - Sep 17:

  • Fiber-injection
  • AS table preliminary mode-matching
  • Faraday setup
  • CCD small angle prep work

Week Sep 18 - Sep 24:

  • ASAL amplitude switching
  • CCD small angles

Week Sep 25 - Oct 1:

  • AS port ringdowns

 

  13236   Mon Aug 21 21:26:41 2017 gautamSummaryGeneralLoss measurements plan

In case you want to use it, I had profiled the Lightwave NPRO sometime back, and we were even using it as the AUX X laser for a short period of time. 

As for using the AS laser for mode spectroscopy: don't we want to match the beam into the cavity as best as possible, and then use some technique to disturb the input mode (like the dental tooth scraper technique from Chris Mueller's thesis)? 

Johannes and I did an arm scan of the X arm today (arm controlled with ALS, monitoring IR transmission) - only 2 IR FSRs were scanned, but there should be sufficient information in there to extract the modulation depth and mode matching - can we use Kaustubh's/Naomi's code?. The Y arm ALS needs to be touched up so I don't have a Y arm scan yet. Note that to get a good arm scan measurement, the High Gain Thorlabs PD should be used as the transmission PD.

Quote:
 

Week Aug 21 - Aug 27:

  • Update mode-overlap estimates
  • Obtain current DC refl estimates
  • Spatial profile of auxiliary NPRO
  • Fiber setup concept; purchasing
  • CCD software prep work

 

  9014   Thu Aug 15 12:30:17 2013 manasaUpdateGreen LockingLost beat notes

[Koji, Nic, Manasa]

Update from last night.

Koji and I realigned the green optics on the PSL to start working on the ALS.

We set on a beat note search. We couldn't find the beat note between any of the arm green transmission and the PSL green. All we could see was the beat between the X arm and the Y arm green leakage.

Since we had the beatnote between the 2 green transmission beams, we decided to scan the PSl temperature. We scanned the SLOW actuator adjust of PSL; but couldn't locate any beat note. The search will continue again today.

  27   Mon Oct 29 23:10:05 2007 waldmanConfigurationOMCLost in DAQspace
[Pinkesh, Sam]

In setting up a Digital based control of the hanging OMC, we naively connect the Anti-Imaging filter output to an Anti-Aliasing input. This led to no end of hell. For one thing, we found the 10 kHz 3rd order butterworth at 10 kHz, where it should be based on the install hardware. One wonders in passing whether we want a 10 kHz butter instead of a 15 kHz something else, but I leave that for a later discussion. Much more bothersome is a linear phase shift between output and input that looks like ~180 microseconds. It screams "What the hell am I!?" and none of us could scream back at it with an answer. I believe this will require the Wilson House Ghost Busters to fully remedy on the morrow.
Attachment 1: SS.pdf
SS.pdf
Attachment 2: SS.gif
SS.gif
  6097   Fri Dec 9 17:08:41 2011 JenneUpdateRF SystemLots of current used in Rich's demod box

I checked the power regulators on the Rich demod box (according to the schematic, D1000217).  The positive one is LM2941CT, and the negative one is LM2991T.  Both accept input voltage up to +26V or -26V respectively.  So my use of +\- 24V to be regulated down to +\- 15V isn't too crazy.  It's a little crazy, but not too crazy.  They recommend having only a 3V difference between the input and output voltages.  We don't have any 18V or 20V power supplies in the regular LSC power supply rack, so Rana suggested using the 24's. 

When I plug in and turn on the Rich box, the current on the +24V power supply goes up by about 0.8A, and the -24V supply goes up by about 0.3A.  That seems like kind of a lot.  Is that too much?  Do I need to find a better plan that involves +\- 18V?  Thoughts?

For now, the Rich box is off, just in case.

  6099   Fri Dec 9 17:44:45 2011 KojiUpdateRF SystemLots of current used in Rich's demod box

Those asymmetric currents are same as what I saw with the table top +/-18V supply. If you really don't like it, there could be an option to disconnect CH3/4 in the box.

In any case, this could be a good long-run test of the demod box, couldn't it?

Quote:

I checked the power regulators on the Rich demod box (according to the schematic, D1000217).  The positive one is LM2941CT, and the negative one is LM2991T.  Both accept input voltage up to +26V or -26V respectively.  So my use of +\- 24V to be regulated down to +\- 15V isn't too crazy.  It's a little crazy, but not too crazy.  They recommend having only a 3V difference between the input and output voltages.  We don't have any 18V or 20V power supplies in the regular LSC power supply rack, so Rana suggested using the 24's. 

When I plug in and turn on the Rich box, the current on the +24V power supply goes up by about 0.8A, and the -24V supply goes up by about 0.3A.  That seems like kind of a lot.  Is that too much?  Do I need to find a better plan that involves +\- 18V?  Thoughts?

For now, the Rich box is off, just in case.

 

  6101   Fri Dec 9 20:03:57 2011 ZachUpdateRF SystemLots of current used in Rich's demod box

D0902745-v5 (probably the AP1053's):

Screen_shot_2011-12-09_at_8.00.54_PM.png

Quote:

Those asymmetric currents are same as what I saw with the table top +/-18V supply. If you really don't like it, there could be an option to disconnect CH3/4 in the box.

In any case, this could be a good long-run test of the demod box, couldn't it?

Quote:

I checked the power regulators on the Rich demod box (according to the schematic, D1000217).  The positive one is LM2941CT, and the negative one is LM2991T.  Both accept input voltage up to +26V or -26V respectively.  So my use of +\- 24V to be regulated down to +\- 15V isn't too crazy.  It's a little crazy, but not too crazy.  They recommend having only a 3V difference between the input and output voltages.  We don't have any 18V or 20V power supplies in the regular LSC power supply rack, so Rana suggested using the 24's. 

When I plug in and turn on the Rich box, the current on the +24V power supply goes up by about 0.8A, and the -24V supply goes up by about 0.3A.  That seems like kind of a lot.  Is that too much?  Do I need to find a better plan that involves +\- 18V?  Thoughts?

For now, the Rich box is off, just in case.

 

 

  7552   Mon Oct 15 22:24:45 2012 JenneUpdateComputersLots of new White :(

Evan and I are starting to lock, and there is lots of new, unfortunate white stuff on several different screens.

C1:TIM-PACIFIC_STRING is gone, C1:IFO-STATE (MC state) is gone, C1:LSC-PZT..._requests are gone (all 4 of them), C1:PSL-FSS_FASTSWEEPTEST from the FSS screen is gone (although I'm not sure that that one is newly gone), lots of the WF AA lights on the LSC screen are gone.

Those are the things I find in a few minutes of not really looking around.

EDIT:  IPPOS is also gone, so I can't see how my current alignment relates to old alignments.

  13464   Thu Dec 7 11:14:37 2017 johannesHowToComputer Scripts / ProgramsLots of red on the FE status screen

Since we're getting ready to put the replacement slow DAQ for c1auxex in I wanted to bring the IFO back to operating condition after the PMC hasn't been locked for days. Something seems wrong with the CDS system though, many of the frontent models have red background and don't seem to be responsive. I followed the instructions laid out in https://wiki-40m.ligo.caltech.edu/Computer_Restart_Procedures.

In the attached screenshot, initially all c1ioo models were red, and on c1iscex only c1x01 was blue, the other ones red. I was able to ssh into both machines and tried to restart indivitual models, which didn't work and instead turned their background white. Still following the wiki page, I restarted both machines but they don't respond to pinging anymore and thus I cannot use ssh to reach them. Not sure what to do, I also rebooted fb over telnet.

So far I couldn't find any records of how to fix this situation.

Attachment 1: 22.png
22.png
  13465   Thu Dec 7 15:02:37 2017 KojiHowToComputer Scripts / ProgramsLots of red on the FE status screen

Once a realtime machine was rebooted, it did not come back. I suspect that the diskless hosts have a difficulty to boot up.

Attachment 1: DSC_0552.JPG
DSC_0552.JPG
  13466   Thu Dec 7 15:46:31 2017 johannesHowToComputer Scripts / ProgramsLots of red on the FE status screen

[Koji, Johannes]

The issue was partially fixed and the interferometer is in workable condition now.

What -probably- fixed it was restarting the dhcp server on chiara

sudo service isc-dhcp-server restart

Afterwards the frontends were restarted one by one. SSH access was possible and the essential models for IFO operation were started.

c1iscex reported initially that no DAQ card was found, and inside the IO chassis the LED indicator strip was red. Turning off the machine, checking the cables and rebooting fixed this.

Attachment 1: 04.png
04.png
  13467   Thu Dec 7 16:28:06 2017 KojiUpdateIOOLots of red on the FE status screen

Once the RT machines were back, we launched only the five IOPs. They had bunch of red lights, but we continued to run essential models for the IFO. SOme of the lights were fixed by "global diag reset" and "mxstream restart".

The suspension were damped. We could restore the IMC lock. The locking became OK and the IMC was aligned. The REFL spot came back.

At least, I could confirm that the WFS ASC signals were not transmitted to c1mcs. There must be some disconneted links of IPC.

  13474   Thu Dec 14 07:07:09 2017 ranaUpdateIOOLots of red on the FE status screen

I had to key the c1psl crate to get the PMC locking again. Without this, it would still sort of lock, but it was very hard to turn on the loop; it would push itself off the fringe. So probably it was stuck in some state with the gain wrong. Since the RF stuff is now done in a separate electronics chain, I don't think the RF phase can be changed by this. Probably the sliders are just not effective until power cycling.

Quote:

Once the RT machines were back, we launched only the five IOPs. They had bunch of red lights, but we continued to run essential models for the IFO. SOme of the lights were fixed by "global diag reset" and "mxstream restart".

The suspension were damped. We could restore the IMC lock. The locking became OK and the IMC was aligned. The REFL spot came back.

At least, I could confirm that the WFS ASC signals were not transmitted to c1mcs. There must be some disconneted links of IPC.

I then tried to get the MC WFS back, but running rtcds restart --all would make some of the computers hang. For c1ioo I had to push the reset button on the computer and then did 'rtcds start --all' after it came up. Still missing IPC connections.

I'm going to get in touch with Rolf.

  4329   Sat Feb 19 01:58:20 2011 ranaSummaryElectronicsLow Noise BJT Pre-Amp

Frank put his low noise preamp info here.

I suggest that we build these (using Altium) but replace the cheapo transistors with the high class MAT03 matched BJT pair from Analog Devices.

This will allow us to have a pre-amp better matched to the noise of the mixers down to low frequency.

  13291   Tue Sep 5 02:07:49 2017 gautamUpdateLSCLow Noise DRMI attempt

Summary:

Tonight, I was able to lock the DRMI, turn on the whitening filters for the sensing PDs, and also turn on the coil de-whitening filters for ITMX, ITMY and BS. However, I didn't see the expected improvement in the MICH spectrum between ~50-300 Hz sad. Sad.

Details:

I basically went through the list of tasks I made in the previous elog. Some notes:

  • The UGF servos suggested that I had to lower the SRCL gain. I lowered it from -0.055 to -0.025. OLTF measurement using In1/In2 method suggested UGF ~120Hz. I don't know why this should be. Plot to be uploaded later.
  • Since we aren't actuating on the ITMs, I was able to leave their coils de-whitened all the time.
  • For the BS, it was trickier - I had to play around a little with the "Tolerance" setting in Foton while looking at transients (using DTT, not a scope for now) while switching the filters.
  • This transition isn't so robust yet - but eventually I found a setting that worked, and I was able to successfully turn on the de-whitening thrice tonight (but also failed about the same number of times). [GV Oct 6 2017: Remember that the PD whitening has to be turned on for this transition to be successful - otherwise the RMS from the high frequencies saturate the DAC.]
  • The locks were pretty stable. One was ~10mins, one was ~15mins, and I broke both deliberately because I was out of ideas as to why the part of the MICH error signal spectrum that I thought was due to DAC noise didn't improve.
  • I've made a bunch of shell scripts to help with the various switchings - but now that I think of it, I should make these python scripts.

Attachment #1: Comparison of MICH_ERR with and without the BS de-whitening. Note that the two ITMs have their coils de-whitened in both sets of traces.

Attachment #2: Spectra of MICH output and one of the BS coil outputs in both states. The DAC RMS increases by ~30x when the de-whitening is engaged, but is still well within limits.

So it looks like the switching of paths is happening correctly. The "CDS BIO STATUS" MEDM screen also shows the appropriate bits toggling when I turn the de-whitening on/off. There is no broadband coherence with MCF between 50-300 Hz so it seems unlikely that this could be frequency noise.

Clearly I am missing something. But anyways I have a good amount of data, may be useful to put together the post CDS/electronics modification DRMI noise budget. More analysis to follow.

 

Attachment 1: MICH_err_comp.pdf
MICH_err_comp.pdf
Attachment 2: deWhitenedCoil.pdf
deWhitenedCoil.pdf
  3040   Wed Jun 2 22:25:39 2010 KevinUpdatePSLLow Power 2W Beam Profile

Koji is worried about thermal lensing introducing errors to the measurement of the 2W beam profile so I measured the profile at a lower power.

I used the same setup and methods used to measure the profile at 2W (see entry). This measurement was taken with an injection current of 1.202 A and a laser crystal temperature of 25.05° C. This corresponds to approximately 600 mW (see power measurement).

The data was fit to  w = sqrt(w0^2+lambda^2*(x-x0)^2/(pi*w0)^2) with the following results

For the horizontal beam profile:

reduced chi^2 = 2.7

x0 = (-203 ± 3) mm

w0 = (151.3 ± 1.0) µm

For the vertical beam profile:

reduced chi^2 = 6.8

x0 = (-223 ± 6) mm

w0 = (167.5 ± 2.2) µm

In the following plots, the blue curve is the fit to the vertical beam radius, the purple curve is the fit to the horizontal beam radius, * denotes a data point from the vertical data, and + denotes a data point from the horizontal data.

The differences between the beam radii for the low power and high power measurements are

Δw0_horizontal = (38.3 ± 1.2) µm

Δw0_vertical = (43.5 ± 2.4) µm

Thus, the two measurements are not consistent. To determine if the thermal lensing is in the laser itself or due to reflection from the W2 and mirror, we should measure the beam profile again at 2W with a razor blade just before the W2 and a photodiode to measure the intensity of the reflection off of the front surface. If this measurement is consistent with the measurement made with the beam scan, this would suggest that the thermal lensing is in the laser itself and that there are no effects due to reflection from the W2 and mirror. If the measurement is not consistent, we should do the same measurement at low power to compare with the measurement described in this entry.


Attachment 1: profile_low.png
profile_low.png
  11611   Thu Sep 17 13:06:05 2015 ericqSummaryLSCLow input impedance on CM board

As it turns out, our version of the common mode board does not have high input impedence. I think this is what is messing with the lowpass. 

I added photos of the PCB to our 40m DCC page about this board: D1500308, wherein you can see that we have Revision B. 

On the aLIGO wiki's CommonModeServo page, one finds that high input impedence was added in Revision E. At LIGO-D040180, one finds this was implemented via an additional dual AD829 instrumentation amplifier stage before the input amplification stage that exists on our board.

Also, I find that the boosts installed are the default 40:4k, 1k:20k, 1k:20k, 500:10k pole zero pairs. Given our 30-40kHz UGF for CARM thus far, maybe we would like to lower some of these boost corner frequencies, to actually be able to use them; so far we only use the first two.

  14129   Fri Aug 3 15:53:25 2018 gautamUpdateSUSLow noise bias path idea

Summary:

The idea we are going with to push the coil driver noise contribution down is to simply increase the series resistance between the coil driver board output and the OSEM coil. But there are two paths, one for fast actuation and one that provides a DC current for global alignment. I think the simplest way to reduce the noise contribution of the latter, while preserving reasonable actuation range, is to implement a precision DC high-voltage source. A candidate that I pulled off an LT application note is shown in Attachment #1.

Requirements:

  • The series resistance in the bias path should be 10 k\Omega, such that the noise from this stage is dominated by the Johnson noise of said resistor, and hence, the current noise contribution is negligible compared to the series resistance in the fast actuation path (4.5 k\Omega).
  • Since we only really need this for the test masses, what actuation range do we want?
    • Currently, ETMY has a series resistance of 400\Omega and has a pitch DC bias voltage of -4 V. 
    • This corresponds to 10 mA of DC current.
    • To drive this current through 10 k\Omega, we need 100 V. 
    • I'm assuming we can manually correct for yaw misalignments such that 10mA of DC current will be sufficient for any sort of corrective alignment.
    • So +/- 120 V DC should be sufficient.
  • The current noise of this stage should be negligible at 100 Hz. 
    • The noise of the transistors and the HV supply should be suppressed by the feedback loop and so shouldn't be a significant contribution (I'll model to confirm).
    • The input noise of the LT1055 is ~20nV/rtHz at 100 Hz, while the Johnson noise of 10 k\Omega is ~13nV/rtHz so maybe the low-passing needs to be tuned, but I think if it comes to it, we can implement a passive RC network at the output to achieve additional filtering.
  • To implement this circuit, we need +/- 125V DC. 
    • At EX and EY, we have a KEPCO HV supply meant to be used for the Green Steering PZTs. 
    • I'm not sure if these can do bipolar outputs, if not, for temporary testing, we can transport the unit at EY to EX.

If all this seems reasonable, I'd like to prototype this circuit and test it with ETMX, which already has the high series resistance for the fast path. So I will ask Steve to order the OpAmp and transistors.

Attachment 1: LT1055_precOpAmp.pdf
LT1055_precOpAmp.pdf
  14130   Fri Aug 3 16:27:40 2018 ranaUpdateSUSLow noise bias path idea

Bah! Too complex.

  11226   Mon Apr 20 16:18:29 2015 JenneUpdateElectronicsLow noise pre-amps: returned

The Rai box was in the Cryo lab, and the Busby box was in the TCS lab.  Neither had been signed out.  Lame.  Anyhow, thanks to Evan and Zach's memories of having seen them recently, they have been returned to the 40m where they belong.  (Also, I grabbed a spare Marconi while I was over there, for the phase noise measurement).

ELOG V3.1.3-