ID |
Date |
Author |
Type |
Category |
Subject |
7880
|
Tue Jan 8 14:01:21 2013 |
Riju | Update | | Photodiode transimpedance | Here I upload the plots corresponding to my last day's measurements.
|
7881
|
Tue Jan 8 14:07:04 2013 |
Riju | Update | Electronics | Photodiode transimpedance |
Quote: |
You have to correct this transimpedance ratio by correcting for the different levels of DC photocurrent in the two devices.
For the dark noise, you must always include a trace showing the noise of the measurements device (i.e. the analyzer noise must be less than the dark PD noise) with the same input attenuation setting.
|
Hi,
The correction for different levels of DC photocurrent in the two devices had been taken care by one MATLAB code, the code that originally was made by Koji.
The analyzer noise I had not recorded; today I am going to record it.
Riju |
7882
|
Tue Jan 8 15:28:41 2013 |
Riju | Update | Electronics | Photodiode transimpedance |
Quote: |
Quote: |
You have to correct this transimpedance ratio by correcting for the different levels of DC photocurrent in the two devices.
For the dark noise, you must always include a trace showing the noise of the measurements device (i.e. the analyzer noise must be less than the dark PD noise) with the same input attenuation setting.
|
Hi,
The correction for different levels of DC photocurrent in the two devices had been taken care by one MATLAB code, the code that originally was made by Koji.
The analyzer noise I had not recorded; today I am going to record it.
Riju
|
Here is the data for AG4395A network/spectrum analyzer noise data. I collected the data by putting 50ohm terminator on channel A with same input attenuation setting (0dB attenuation). |
7883
|
Tue Jan 8 17:54:34 2013 |
Jenne | Update | Alignment | Risers to bring TTs to correct beam height are in use |
[Jenne, EricQ, Nic, MattA]
* TT1 is in place, aligned so beam hits center of TT1, hits center of MMT1 (used pitch biases to finish pitch).
* Riser installed, dogged down with 1 dog.
* TT1 sitting on top of riser, 3 dogs holding TT to table, with riser squished in between.
* IOO table leveled.
* Almost all of the weights on the IOO table were just sitting there, not screwed down! One didn't even have a screw, 3 had screws, but they were totally loose. 2 of those screws were in as far as they could go, but they weren't holding the weight. This means the screw was too long, and should have been replaced (which I did today). Just because the existing screw was too long, doesn't mean it should be left as-is. Everything in the chambers must be tightly clamped down, as soon as work on that item is complete! Anyhow, after finalizing the leveling, I tightened down all of the weights on the IOO table.
* MMT1 tweaked so beam hits center of MMT2.
* MMT2 tweaked so beam hits center of PZT2.
* Light access connector installed.
Sadface notes:
* I dropped a Class B golden-colored 3/16 allen key to the bottom of the IOO chamber. I can't see it, but Nic thinks he might be able to see it with a mirror, from the BS chamber. We should look for it when we look for the IR card that is still down there.
* We have an ant in the IOO chamber. Unfortunately my hands were on the TT1 optic holder ring when I saw it, so I couldn't dash quickly enough to grab it. I saw it run over the side of the table, and down, but looked under the table and couldn't find him. Not so good, but I don't know what to do about it right now. If anyone sees it, get it out please. |
7884
|
Tue Jan 8 18:10:41 2013 |
Jenne | Update | SUS | PRM, SRM, BS oplevs off | I don't know why (I'm just leaving the lab right now....) but BS, PRM, SRM all have no light on their oplev PDs. I have turned off the oplev servos for now, and will get back to them tomorrow, before redoing the BS table oplev layout. |
7886
|
Wed Jan 9 18:59:01 2013 |
Jenne | Update | Alignment | TT2 installed, PRM oplev layout changed | [Jenne, Manasa]
PZT2 was removed from the BS table, and packed away in a foil-lined plastic box.
PRM oplev path has been altered, including installation of a 3rd mirror, to accommodate TT2, which is larger than PZT2.
* Unfortunately, PR3 is a few mm more north than is indicated in the CAD drawing, so I wasn't able to place the oplev mirrors exactly as Manasa indicated in elog 7815.
* We came up with a different layout. Photos were taken. We will need to confirm that the IPPOS, AS, and GreenX beams all clear past the oplev mirrors, but by imagining straight lines between mirrors for those beams, I think we should be okay. but we must confirm when we have real beams.
TT2 was installed, according to the placement in the diagram. Dogged down just as TT1 - one dog for the riser, 3 dogs for the TT base which also squish the riser. You should be able to see this in the photos. Without having installed the PRM target, it looks like the input beam is hitting pretty close to the PRM's center. Tomorrow Jamie The Tall can install the PRM target for us so we can confirm.
Photos - I'm posting them on Picasa here. The new camera, and the fact that you can rotate the viewfinder, is amazing for overhead in-chamber photos. Seriously, it's much easier to take useful photos. It's great.
Tomorrow:
We remove the ITMX door first thing. If Steve isn't here, we'll ask Koji or Bob to help us with the crane.
First thing on the alignment list is to finalize TT2's pointing. Put a target in front of PR2, put on the PRM target, etc, etc. We're basically back to the same alignment procedure as we've been doing the last few vents.
Item for meditation:
Do we trust ourselves, or do we want to think about installing a 'bathroom mirror' so we can see the face of PR3 while we are pumped down? |
7887
|
Wed Jan 9 19:32:24 2013 |
Riju | Update | | Photodiode transimpedance | Summary:
Today I have tested the MC transmission-end RF photodiode PDA255 for transimpedance and dark noise using Jenne's Laser and AG4395A network/spectrum analyzer. The dark noise voltage distribution for the transmission and reflection PDs of MC and the analyzer has been compared.
Motivation:
I am to do the input mode cleaner cavity mode scan. The electronic and shot noise of the components used , particularly photodiode noise, will affect the peak position of the modes, indicating the uncertainty in the measured frequencies of the modes. That will in turn give the uncertainty in the measured change of radius of curvature of the mirrors in presence of the laser beam, from which we will be able to calculate the uncertainty in the mirror-absorption value.
Method:
For PD transimpedance measurement I used Jenne's laser along with AG4395 network analyzer. The RF out signal of AG4395A had been divided by splitter with one output of the splitter going to R channel of the network analyzer and the other to the laser. The splitted laser beams - splitted with beam splitter - fall on two photodiodes - one reference(Newfocus1617? PD, the DC and RF transimpedance values were taken from its datasheet ) and the other on PDA255. The outputs of these two photodiodes go to channel B and A respectively of the network analyzer. The measured transimpedance data had been collected using the GPIB connection. It had been ensured that the PD under test is not going to saturation, for that the source power level was kept to -40dBm. transimpedance measurements were compensated by the ratio of DC photocurrent.
For dark noise measurement the output of the PD was connected to the A channel of the AG4395A, when there was no light falling on it. The response is collected using GPIB. The attenuation of channel A was made 0dB. ( AG4395A was kept in Spectrum analyzer mode in Noise Format).
Results:
The plots corresponding to the measurements are attached.
Discussion:
The comparison for the dark noise voltage levels of the MC transmission PD (PDA255) with MC REFL PD has been made with analyzer dark noise voltage. It is shown in the attachment (I will upload the dark noise current comparison too....since the output darknoise depends on the gain of the circuit, it is important to divide this voltage spectra by transimpedances.) |
7888
|
Thu Jan 10 12:22:36 2013 |
Jenne | Update | Alignment | TT matrix is funny |
Quote: |
* TT1 is in place, aligned so beam hits center of TT1, hits center of MMT1 (used pitch biases to finish pitch).
|
I had asked Q to write this down on a piece of paper, but then I forgot to transcribe it into the elog....
The TT screen matrix, at least for TT1, is flipped or something. When Eric moved the pit slider, the optic moved in yaw, and vice versa.
We need to fix this, but for now, here's the situation when TT1 was pointed correctly at MMT1:
PIT YAW
TT1 Pit slider | 1000 1000 | ---> 700 UL
0 | -1000 1000 | ---> 700 LL
TT1 Yaw slider | 1000 -1000 | ---> -700 UR
0.7 | -1000 -1000 | ---> -700 LR
The confusing thing is that Koji and I confirmed (by plugging in the correct cable to the correct sensor) that "UL" on the screen goes to the UL coil, and the same for the other 3 coils. This needs investigation / fixing.
|
7890
|
Thu Jan 10 15:30:33 2013 |
Jenne | Update | Alignment | TT2 pins swapped, ITMX door open |
[Bob, Manasa, Jenne]
We opened the ITMX heavy door. Before getting too far, we realized that we had to do the fancy pin swapping before we can activate TT2. So....
[Nic, Jenne]
We followed the instructions in elog 7869, and the associated Picasa album, and swapped the pins for the in-vac connector that will go to TT2. Pretty easy, since the procedure was already well documented.
We then looked at the beam location on PR2, and the beam is ~2 inches up and to the left (as viewed from the front) from the center of the optic. This is very easily correctable with the actuators, so we're leaving TT2 as it is. |
7891
|
Fri Jan 11 11:07:04 2013 |
Manasa | Update | General | IFO status update - PMC problems | I came in this morning to see that the PMC was down. The PZT voltage had drifted to below 50V. I adjusted the FSS slow controls to 0V and PZT was back at 126V.
PMC and IMC could eventually be locked.
History of PZT voltage behaviour in dataviewer over the last 24 hours shows it has been drifting everytime after it has been fixed. |
7892
|
Fri Jan 11 16:13:47 2013 |
Jenne | Update | General | IFO status update - PMC fixed |
Quote: |
I came in this morning to see that the PMC was down. The PZT voltage had drifted to below 50V. I adjusted the FSS slow controls to 0V and PZT was back at 126V.
PMC and IMC could eventually be locked.
History of PZT voltage behaviour in dataviewer over the last 24 hours shows it has been drifting everytime after it has been fixed.
|
FSS was saturating. Fixed. |
7893
|
Fri Jan 11 17:32:10 2013 |
Manasa | Update | Alignment | TT2 connections |
Manasa, Jenne
We started off to try and get TT2 working. We used the cables Jamie had already prepared while working on TT1 and used them to connect TT to the channels in 1Y3.
There were sma cable connectors already running between the channels 5-8 on the board to the UL,LL,UR and LR. Triggering the UL LL UR LR matrix on epics did not show any analog voltage at the output analog channels on the board. Talking to Jamie over phone, we inferred that the SMA cables that were already left connected corresponded to channels assigned for TT4 in epics. So we set the connections right and could see analog voltage outputs corresponding to epics triggers.
We connected the ribbon cables running from the board to the TT. But changing pitch and yaw did not do anything to the TT2 mirror. We opened the BS door and checked if the tt cables were connected to the post. We beeped the cable running from the board to TT (we also traced the cable's trail through the cable rack pile from 1Y3 to BSC). Using a function generator at the board end of the cable, we could not observe anything at the TT end of the cable.
We ran out of options on what can be done next and closed the doors. We hope Jamie can fix the problem once he returns next week. |
7894
|
Fri Jan 11 19:12:20 2013 |
Koji | Update | Alignment | TT2 connections | Was the connection between the feedthrough (atmosphere side) and the connector on the optical table confirmed to be OK?
We had a similar situation for the TT1. We found that we were using the wrong feedthrough connector (see TT1 elog). |
7895
|
Mon Jan 14 09:08:37 2013 |
Steve | Update | PSL | PMC is only ok short term |
The PMC PZT voltage slider seemed sticky. First it would not do anything, than after moving slider back an forth a few times, it had a range of 60V and later it had full range and it locked |
7896
|
Mon Jan 14 10:12:09 2013 |
Jenne | Update | Alignment | TT2 connections |
Quote: |
Was the connection between the feedthrough (atmosphere side) and the connector on the optical table confirmed to be OK?
We had a similar situation for the TT1. We found that we were using the wrong feedthrough connector (see TT1 elog).
|
The major problem that Manasa and I found was that we weren't getting voltage along the cable between the rack and the chamber (all out-of-vac stuff). We used a function generator to put voltage across 2 pins, then a DMM to try to measure that voltage on the other end of the cable. No go. Jamie and I will look at it again today. |
7897
|
Mon Jan 14 12:08:39 2013 |
jamie | Update | Alignment | TT2 connections |
Quote: |
Quote: |
Was the connection between the feedthrough (atmosphere side) and the connector on the optical table confirmed to be OK?
We had a similar situation for the TT1. We found that we were using the wrong feedthrough connector (see TT1 elog).
|
The major problem that Manasa and I found was that we weren't getting voltage along the cable between the rack and the chamber (all out-of-vac stuff). We used a function generator to put voltage across 2 pins, then a DMM to try to measure that voltage on the other end of the cable. No go. Jamie and I will look at it again today.
|
Everything was fine. Apparently these guys just forgot that the cable from the rack to the chamber flips it's pins. There was also a small problem with the patch cable from the coil driver that had flipped pins. This was fixed. The coil driver signals are now getting to the TTs.
Investigating why the pitch/yaw seems to be flipped... |
7898
|
Mon Jan 14 15:15:04 2013 |
Jenne | Update | | TT |
[Manasa, Jenne]
First plug in only one of the quadrupus cables, find out what coil it corresponds to according to screen, then plug in 2nd cable, don't test already-determined cable, but all other 3, find what cable it corresponds to according to the screen. Repeat for other 2 cables.
TT2, confirmation:
C = LL, not UR, not UL, not LR
D = UL, not UR, not LR
A = LR, not UR
B = UR
---------------------------------------------------------------------------------------
After confirming that the correct quadrupus cables were plugged in to the correct coils, I suspected that our problems could be coming from a (or some) magnet(s) touching the inside of the OSEM. We tested this a little bit, with the goal of finding the range of values where no magnets are touching.
All matrix values are either +1000 or -1000, so, with an example pitch slider value :
PIT YAW
Pit slider | 1000 1000 | ---> -22000 UL
-22.2 | -1000 1000 | ---> +22000 LL
Yaw slider | 1000 -1000 | ---> -22000 UR
0 | -1000 -1000 | ---> +22000 LR
Trying some values for pitch, keeping yaw constant:
0 yaw, Pitch bias = 5 -> UR is touching on left side of its osem.
0 yaw, Pitch 0, UR is touching left side.
0 yaw, -1.2 pitch, UR just came off from touching left side. More neg from here should be non-touching. all others are fine.
0 yaw, -32.2 pitch, LR not quite touching right side of osem, but is close (much less than 1mm clearance). UR fine. all others fine.
0 yaw, -22.2 pitch, all 4 are fine.
Trying some yaw values, keeping pitch constant:
1. -22.2 pitch, -32 yaw, LR touching. UR touching.
2. -22.2 pitch, -12 yaw, LR barely not touching, UR still touching.
3. -22.2 pitch, 0 yaw, UR still touching.
4. -22.2 pitch, 16 UR barely not touching.
5. -22.2 pitch, 32, none touching.
6. -22.2 pitch, 12, UR close, not touching.
7. -22.2 pitch, 0, UR touching.
8. -22.2 pitch, 32 (or 30?) UR came off.
9. -22.2 pitch, -25, UR close
10. -22.2 pitch, -32 UR touching.
11. -22.2 pitch, -4 UR not touching.
12. -22.2 pitch, 0 yaw, UR not touching.
Here is a graphical semi-representation for the yaw data:

|
7899
|
Mon Jan 14 19:56:48 2013 |
Manasa | Update | | TT |
[Manasa, Jenne]
The motion of the magnets (~1.5mm estimated by looking at the magnets moving) correspond to ~2deg. tilt of the mirror. This would mean almost 1.5m shift at the ETM end (~45m from the TT). |
7900
|
Tue Jan 15 01:41:40 2013 |
rana | Update | SUS | TT | That seems like easily enough range; as long as we can put the TT into the middle of their range to start with we should be OK.
We should consider instrumenting the leakage transmission through all TT with a bare QPD on a stick. We can then use those sensors to monitor the spot positions within the input mirrors as well as the PRC / SRC. |
7901
|
Tue Jan 15 19:26:35 2013 |
jamie | Update | Alignment | Adjustment of active TTs and input alignment | [Jamie, Manasa, Jenne]
We started by verifying that the tip-tilts were getting the correct signals at the correct coils, and were hanging properly without touching.
We started with TT2. It was not hanging freely. One of the coils was in much further than the others, and the mirror frame was basically sitting on the back side yaw dampers. I backed out the coil to match the others, and backed off all of the dampers, both in back and the corner dampers on the front.
Once the mirror was freely suspended, we borrowed the BS oplev to verify that the mirror was hanging vertically. I adjusted the adjustment screw on the bottom of the frame to make it level. Once that was done, we verified our EPICS control. We finally figured out that some of the coils have polarity flipped relative to the others, which is why we were seeing pitch as yaw and vice-versa. At that point we were satisfied with how TT2 was hanging, and went back to TT1.
Given how hard it is to look at TT1, I just made sure all the dampers were backed out and touched the mirror frame to verify that it was freely swinging. I leveled TT1 with the lower frame adjustment screw by looking at the spot position on MMT1. Once it was level, we adjusted the EPICS biases in yaw to get it centered in yaw on MMT1.
I then adjusted the screws on MMT1 to get the beam centered at MMT2, and did the same at MMT2 to get the beam centered vertically at TT2.
I put the target at PRM and the double target at BS. I loosened TT2 from it's base so that I could push it around a bit. Once I had it in a reasonable position, with a beam coming out at PR3, I adjusted MMT1 to get the beam centered through the PRM target. I went back and checked that we were still centered at MMT1. We then adjusted the pitch and yaw of TT2 to get the transmitted beam through the BS targets as clear as possible.
At this point we stopped and closed up. Tomorrow first thing AM we'll get our beams at the ETMs, try to finalize the input alignment, and see if we can do some in-air locking.
The plan is still to close up at the end of the week. |
7902
|
Tue Jan 15 20:00:42 2013 |
Manasa | Update | Alignment | Adjustment of active TTs and input alignment |
Just for reference! The changes made to the TT matrix in order to fix the polarity problem:
The old matrix values are mentioned in elog!
PIT YAW New
Pit slider | -100 -100 | UL
0 | -100 100 | LL
Yaw slider | 100 -100 | UR
0 | 100 100 | LR
|
7903
|
Wed Jan 16 08:29:45 2013 |
Steve | Update | SUS | PRM damping restored | PRM oplev servo turned off. OLPIT servo gain 0.15 and OLYAW -0.3 set to ZERO. PRM damping restored |
7905
|
Wed Jan 16 18:08:06 2013 |
Jenne | Update | Locking | Expected PRC gains | I was calculating the power recycling gains we expect for different versions of the PRC, and I am a little concerned that we aren't going to have much gain with the new LaserOptik mirrors.
I'm using
t_PRM^2
G = -------------------------------------------
(1 - r_PRM * r_PR2 * r_PR3 * r_end)^2
from eqn 11.20 in Siegman.
r_end is either the ITM (for a symmetric Michelson) or the flat mirror that we'll put in (for the PR-flat test case).
r = sqrt( R ) = sqrt( 1 - T ) for mirrors whose power transmission is the quoted value.
Some values:
t_PRM^2 = T_PRM = 0.055 ---------> r_PRM = sqrt( 1 - 0.055 )
T_G&H = 20e-6 ----> r_G&H = sqrt( 1 - 20e-6 )
T_LaserOptic = 0.015 (see elog 7624 where Raji measured this...1.5% was the best that she measured for P polarization. Elog 7644 has more data, with 3.1% for 40deg AoI) -------> r_LasOpt = sqrt( 1 - 0.015 ) or sqrt( 1 - 0.031)
T_ITM = 0.014 -----------> r_ITM = sqrt( 1 - 0.014 )
Some calculations with 1.5% LaserOptik transmission:
G_PRC_2G&H = 45
G_PRC_G&H_LasOpt = 31
G_PRM_flatG&H = 51
With the 3% LaserOptik transmission:
G_PRC_G&H_LasOpt = 22
G_PRM_flatG&H = 30
More ideal case of just PRM, flat mirror (either ITM or G&H), ignoring the folding mirrors:
G_PRM_ITM = 45
G_PRM_flatG&H = 70
Punchline:
If the LaserOptik mirror has 1.5% transmission at ~45 degrees, the regular PRC expected gain goes down to 31, from 45 with both folding mirrors as G&Hs. |
7906
|
Wed Jan 16 18:52:49 2013 |
Jenne | Update | Locking | PRM - Flat mirror cavity plan | Game plan:
* Put 2" G&H mirror into BS chamber, in front of BS.
* Align it, lock cavity using an existing REFL PD.
* Align POP setup so I can use POP camera to take image of transmitted cavity mode, and actually take that image.
* Take image of face of PR2.
* Measure finesse of cavity using POP, or a Thorlabs PD at POP (looking at transmission through PR2) by scanning PRM, and infer cavity gain....compare with values in elog 7905.
* If time / inclination allow, take beam scan measurements of the REFL port.
I will not be able to do as was done in elog 6421 to look at the beam size at POP for non-resonating beams. I expect ~0.1uW of light at POP in the non-resonant case: 100mW * 5.5% * 20ppm = 0.11microwatts.
|
7907
|
Wed Jan 16 18:58:08 2013 |
Riju | Update | | Photodiode transimpedance | Today I have taken the reading for shot noise intercept current for the PDA255 - MC transmission RF PD. To do that I have put an incandescent bulb (JKL lamps, 222 bulbs, voltage and current rating 2.25V and 0.25A) in front of the PD and varied the current through it from 0A to 0.29A at 2.2V. I measured the corresponding DC voltage and took the noise data (4395A spectrum analyzer/ format noise, channel attenuation 0dB) through GPIB .
I will process the data and upload the result soon. |
7909
|
Wed Jan 16 20:27:16 2013 |
rana | Update | Locking | Expected PRC gains | Why would we use such a bad optic in our recycling cavity? Is 1.5% the spec for these mirrors? Is this the requirement that Kiwamu calculated somehow? Did anyone confirm this measurement?
I can't believe that we'll have low noise performance in a RC where we dump so much power. |
7910
|
Thu Jan 17 00:17:31 2013 |
Jenne | Update | Locking | Expected PRC gains |
Quote: |
Why would we use such a bad optic in our recycling cavity? Is 1.5% the spec for these mirrors? Is this the requirement that Kiwamu calculated somehow? Did anyone confirm this measurement?
I can't believe that we'll have low noise performance in a RC where we dump so much power.
|
Yeah, Koji mentioned in response to Raji's measurements several months ago that the LaserOptic mirros were pretty far out of spec. We should probably redo the measurement to confirm. |
7912
|
Thu Jan 17 11:01:19 2013 |
Jenne | Update | Alignment | Yesterday's alignment work | [Jamie, Jenne, Manasa]
Yesterday's goal was to get the input beam centered on the PRM, the BS and ETMY simultaneously.
Steve helped us remove the ETMY door first thing in the morning. We then iterated with TT1, MMT1 and TT2 to try to get the beam centered on all the optics. We were using MMT1 instead of TT1 for a while, so that we could keep TT1 in the center of its range, so that we had more range to use once we pump down. Also, at one point, the beam was high on PRM, centered on BS, and high on ETMY, so Jamie poked PR3 a little bit. This helped, although we closed up for lunch / group meeting soon after, so we didn't finalize any alignment stuff.
We decided to leave the rest of the full IFO alignment alone until after the PRM-flat test. |
7913
|
Thu Jan 17 15:48:21 2013 |
Jenne | Update | Locking | PRM - Flat mirror cavity |
2" G&H mirror is installed on a DLC mount just in front of the BS. I had to remove one of the 4 BS dog clamps, so we must put it back when we are finished with this test.
I aligned the G&H mirror such that the reflected beam is overlapped with the incident beam, and I aligned the PRM such that the regular REFL beam is retro-reflected. This is the same as getting the beam bouncing off the PRM back to the G&H to be overlapped.
I then saw flashes of the cavity, when I held a card with a hole in the cavity, so the beam was going through a small aperture in the card, but I still saw flashes. I was not able to see flashes on the IR card transmitted through the G&H mirror.
I also cannot see any flashes or scattered light on the face of PR2 camera.
I do, however, see flashes on the face of the PRM. Movie saved, will post soonly.
Light is coming out of REFL on the AS table, but it's clipped somewhere....needs investigation/work before we can lock.
I also didn't see anything at the POP port with a card, but I'm hopeful that perhaps with a camera I'll see something. |
7914
|
Thu Jan 17 17:04:49 2013 |
Steve | Update | VAC | vac monitor screen changed | The COVAC_MONITOR.adl was changed. Ion pump labeled as disconnected means: ion pump controller power turned off and ion pump gate valve control connection disconnected.
RP2 roughing pump labeled disconnected means: hardware disconnected.
The actual operational, valve control screen has not been changed yet. |
7915
|
Thu Jan 17 19:33:53 2013 |
Manasa | Update | Alignment | PRM oplev | We had to work on redesigning the oplev layout in BSC when I found that the positions of the mirrors were clipping IPPOS and the green beam while updating the CAD layout.
To avoid any clipping, the prm oplev beam is steered into the vacuum by an oplev mirror and out of vacuum through 3 steering mirrors. The table weights had to be moved to allow room for the oplev mirrors. Hence table had to be re-leveled. I will update the CAD drawing with the current position of the mirrors and will reconfirm that the new mirrors are not in the way of any of the beams. In-vac photos are updated in picasa. |
7916
|
Fri Jan 18 00:41:34 2013 |
Jenne | Update | Locking | Dust? | I was thinking tonight about more possible reasons that our PRC sucks, and I wonder if dust on the BS could create the problem.
Historically, Kiwamu and I found a few dust particle scattering centers every time we inspected the test masses before drag wiping. Sometimes, there would be one frustratingly close to the center of the optic. I'm not sure if we ever made note of how many we saw and where they were, except out loud to the assembled crowd.
Anyhow, the BS is the only IFO optic that was not replaced, so I'm not sure how long it has been since it was cleaned. If the PR-flat cavity looks okay and we take out the BS to do a PRM-ITMY cavity, we should inspect the beam splitter.
Also, the PRM could need cleaning, but at least it has been drag wiped within recent memory.
My question is, could a few scattering centers cause the behavior that we are seeing?
EDIT: List o' elogs....
Elog 5301 - Some details on dust seen on ITMs and ETMs, Aug 2011.
Elog 4084 - Kiwamu's in-situ drag wiping how-to, with details on some of the dust we saw. Dec 2010.
Elog 3736 - PRM drag wiped before suspension (Oct 2010)
Elog 3111 - June 2010, BS drag wiped. |
7917
|
Fri Jan 18 09:54:18 2013 |
Jenne | Update | Locking | PRM - Flat mirror cavity |
Quote: |
I do, however, see flashes on the face of the PRM. Movie saved, will post soonly.
|
Dang it. I didn't confirm that the movie was good, just that it was there. It's corrupted or something, and won't play. I'll just have to make a new movie today after I realign the cavity. |
7918
|
Fri Jan 18 12:08:08 2013 |
Koji | Update | Locking | Dust? | No
Quote: |
My question is, could a few scattering centers cause the behavior that we are seeing?
|
|
7919
|
Fri Jan 18 15:08:13 2013 |
jamie | Update | Alignment | alignment of temporary half PRC | [jenne, jamie]
Jenne and I got the half PRC flashing. We could see flashes in the PRM and PR2 face cameras.
We took out the mirror in the REFL path on the AP that diverts the beam to the REFL RF pds so that we could get more light on the REFL camera. Added an ND filter to the REFL camera so as not to saturate. |
7920
|
Sat Jan 19 15:05:37 2013 |
Jenne | Update | Computers | All front ends but c1lsc are down | Message I get from dmesg of c1sus's IOP:
[ 44.372986] c1x02: Triggered the ADC
[ 68.200063] c1x02: Channel Hopping Detected on one or more ADC modules !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[ 68.200064] c1x02: Check GDSTP screen ADC status bits to id affected ADC modules
[ 68.200065] c1x02: Code is exiting ..............
[ 68.200066] c1x02: exiting from fe_code()
Right now, c1x02's max cpu indicator reads 73,000 micro seconds. c1x05 is 4,300usec, and c1x01 seems totally fine, except that it has the 02xbad.
c1x02 has 0xbad (not 0x2bad). All other models on c1sus, c1ioo, c1iscex and c1iscey all have 0x2bad.
Also, no models on those computers have 'heartbeats'.
C1x02 has "NO SYNC", but all other IOPs are fine.
I've tried rebooting c1sus, restarting the daqd process on fb, all to no avail. I can ssh / ping all of the computers, but not get the models running. Restarting the models also doesn't help.

c1iscex's IOP dmesg:
[ 38.626001] c1x01: Triggered the ADC
[ 39.626001] c1x01: timeout 0 1000000
[ 39.626001] c1x01: exiting from fe_code()
c1ioo's IOP has the same ADC channel hopping error as c1sus'.
|
7922
|
Sat Jan 19 18:23:31 2013 |
rana | Update | Computers | All front ends but c1lsc are down | After sshing into several machines and doing 'sudo shutdown -r now', some of them came back and ran their processes.
After hitting the reset button on the RFM switch, their diagnostic lights came back. After restarting the Dolphin task on fb:
"sudo /etc/init.d/dis_networkmgr restart"
the Dolphin diagnostic lights came up green on the FE status screen.
iscex still wouldn't come up. The awgtpman tasks on there keep trying to start but then stop due to not finding ADCs.
Then power cycled the IO Chassis for EX and then awtpman log files changed, but still no green lights. Then tried a soft reboot on fb and now its not booting correctly.
Hardware lights are on, but I can't telnet into it. Tried power cycling it once or twice, but no luck.
Probably Jamie will have to hook up a keyboard and monitor to it, to find out why its not booting.

P.S. The snapshot scripts in the yellow button don't work and the MEDM screen itself is missing the time/date string on the top. |
7923
|
Tue Jan 22 09:10:19 2013 |
Steve | Update | PEM | big foot is dirty | Please wipe, clean car wheels and wear booties entering the 40m lab.
Obviously this person has no idea about our clean room rules. |
7924
|
Tue Jan 22 09:18:50 2013 |
Steve | Update | Tip - Tilt | tip tilt bases ordered | The corrected drawing base for tip tilt with coils are going to the shop. The will be back by the end of the week. |
7925
|
Tue Jan 22 11:09:58 2013 |
Steve | Update | Tip - Tilt | SS mirror holder ordered | Koji's design of the SS 2" mirror holder with flexure spring optic retainer like Polaris-K1 has been ordered. We are getting just one to see it's effect on the hysteresis. |
7926
|
Tue Jan 22 17:29:29 2013 |
Riju | Update | | Photodiode transimpedance | Riju
Summary: I am stuck with the measurement of shot-noise-intercept-current of PDA255. Seeking help.
Motivation: It is to measure the shot noise intercept current for PDA255 - the MC transmission RF photodiode to get an idea for the noise current for the detector.
Method: It is as described in the elog 7907
Result: The plot is attached here.
Discussion: The result I got is really unexpected, the noise voltage should increase with the DC current level that corresponds to the increment of light level too. But actually it is decreasing. Three times I have repeated this experiment and got the same result. I want some suggestion on this regard. |
7927
|
Tue Jan 22 19:51:52 2013 |
Koji | Update | | Photodiode transimpedance | - The data should be plotted in a log-log scale.
- The data points were only taken in the high current region.
- The plot may suggest that the amplifier saturate at the RF.
PDA255 has the nomial transimpedance gain of 10^4 Ohm.
The DC current of 10^-3 gives the output of 10V.
This plot may tell that the saturation starts even at the 1/10 of the full DC range.
The plot doesn't have many points below 0.1mA.
Consult with my plots for the similar measurements.
The measured points are logarithmically spaced. Use the same technique.
- It is also very unknown that how the noise level is calculated. No info is supplied in the plot or the elogs. |
7928
|
Tue Jan 22 19:53:01 2013 |
Jenne | Update | Locking | PR-flat cavity status - not locked | The PR-flat cavity is flashing, although not locked. I am too hungry to continue right now.
I put the FI_Back camera on a tripod, looking at the back of the Faraday. The beam that Jamie and I were working with on Friday was clipped going back through the Faraday. I twiddled the TT2 and PRM pointing such that the beam is retroreflecting, and getting back through the Faraday, and the cavity is still flashing. I then redid the REFL path on the AS table a little bit. The beam is currently going to the REFL camera, as well as REFL11 and REFL55.
Some notes about the AS table: The Y1 separating the main REFL beam from the REFL camera beam was mounted 90 degrees (rotated about the beam's axis) from what it should be. I fixed it, so that the straight-through beam that goes to the camera is not clipped by the edge of the mount. The reason (I think) this mirror was mounted backwards is that when mounted correctly, the back of the mount and the knobs interfere with the AS beam path. I solved this by rotating the first out-of-vac REFL mirror a small amount so that the REFL and AS beams are slightly more separated.
I am not seeing any nice PDH signal on dataviewer, so I went to check the signal path for the PDs. The 11MHz marconi is on and providing RF, the EOM is plugged in to 11, 55 and 29.5 signals (no aux cavity scan cables are plugged in). Both of the RF Alberto boxes are on. I measured the RF output of both REFL11 and REFL55, although after the fact I realized that I was BAD, and had not found a 'scope that lets me change the input impedance to 50 ohms. BAD grad student. However, since I have numbers, I will post them, despite their being not quite correct:
284mVpp at 11MHz out of REFL11. This is -6.9dBm
2mVpp at 55MHz out of REFL55, measured by 'scope
So, I can clearly see the 11MHz on the 'scope, and can see a very noisy, small 55MHz signal on the 'scope. I need to think over dinner about what level of signal we should be sending to the demod boards, and whether or not I need more power coming out of the RFPDs. There is a wave plate and PBS before beam goes to any of the REFL PDs, presumably to ensure that none of them get fried when we're at high power. If I need more signal, I suspect I can rotate the wave plate and let more light go to the diodes. |
7929
|
Wed Jan 23 11:43:19 2013 |
Riju | Update | | Photodiode transimpedance |
Quote: |
- The data should be plotted in a log-log scale.
- The data points were only taken in the high current region.
- The plot may suggest that the amplifier saturate at the RF.
PDA255 has the nomial transimpedance gain of 10^4 Ohm.
The DC current of 10^-3 gives the output of 10V.
This plot may tell that the saturation starts even at the 1/10 of the full DC range.
The plot doesn't have many points below 0.1mA.
Consult with my plots for the similar measurements.
The measured points are logarithmically spaced. Use the same technique.
- It is also very unknown that how the noise level is calculated. No info is supplied in the plot or the elogs.
|
Here I am attaching the plot in loglog scale. I have taken the data-points from no light condition to the maximum light condition, the minimum variation possible in the current supply was 0.01A. The noise was visibly decreasing at higher light level.
For the noise level calculation I took the average of total noise in the range 7-60MHz. For each range the formula used was
noisevalue= sqrt(data(:,2)*100)/sqrt(2)/sqrt(channel BW); -- this conversion is needed since the data was collected in the 2 column format: frequency, spectrum(W). |
7930
|
Wed Jan 23 18:16:11 2013 |
Manasa | Update | General | Laseroptik mirror - SN6 | I repeated the transmittance measurements of LaserOptik SN6 @1064nm.
Transmittance for s-polarization
0 deg - 0.524
45 deg - 0.055
Transmittance for p-polarization
0 deg - 0.515
45 deg - 0.1047 0.01047
Raji's measurements are here. |
7931
|
Wed Jan 23 19:05:16 2013 |
Jenne | Update | Locking | PR-flat cavity status - locks! | Status update
I (with help from Q) have redone the POP path on the ITMX table. 1" iris is a little too small, so I took it out. 2" lens moved to be centered on POP beam. 2" Y1 didn't need moving. Straight refl from the 2" Y1 was aligned on to a PDA10CS (set to 70dB). This PD is blocking the usual POP55 diode. BS which sends beam to camera was moved to allow room for the new temp DC PD. Refl from this BS goes to the POP camera, which was moved so that the POP beam takes up most of the camera. BS that would normally take half of the camera's beam and send it to POP22 (Thorlabs PD) is removed, so no beam to POP22.
Also, I have taken the output of the PDA10CS and hijacked the "POP110" heliax cable. This was connected to this Thorlabs PD which is used as POP22. (Kiwamu and I had long-term borrowed the 110 demod board for an AS 110 diode, so the "POP110" heliax was really only serving POP22.) There are yellow labels on the new temp and old regular cables, so we can undo my hack. Similarly, on the other end of the heliax at the LSC rack, I have taken the heliax's output and sent it to the POPDC input on the whitening board. Thus, the regular POPDC SMA cable is unplugged, but labeled again with big yellow labels.
In other news - the PR-flat cavity locks!!!
Koji and I coarsely rotated the REFL11 phase such that the signal is predominantly in the I phase. We set the LSC input matrix to use REFL11I for PRCL, and the output matrix is set to actuate on PRM. Then we set the gain to -0.005, and it locked!!!!
EDIT: I turned back on the PRM oplev (after Manasa aligned it and redid the out-of-vac oplev layout a bit), and the motion of the cavity is slightly reduced, although there's still a lot going on. The cavity is vaguely well aligned, although it's time to go make sure that the beams are still on the REFL and TRANS PDs. However, it's dinner time. |
7932
|
Wed Jan 23 20:24:05 2013 |
Koji | Update | General | Laseroptik mirror - SN6 | Got confused (even after I talked with Manasa).
The plot shows the number ~0.01 or less at 45deg. But the number is the text does not match with the plot.
Please use the logarithmic scale for the vertical axis.
And more points between 35 to 50 deg please (like ~1deg spacing)
Don't we have the data sheet from the coater? Can we request it? |
7933
|
Wed Jan 23 20:27:05 2013 |
Riju | Update | | Photodiode transimpedance | Today I have repeated the expt for shot noise intercept current. Koji found that the Spectrum analyzer is going to saturation, so we have used one DC blocker (MCL - 15542 model) in PD signal.
I will analyze the data and report.
Ed by Koji: DC BLOCK is BLK-89-S |
7934
|
Wed Jan 23 20:46:46 2013 |
Zen Master | Update | Locking | PR-flat cavity status - locks! |
Quote: |
I (with help from Q)
|
Two quadratures working in harmony.

|
7935
|
Wed Jan 23 22:02:25 2013 |
Manasa | Update | General | Laseroptik mirror - SN6 |
Quote: |
Got confused (even after I talked with Manasa).
The plot shows the number ~0.01 or less at 45deg. But the number is the text does not match with the plot.
Please use the logarithmic scale for the vertical axis.
And more points between 35 to 50 deg please (like ~1deg spacing)
Don't we have the data sheet from the coater? Can we request it?
|
I corrected the typo in the text...however, I agree the plot was lame ...Will get the data sheet made tomorrow! |
|