40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 110 of 344  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  10664   Mon Nov 3 17:56:57 2014 KojiUpdateLSCSRM calibration

SRM Calibration

After the DRMI measurements on Friday, SRY cavity was locked in order to compare ITMY and SRM actuators.

SRY cavity was locked with AS55Q ->  SRM servo with gain of +10?
(My memory is fading. I tried +50 and noticed it was saturated at the limiter. So I thought it was 10)

Then the transfer functions between SRM->AS55Q TF and ITMY->AS55Q TF were measured.

The ratio between two transfer functions was obtained as seen in the second attachment.
The average at f<100Hz was 4.07 +/- 0.15. Therefore the calibration is ... as you can find below


SRM: http://nodus.ligo.caltech.edu:8080/40m/10664
SRM = (19.0 +/- 0.7) x 10 -9/ f2

PRM: http://nodus.ligo.caltech.edu:8080/40m/8255
PRM:  (19.6 +/- 0.3) x 10 -9 / f2 m/counts

BS/ITMs http://nodus.ligo.caltech.edu:8080/40m/8242
BS     = (20.7 +/- 0.1)    x 10 -9 / f2 m/counts
ITMX = (4.70 +/- 0.02)  x 10 -9/ f2
m/counts
ITMY = (4.66 +/- 0.02) x 10 -9/ f2
m/counts

  10669   Wed Nov 5 11:09:44 2014 KojiUpdateLSC3F RFPD RF spectra

If you look at the intermodulation at 14 (4+10) and 16 (6+10), 15 (5+10) would make any problem, thanks to the notch at 1f and 5f.

BUT, this absolute level of 165MHz is too tiny for the demodulator. From the level of the demodulated signal, I can say REFL165 has
too little SNR. We want to amplify it before the demodulator.

Can you measure this again with a directional coupler instead of the direct measurement with an attenuator?
The downstream has bunch of non-50Ohm components and may cause unknown effect on the tiny 165MHz signal.
We want to measure the spectrum as close situation as possible to the nominal configuration.

90MHz crap is the amplifier noise due to bad power bypassing or bad circuit shielding.

I have no comment on REFL33 as it has completely different amplification stages.

  10675   Thu Nov 6 01:58:55 2014 KojiUpdateLSC3F RFPD RF spectra

Where is the PD out spectrum measured with the coupler???

  10681   Thu Nov 6 12:58:28 2014 KojiUpdateIOOWFS offset was reset

IMC WFS operating point seemed to get degraded.

- IMC WFS feedback was relieved.

- WFS servo was turned off.

- IMC alignment was tuned carefully

- /opt/rtcds/caltech/c1/scripts/MC/WFS/WFS_FilterBank_offsets was run

- WFS servo was turned on again 

  10695   Tue Nov 11 01:38:23 2014 KojiUpdateLSCNotch at 110MHz

To further reduce the RF power at 110MHz in the REFL165 chain, I made a twin-t notch in a pomona box.

It is tuned at 110.66MHz.

The inductor is Coil Craft 5mm tunable (164-09A06SL 100-134nH).
Without the 10Ohm resister (like a usual notch), the dip was ~20dB. With this configuration, the notch of -42dB was realized.

Q >> Please measure the RF spectrum again with the notch.

 

  10698   Tue Nov 11 21:41:09 2014 KojiUpdateLSC3f DRMI sensing mat

Sensing matrix calculation using DTT + Matlab

Note: If the signal phase is, for example,  '47 deg', the phase rotation angle is -47deg in order to bring this signal to 'I' phase.

Note2: As I didn't have the DQ channels for the actuation, only the relative signs between the PDs are used to produce the radar chart.
This means that it may contain 180deg uncertainty for a particular actuator. But this does not change the independence (or degeneracy) of the signals.



=== Sensing Matrix Report ===
Test time: 2014-11-11 08:14:00
Starting GPS Time: 1099728855.0
 

== PRCL ==
Actuation frequency: 621.13 Hz
Suspension (PRM) response at the act. freq.: 5.0803e-14/f^2 m/cnt
Actuation amplitude: 20.3948 cnt/rtHz
Actuation displacement: 1.0361e-12 m/rtHz
 
C1:LSC-AS55_I_ERR_DQ 4.20e+10
C1:LSC-AS55_Q_ERR_DQ -1.91e+11
==> AS55: 1.95e+11 [m/cnt] -24.58 [deg]
C1:LSC-REFL11_I_ERR_DQ 3.17e+12
C1:LSC-REFL11_Q_ERR_DQ -8.04e+10
==> REFL11: 3.17e+12 [m/cnt] -18.20 [deg]
C1:LSC-REFL33_I_ERR_DQ 4.15e+11
C1:LSC-REFL33_Q_ERR_DQ 4.28e+10
==> REFL33: 4.17e+11 [m/cnt] -137.11 [deg]
C1:LSC-REFL55_I_ERR_DQ 1.90e+10
C1:LSC-REFL55_Q_ERR_DQ -9.91e+09
==> REFL55: 2.14e+10 [m/cnt] -58.58 [deg]
C1:LSC-REFL165_I_ERR_DQ -1.16e+11
C1:LSC-REFL165_Q_ERR_DQ -3.14e+10
==> REFL165: 1.20e+11 [m/cnt] 45.20 [deg]
 
 
== MICH ==
Actuation frequency: 675.13 Hz
Suspension (ITMX) response at the act. freq.: 1.0312e-14/f^2 m/cnt
Suspension (ITMY) response at the act. freq.: 1.0224e-14/f^2 m/cnt
Actuation amplitude: 974.2957 cnt/rtHz
Actuation displacement (ITMX+ITMY): 2.0007e-11 m/rtHz
 
C1:LSC-AS55_I_ERR_DQ 2.55e+12
C1:LSC-AS55_Q_ERR_DQ 4.51e+12
==> AS55: 5.18e+12 [m/cnt] 113.51 [deg]
C1:LSC-REFL11_I_ERR_DQ -4.84e+10
C1:LSC-REFL11_Q_ERR_DQ -4.07e+09
==> REFL11: 4.85e+10 [m/cnt] 168.06 [deg]
C1:LSC-REFL33_I_ERR_DQ 2.06e+10
C1:LSC-REFL33_Q_ERR_DQ -9.39e+09
==> REFL33: 2.26e+10 [m/cnt] -167.51 [deg]
C1:LSC-REFL55_I_ERR_DQ 2.52e+09
C1:LSC-REFL55_Q_ERR_DQ -1.02e+10
==> REFL55: 1.05e+10 [m/cnt] -107.09 [deg]
C1:LSC-REFL165_I_ERR_DQ -1.79e+10
C1:LSC-REFL165_Q_ERR_DQ -5.50e+10
==> REFL165: 5.79e+10 [m/cnt] 102.02 [deg]



== SRCL ==

Actuation frequency: 585.13 Hz
Suspension (SRM) response at the act. freq.: 5.5494e-14/f^2 m/cnt
Actuation amplitude: 1176.3066 cnt/rtHz
Actuation displacement: 6.5278e-11 m/rtHz
 
C1:LSC-AS55_I_ERR_DQ -9.90e+10
C1:LSC-AS55_Q_ERR_DQ -1.18e+11
==> AS55: 1.54e+11 [m/cnt] -76.89 [deg]
C1:LSC-REFL11_I_ERR_DQ 2.96e+08
C1:LSC-REFL11_Q_ERR_DQ 4.78e+08
==> REFL11: 5.62e+08 [m/cnt] 41.42 [deg]
C1:LSC-REFL33_I_ERR_DQ -2.93e+09
C1:LSC-REFL33_Q_ERR_DQ 1.23e+10
==> REFL33: 1.27e+10 [m/cnt] -39.63 [deg]
C1:LSC-REFL55_I_ERR_DQ 3.71e+09
C1:LSC-REFL55_Q_ERR_DQ 2.78e+09
==> REFL55: 4.63e+09 [m/cnt] 5.86 [deg]
C1:LSC-REFL165_I_ERR_DQ -1.80e+10
C1:LSC-REFL165_Q_ERR_DQ 2.68e+10
==> REFL165: 3.23e+10 [m/cnt] -26.02 [deg]
 


Demodulation phases of the day

    'C1:LSC-AS55_PHASE_R = -53'
    'C1:LSC-REFL11_PHASE_R = 16.75'
    'C1:LSC-REFL33_PHASE_R = 143'
    'C1:LSC-REFL55_PHASE_R = 31'
    'C1:LSC-REFL165_PHASE_R = 150'

  10704   Wed Nov 12 20:11:41 2014 KojiUpdateIOOMC WFS gain reduced again

MC WFS was oscillative at 1Hz. I've reduced the servo gain further (x1, x1, x10, x1, x1, and x10).

The MC mirrors were realigned, and the WFS offsets were reset.

  10706   Wed Nov 12 22:22:11 2014 KojiSummaryIOOEstimation of the angular jitter imposed by the TTs

[Koji, Rana, Jenne]

One coil of the TT produce 36nrad/rtHz at DC.

- C1:IOO-TT2_UL_EXC was excited with 5 count_pk at 0.04Hz.

- LSC_TRY exhibited the symmetric reduction of the transmission from 0.95 to 0.90.

1 - (theta/theta0)^2 /2 = 0.90 / 0.95

=> theta / theta0 = 0.32

- 40m beam waist radius is 3.1mm. This means the divergence angle is 1.1e-4 rad.

=> 1.1e-4*0.32 = 3.6e-5 rad

=> 3.6e-5/5 = 7.2 urad/count (per coil)

- DAC noise 1/sqrt(12 fs), where fs is the sampling rate (fs = 16384)

=> 0.002 cnt/rtHz

- One coil causes 7.2u*0.002 = 14 nrad/rtHz (at DC)

- One suspension cause 29 nrad/rtHz (at DC)

  10728   Thu Nov 20 22:43:15 2014 KojiUpdateIOOIMC WFS damping gain adjustment

From the measured OLTF, the dynamics of the damped suspension was inferred by calculating H_damped = H_pend / (1+OLTF).
Here H_pend is a pendulum transfer function. For simplicity, the DC gain of the unity is used. The resonant frequency of the mode
is estimated from the OLTF measurement. Because of inprecise resonant frequency for each mode, calculated damped pendulum
has glitches at the resonant frequency. In fact measurement of the OLTF at the resonant freq was not precise (of course). We can
just ignore this glitchiness (numerically I don't know how to do it particularly when the residual Q is high).

Here is my recommended values to have the residual Q of 3~5 for each mode.

MC1 SUS POS current  75   -> x3   = 225
MC1 SUS PIT current   7.5 -> x2   =  22.5
MC1 SUS YAW current  11   -> x2   =  22
MC1 SUS SD  current 300   -> x2   = 600

MC2 SUS POS current  75   -> x3   = 225
MC2 SUS PIT current  20   -> x0.5 =  10
MC2 SUS YAW current   8   -> x1.5 =  12
MC2 SUS SD  current 300   -> x2   = 600

MC3 SUS POS current  95   -> x3   = 300
MC3 SUS PIT current   9   -> x1.5 =  13.5
MC3 SUS YAW current   6   -> x1.5 =   9
MC3 SUS SD  current 250   -> x3   = 750


This is the current setting in the end.

MC1 SUS POS 150
MC1 SUS PIT  15
MC1 SUS YAW  15
MC1 SUS SD  450

MC2 SUS POS 150
MC2 SUS PIT  10
MC2 SUS YAW  10
MC2 SUS SD  450

MC3 SUS POS 200
MC3 SUS PIT  12
MC3 SUS YAW   8
MC3 SUS SD  500

  10748   Wed Dec 3 01:46:12 2014 KojiUpdateLSCTried cav pole compensation trick - fail

Where did these 200Hz, 6kHz come from?


I wonder what are the correct filters to be incorporated in the filter banks for the cav pole compensarion.

Facts:

1. ALS Common and Diff have the cavity pole for the green (fcav_GR)

2. IR DARM has the cavity pole of the arms for IR (fcav_IR_DARM)

3. IR CARM (REFL, POP, POX, or POY) has the double cavity pole (fcav_IR_CARM)

Calculations:

1. T(ITM_GR) = 1.094%, T(ETM_GR) = 4.579% => F=108.6 (cf. https://wiki-40m.ligo.caltech.edu/Core_Optics)
L = 37.8 m (cf. http://nodus.ligo.caltech.edu:8080/40m/9804)
=> fcav_GR = c /( 4 L F) = 18.3 kHz ... ignore

2. T(ITM_IR) = 1.384%, T(ETM_IR) = 13.7ppm => F=450.4
=> fcav_IR_DARM = 4.40 kHz

3. The common cavity pole is lower than fcav_IR by factor of power recycling gain.
=> fcav_IR_CARM = fcav_IR / (P_TR * T_PRM)
P_TR is normalized for the locked arm cavity with the PRM misaligned.
T_PRM is 5.637%

e.g. for the TR of 100, fcav_IR_CARM = 4.40/(100*0.05637) = 780Hz

                         (IR CARM) o--|
                                      +--[CARM 780Hz zero / ??? pole]
(ALSX) o--|   |-[ALS C 780Hz pole]----|
          | M |
(ALSY) o--|   |-[ALS D 4.40kHz pole]--|
                                      +--[DARM 4.40kHz zero / ??? pole]
                         (IR DARM) o--|

???Hz pole is to ensure the servo filters does not have infinite gain at f=infinite, but in practice we probably can ignore it as long as it is provided by a roll-off filter

  10749   Wed Dec 3 02:01:57 2014 KojiUpdateLSCIR Resonance Script Status

The other night (before the holidays), I tried ALS offset tuning  with IR POX/POY signals and it worked pretty good.
I didn't need to tune the offset after the scanning script stopped.

Once we are at the foot hill of the main resonance, I ran something like

ezcaservo -r C1:LSC-POX11_I_MON C1:LSC-ALSX_OFFSET -g -0.003 &
ezcaservo -r C1:LSC-POY11_I_MON C1:LSC-ALSY_OFFSET -g -0.003 &

(... I am writing this with my memory. I could be wrong but conceptually the commands looked like these)

  10813   Wed Dec 17 19:31:55 2014 KojiUpdateASCASS retuned

I wonder what to do with the X arm.

The primary purpose of the ASS is to align the arm (=transmission), and the secondary purpose is to adjust the input pointing.

As the BS is the only steering actuator, we can't adjust two dof out of 8 dof.
In the old (my) topology, the spot position on ITMX was left unadjusted.

If my understanding of the latest configuration, the alignment of the cavity (=matching of the input axis with the cavity axis)
is deteriorated in order to move the cavity axis at the center of the two test masses. This is not what we want as this causes
deterioration of the power recycling gain.

  10827   Mon Dec 22 13:34:34 2014 KojiUpdateelogStrange ELOG serach

I tried to find my own entry and faced with a strange behavior of the elog.

The search button invoked the following link and no real search has been done:

http://nodus.ligo.caltech.edu:8080/40m/?mode=summvry&reverse=0&reverse=1&npp=50&m&y&Authorthor=Koji

Summvry? Authorthor?

If I ran the following link, it returned correct search. So something must be wrong.

http://nodus.ligo.caltech.edu:8080/40m/?mode=summary&npp=50&Author=Koji

  10914   Fri Jan 16 18:46:15 2015 KojiUpdateLSCLSC model change implemented

Was the screen modified directly on LSC_OVERVIEW.adl?
Even if so, that's OK. I'll incorporate the change to the screen making script once I'm back.

  10946   Tue Jan 27 21:33:39 2015 KojiUpdateASCASS retuned

I checked the situation of ASS. I wanted to know how much we are away from the maximum transmittion.

Conclusion:
ASS makes the X arm shifted from the maximum transmission. This causes the contrast degraded by ~3%.
We need to fix the Xarm ASS so that it can maximize the transmission and ignor the spot centering at ITMX.


Conditioning before the measurement:

- ASDC offset was removed
- X&Y arm was aligned by ASS

With ASS:

Average transmission: 0.86
Pmax = 1045 +/- 9 cnts
Pmin = 22 +/- 4 cnts

==> Contrast = (Pmax - Pmin)/(Pmax+Pmin) = 0.960+/-0.007

After manual alignment of the X arm (ignoring spot centering):

Average transmission: 0.88
Pmax = 1103 +/- 11 cnts
Pmin = 5 +/- 1 cnts

==> Contrast = (Pmax - Pmin)/(Pmax+Pmin) = 0.991+/-0.002

  10950   Wed Jan 28 17:32:26 2015 KojiUpdatePSLPMC aligned

PMC aligned.

PMC Trans increased from 0.740 to 0.782

IMC Trans increased from 16200 to 17100

  10951   Wed Jan 28 17:39:17 2015 KojiConfigurationIOOX Trans Table less crazy but not enough yet

The X-end IR Trans path was cleaned up.

I have been investigating the Xarm ASS issue. The Xarm ASS sensors behaved not so straight forward.
I went to the X-end table and found some suspect of clipping and large misalignmnet in the IR trans path.
Facing with the usual chaos of the end table, I decided to clean-up the IR trans path.

The optical layout is now slightly better. But the table is, in general, still dirty with bunch of stray optics,
loose cables and fibers. We need more effort to make the table maintained in a professional manner.


- Removed unnecessary snaking optical path. Now the beam from the 1064/532 separator is divided by a 50-50 BS before the QPD without
any other steering mirrors. This means the spot size on the QPD was changed as well as the alignment. The spot on the QPD was aligned
with the arm aligned with the current (=not modified) ASS. This should be the right procedure as the spot must be centered on the end mirror
with the current ASS.

- After the 50-50 BS there is an HR steering mirror for the Thorlab PD.

- A VIS rejection filter was placed before the 50-50 BS. The reflection from the filter is blocked with a razor blade dump.

Important note to everyone including Steve:
The transmission of the VIS rejection filter at 1064nm is SUPER angular sensitive.
A slight tilt causes significant reduction of 1064nm light. Be careful.

- As we don't need double VIS filter, I removed the filter on the QPD.

- X-End QPD was inspected. There seemed large (+/-10%) gain difference between the segments.
They were corrected so that the values are matched when the beam is only on one segment.
The corrections were applied at C1:SUS-ETMX_QPDx_GAIN (x=1, 2, 3, or 4).


I decided to put "-20dB" filters on C1:SUS-ETMi_QPD_SUM and C1:SUS-ETMi_TRY (i = X or Y)
in order to make their gain to be reasonable (like 0.123 instead 0.000123 which is unreadable).
Jenne's normalization script reads relative values and the current gains instead of the absolute values.
Therefore the script is not affected.

  10952   Wed Jan 28 23:53:24 2015 KojiSummaryASCXarm ASS fix

X-Arm ASS was fixed.
ASS_DITHER_ON.snap was updated so that the new setting can be loaded from the ASS screen.

The input and output matrices and the servo gains were adjusted as found in the attached image.
The output matrix was adjusted by looking at the static response of the error signals when a DC offset
was applied to each actuator.

The servo was tested with misalignment of the ITM, ETM, and BS. In fact, the servo restored transmission
from 0.15 to 1.

The resulting contrast after ASSing was ~99% level. (I forgot to record the measurement but the dark fringe level of ASDC was 4~5count.)

  10973   Wed Feb 4 18:16:44 2015 KojiUpdateLSCData transfer rate of c1lsc reduced from ~4MB/s to ~3MB/s

c1lsc had 60 full-rate (16kS/s) channels to record. This yielded the LSC to FB connection to handle 4MB/s (mega-byte) data rate.
This was almost at the data rate limit of the CDS and we had frequent halt of the diagnostic systems (i.e. DTT and/or dataviewer)

Jenne and I reviewed DAQ channel list and decided to remove some channels.  We also reviewed the recording rate of them
and reduced the rate of some channels. c1lsc model was rebuilt, re-installed, and restarted. FB was also restarted. These are running as they were.
The data rate is now reduyced to ~3MB nominal.


The following is the list of the channels removed from the DQ channels:

AS11_I_ERR
AS11_Q_ERR
AS165_I_ERR
AS165_Q_ERR
POP55_I_ERR
POP55_Q_ERR

The following is the list of the channels with the new recording rate:

TRX_SQRTINV_OUT 2048
TRY_SQRTINV_OUT 2048
DARM_A_ERR 2048
DARM_B_ERR 2048
MICH_A_ERR 2048
MICH_B_ERR 2048
PRCL_A_ERR 2048
PRCL_B_ERR 2048
CARM_A_ERR 2048
CARM_B_ERR 2048

  10974   Wed Feb 4 18:27:55 2015 KojiSummaryASCXarm ASS fix

Please remember that Xarm ASS needs FM6 (Bounce filters) to be ON in order to work properly.

  10975   Wed Feb 4 19:21:37 2015 KojiUpdateASCArm ASS servos now have triggered gain with arm lock status

We had persistent frustration by occasional unlock during ASSing.
Today, I added triggers to the servo gains in order to elliminate this annoyance.

Each ASS servo gain slider is multiplied with the corresponding LSC Trigger EPICS channel (i.e. C1:LSC-iARM_TRIG_MON, where i=X or Y).
This has been done by ezcaread modules in RCG.

The model and screen have been commited to svn.

  10986   Sat Feb 7 13:34:11 2015 KojiSummaryPSLISS AOM driver check

I wanted to check the status of the ISS. The AOM driver response was measured on Friday night.
The beam path has not been disturbed yet.

- I found the AOM crystal was removed from the beam path. It was left so.

- The AOM crystal has +24V power supply in stead of specified +28V.
  I wanted to check the functionality of the AOM driver.

- I've inserted a 20dB directional coupler between the driver and the crystal.
  To do so, I first turned off the power supply by removing the corresponding fuse block at the side panel of the 1X1 Rack.
  Then ZFDC-20-5-S+ was inserted, the coupled output was connected to a 100MHz oscilloscope with 50Ohm termination.
  Then plugged in the fuse block again to energize the driver box.

  Note that the oscilloscope bandwidth caused reduction the amplitude by a factor of 0.78. In the result, this has already been compensated.

- First, I checked the applied offset from a signal generator (SG) and the actual voltage at the AOM input. The SG OUT
  and the AOM control input are supposed to have an impedance of 50Ohm. However, apparently the voltage seen at the
  AOM in was low. It behaved as if the input impedance of the AOM driver is 25Ohm.
  In any case, we want to use low output impedance source to drive the AOM driver, but we should keep this in mind.

- The first attachment shows the output RF amplitude as a function of the DC offset. The horizontal axis is the DC voltage AT THE AOM INPUT (not at the SG out).
  Above 0.5V offset some non linearity is seen. I wasn't sure if this is related to the lower supply voltage or not. I'd use the nominal DC of 0.5V@AOM.

  The output with the input of 1V does not reach the specified output of 2W (33dBm). I didn't touch the RF output adjustment yet. And again the suppy is not +28V but +24V.

- I decided to measure the frequency response at the offset of 0.53V@AOM, this corresponds to the DC offset of 0.8V. 0.3Vpp oscillation was given.
  i.e. The SG out seen by a high-Z scope is V_SG(t) = 1.59 + 0.3 Sin(2 pi f t) [V]. The AOM drive voltage V_AOM(t) = 0.53 + 0.099 Sin(2 pi f t).
  From the max and min amplitudes observed in the osciiloscope, the response was checked. (Attachment 2)
  The plot shows how much is the modulation depth (0~1) when the amplitude of 1Vpk is applied at the AOM input.
  The value is ~2 [1/V] at DC. This makes sense as the control amplitude is 0.5, the applied voltage swings from 0V-1V and yields 100% modulation.

  At 10MHz the first sign of reduction is seen, then the response starts dropping above 10MHz. The specification says the rise time of the driver is 12nsec.
  If the system has a single pole, there is a relationship between the rise time (t_rise) and the cut-off freq (fc) as fc*t_rise = 0.35 (cf Wikipedia "Rise Time").
  If we beieve this, the specification of fc is 30MHz. That sounds too high compared to the measurement (fc ~15MHz).
  In any case the response is pretty flat up to 3MHz.

  11000   Wed Feb 11 03:41:12 2015 KojiUpdateLSCPRC error signal RF spectra

As the measurements have been done under feedback control, the lower RF peak height does not necessary mean
the lower optical gain although it may be the case this time.

These non-33MHz signals are embarassingly high!
We also need to check how these non-primary RF signals may cause spourious contributions in the error signals,
including the other PDs.

  11005   Wed Feb 11 18:11:46 2015 KojiSummaryLSC3f modulation cancellation

33MHz sidebands can be elliminated by careful choice of the modulation depths and the relative phase between the modulation signals.
If this condition is realized, the REFL33 signals will have even more immunity to the arm cavity signals because the carrier signal will lose
its counterpart to produce the signal at 33MHz.

Formulation of double phase modulation

m1: modulation depth of the f1 modulation
m2: modulation depth of the f2 (=5xf1) modulation

The electric field of the beam after the EOM

E=E_0 \exp \left[ {\rm i} \Omega t + m_1 \cos \omega t +m_2 \cos 5 \omega t \right ]
\flushleft = {\it E}_0 e^{{\rm i} \Omega t} \\ \times \left[ J_0(m_1) + J_1(m_1) e^{{\rm i} \omega t}- J_1(m_1) e^{-{\rm i} \omega t} + J_2(m_1) e^{{\rm i} 2\omega t}+ J_2(m_1) e^{-{\rm i} 2\omega t} + J_3(m_1) e^{{\rm i} 3\omega t}- J_3(m_1) e^{-{\rm i} 3\omega t} + \cdots \right] \\ \times \left[ J_0(m_2) + J_1(m_2) e^{{\rm i} 5 \omega t}- J_1(m_2) e^{-{\rm i} 5 \omega t} + \cdots \right]
\flushleft = {\it E}_0 e^{{\rm i} \Omega t} \\ \times \left\{ \cdots + \left[ J_3(m_1) J_0(m_2) + J_2(m_1) J_1(m_2) \right] e^{{\rm i} 3 \omega t} - \left[ J_3(m_1) J_0(m_2) + J_2 (m_1) J_1(m_2) \right] e^{-{\rm i} 3 \omega t} + \cdots \right\}

Therefore what we want to realize is the following "extinction" condition
J_3(m_1) J_0(m_2) + J_2(m_1) J_1(m_2) = 0

We are in the small modulation regime. i.e. J0(m) = 1, J1(m) = m/2, J2(m) = m2/8, J3(m) = m3/48
Therefore we can simplify the above exitinction condition as

m_1 + 3 m_2 = 0

m2 < 0 means the start phase of the m2 modulation needs to be 180deg off from the phase of the m1 modulation.

E = E_0 \exp\left\{ {\rm i} [\Omega t + m_1 \cos \omega t + \frac{m_1}{3} \cos (5 \omega t + \pi)] \right \}

Field amplitude m1=0.3, m2=-0.1 m1=0.2, m2=0.2
Carrier 0.975 0.980
1st order sidebands 0.148 9.9e-2
2nd 1.1e-3 4.9e-3
3rd 3.5e-7 6.6e-4
4th 7.4e-3 9.9e-3
5th 4.9e-2 9.9e-2
6th 7.4e-3 9.9e-3
7th 5.6e-4 4.9e-4
8th 1.4e-5 4.1e-5
9th 1.9e-4 5.0e-4
10th 1.2e-3 4.9e-3
11th 1.9e-4 5.0e-4
12th 1.4e-5 2.5e-5
13th 4.7e-7 1.7e-6
14th 3.1e-6 1.7e-5
15th 2.0e-5 1.6e-4

 

  11012   Thu Feb 12 11:59:58 2015 KojiUpdateLSCNew Locking Paradigm - Loop-gebra

The goals are:

- When the REFL path is dead (e.g. S_REFL = 0), the system goes back to the ordinary ALS loop. => True (Good)

- When the REFL path is working, the system becomes insensityve to the ALS loop
(i.e. The ALS loop is inactivated without turning off the loop.) => True when (...) = 0

Are they correct?

 

Then I just repeat the same question as yesterday:

S is a constant, and Ps are cavity poles. So,  approximately to say, (...) = 0 is realized by making D = 1/G_REFL.
In fact, if we tap the D-path before the G_REFL, we remove this G_REFL from (...). (=simpler)
But then, this means that the method is rather cancellation between the error signals than
cancellation between the actuation. Is this intuitively reasonable? Or my goal above is wrong?

  11019   Thu Feb 12 23:47:45 2015 KojiUpdateLSC3f modulation cancellation

- I built another beat setup on the PSL table at the South East side of the table.
- The main beam is not touched, no RF signal is touched, but recognize that I was present at the PSL table.
- The beat note is found. The 3rd order sideband was not seen so far.
- A PLL will be built tomorrow. The amplifier box Manasa made will be inspected tomorrow.

- One of the two beams from the picked-off beam from the main beam line was introduced to the beat setup.
(The other beam is used of for the beam pointing monitors)
There is another laser at that corner and the output from this beam is introduced into the beat setup.
The combined beam is introduced to PDA10CF (~150MHz BW).

- The matching of the beam there is poor. But without much effort I found the beat note.
  The PSL laser had 31.33 deg Xtal temp. When the beat was found, the aux laser had the Xtal temp of 40.88.

- I could observe the sidebands easily, with a narrower BW of the RF analizer I could see the sidebands up to the 2nd order.
  The 3rd order was not seen at all.

- The beat note had the amplitude of about -30dBm. One possibility is to amplify the signal. I wanted to use a spare channel
of the ALS/FOLL amplifier box. But it gave me rather attenuation than any amplification.
I'll look at the box tomorrow.

- Also the matching of two beams are not great. The PD also has clipping I guess. These will also be improved tomorrow

- Then the beat note will be locked at a certain frequency using PLL so that we can reduce the measurement BW more.

 

  11027   Sat Feb 14 00:42:02 2015 KojiUpdateGeneralRF amplifier for ALS

The RF analyzer was returned to the control room. There are two beat notes from X/Y confirmed.

I locked the arms and aligned them with ASS.

When the end greens are locked at TEM00, X/Y beat amplitudes were ~33dBm and ~17dBm. respectively.
I don't judge if they are OK or not, as I don't recall the nominal values.

  11028   Sat Feb 14 00:48:13 2015 KojiUpdateLSC3f modulation cancellation

[SUCCESS] The 3f sideband cancellation seemed worked nicely.

- Beat effeciency improved: ~30% contrast (no need for amplification)

- PLL locked

- 3f modulation sideband was seen

- The attenuation of the 55MHz modulation and the delay time between the modulation source was adjusted to
have maximum reduction of the 3f sidebands as much as allowed in the setup. This adjustment has been done
at the frequency generation box at 1X2 rack.

- The measurement and receipe for the sideband cancellation come later.


- This means that I jiggled the modulation setup at 1X2 rack. Now the modulation setup was reverted to the original,
but just be careful to any change of the sensing behavior.

- The RF analyzer was returned to the control room.

- The HEPA speed was reduced from 100% (during the action on the table) to 40%.

  11029   Sat Feb 14 19:54:04 2015 KojiSummaryLSC3f modulation cancellation

Optical Setup

[Attachment 1]

Right before the PSL beam goes into the vacuum chamber, it goes through an AR-wedged plate.
This AR plate produces two beams. One of them is for the IO beam angle/position monitor.
And the other was usually dumped. I decided to use this beam.

A G&H mirror reflects the beam towards the edge of the table.
A 45deg HR mirror brings this beam to the beat set up at the south side of the table.
This beam is S-polarlized as it directly comes from the EOM.

[Attachment 2]

The beam from the PSL goes through a HWP and some matching lenses before the combining beam splitter (50% 45deg P).
The AUX laser beam is attenuated by a HWP and a PBS. The transmitted beam from the PBS is supposed
to have P-polarization. The beam alignment is usually done at the PSL beam side.

The combined beam is steered by a HR mirror and introduced to Thorlabs PDA10CF. As the PD has small diameter
of 0.5mm, the beam needed to be focused by a strong lens.

After careful adjustment of the beam mode matching, polarization, and alignment, the beatnote was ~1Vpp for 2.5Vdc.
In the end, I reduced the AUX laser power such that the beat amplitude went down to ~0.18Vpp (-11dBm at the PD,
-18dBm at the mixer, -27dBm at the spectrum analyzer) in order to minimize nonlinearity of the RF system and
in order that the spectrum analyzer didn't need input attenuation.

Electrical Setup

[Attachment 3]

The PD signal is mixed with a local oscillator signal at 95MHz, and then used to lock the PLL loop.
The PLL loop allows us to observe the peaks with more integration time, and thus with a better signal-to-noise ratio.

The signal from the PD output goes through a DC block, then 6dB attenuator. This attenuator is added to damp reflection
and distortion between the PD and the mixer. When the PLL is locked, the dominant signal is the one at 95MHz. Without this attenuator,
this strong 95MHz signal cause harmonic distortions like 190MHz. As a result, it causes series of spurious peaks at 190MHz +/- n* 11MHz.

10dB coupler is used to peep the PD signal without much disturbing the main line. Considering we have 6dB attanuator,
we can use this coupler output for the PLL and can use the main line for the RF monitor, next time.

The mixer takes the PD signal and the LO signal from Marconi. Marconi is set to have +7dBm output at 95MHz.
FOr the image rejection, SLP1.9 was used. The minicirsuit filters have high-Z at the stop band, we need a 50Ohm temrinator
between the mixer and the LPF.

The error signal from the LPF is fed to SR560 (G=+500, 1Hz 1st-order LPF). I still don't understand why I had to use a LPF
for the locking.
As the NPRO PZT is a frequency actuator, and the PLL is sensitive to the phase, we are supposed to use
a flat response for PLL locking. But it didn't work. Once we check the open loop TF of the system, it will become obvious (but I didn't).

The actuation signal is fed to the fast PZT input of the AUX NPRO laser.
 

  11031   Sat Feb 14 20:37:51 2015 KojiSummaryLSC3f modulation cancellation

Experimental results

- PD response [Attachment 1]

The AUX laser temperature was swept along with the note by Annalisa [http://nodus.ligo.caltech.edu:8080/40m/8369]
It is easier to observe the beat note by closing the PSL shutter as the MC locking yields more fluctuation of the PSL
laser freuqency at low frequency. Once I got the beat note and maximized it, I immediately noticed that the PD response
is not flat. For the next trial, we should use Newfocus 1611. For the measurement today, I decided to characterize the
response by sweeping the beat frequency and use the MAXHOLD function of the spectrum analyzer.

The measured and modelled response of the PD are shown in the attachment 1. It has non-intuitive shape.
Therefore the response is first modelled by two complex pole pair at 127.5MHz with Q of 1, and then the residual was
empirically fitted with 29th polynomial of f.

- Modulation profile of the nominal setting [Attachment 2]

Now the spectrum of the PD output was measured. This is a stiched data of the spectrum between 1~101MHz and 99~199MHz
that was almost simultaneously measured (i.e. Display 1 and Display 2). The IF bandwidth was 1kHz. The PD response correction
described above was applied.

It obviously had the peaks associated with our main modulations. In addition, there are more peaks seen.
The attachment 2 breaks down what is causing the peaks.

  • Carrier: The PLL LO frequency is 95MHz. Therefore the carrier is locked at 95MHz.
  • Modulation sidebands (11/55MHz series):
    Series of sidebands are seen at the both side of the carrier. Their frequency is 95MHz +/- n * fmod  (fmod = 11.066128MHz).
    Note that the sidebands for n>10 were above 200MHz, and n<-9 (indicated in gray) were folded at 0Hz.
    With this measurement BW, the following sidebands were buried in the noise floor.
    n = -8, -12, -13, and -14, n<= -16, and n>=+7
  • Modulation sidebands for IMC and PMC (29.5MHz and 35.5MHz):
    First order sidebands for the IMC and PMC modulations of sidebands are seen at the both side of the carrier.
    Their frequency is 95MHz +/- 29.5MHz or 33.5MHz. The PMC modulation sidebands are supposed to be blocked
    by the PMC. However, due to finite finesse of the PMC, small fraction of the PMC sidebands are transmitted.
    In deed, it is comparable to the modulation depth of the IMC one.
  • RF AM or RF EMI for the main modulation and the IMC modulationand:
    If there is residual RF AM in the PSL beam associated with the IMC and main modulations, it appears as the
    peaks at the modulation frequency and its harmonics. Also EM radiation couples into this measument RF system
    also appears at these frequencies. They are seen at n * fmod  (n=1,2,4,5) and 29.5MHz.
  • Reflection/distortion or leakage from mixer IF to RF:
    The IF port of the mixer naturally has 190MHz signal when the PLL is locked. If the isolation from the IF port to the RF port
    is not enough, this signal can appear in the RF monitor signal via an imperfection of the coupler or a reflection from the PD.
    Also, if the reflecrtion/distortion exist between the PD and the mixer RF input, it also cause the signal around 190MHz.
    It is seen at 190MHz +/- n* fmod. In the plot, the peak at n=0, -1 are visible. In fact these peak were secondarily dominant
    in the spectrum when there was no 6dB attenuation in the PD line. WIth the attenuator, they are well damped and don't disturb
    the main measurment.

From the measured peak height, we are able to estimate the modulation depths for 11MHz, 55MHz, IMC modulations, as well as
the relative phase of the 11MHz and 55MHz modulation. (It is not yet done).

- 3f modulation reduction [Attachment 3]

Now, the redcution of the 3f modulation was tried. The measured modulation levels for the 11MHz and 55MHz were almost the same.
The calculation predicts that the modulation for the 55MHz needs to be 1/3 of the 11MHz one. Therefore the attenuation of 9dB and 10dB
of the modulation attenuation knob at the frequency generation box were tried.

To give the variable delay time in the 55MHz line, EG&G ORTEC delay line unit was used. This allows us to change the delay time from
0ns to 63.5ns with the resolution of 0.5ns. The frequency of 55MHz yields a phase sensitivity of ~20deg/ns (360deg/18ns).
Therefore we can adjust the phase with the precision of 10deg over 1275deg.

The 3rd-order peak at 61.8MHz was observed with measurement span of 1kHz with very narrow BW like 30Hz(? not so sure). The delay
time was swept while measuring the peak height each time. For both the atteuation, the peak height clearly showed the repeatitive dependence
with the period of 18ns, and the 10dB case gave the better result. The difference between the best (1.24e-7 Vpk) and the worst (2.63e-6 Vpk)
was more than a factor of 20.
The 3rd-order peak in the above broadband spectrum measurement was 6.38e-6 Vpk. Considering the attenuation
of the 55MHz modulation by 10dB, we were at the exact unluck phase difference.
The improvement expected from the 3f reduction (in the 33MHz signal)
will be about 50, assuming there is no other coupling mechanism from CARM to REFL33.

I decided to declare the best setting is "10dB attenuation & 28ns delay".

- Resulting modulation profile [Attachment 4]

As a confirmation, the modulation profie was measured as done before the adjustment.
It is clear that the 3rd-order modulation was buried in the floor noise. 10dB attenuation of the 55MHz modulation yields corresponding reduction of the sidebands.
This will impact the signal quality for the 55MHz series error signals, particularly 165MHz ones. We should consider to install the Teledyne Cougar amplifier
next to the EOM so that we can increase the over all modulation depth.

  11032   Sat Feb 14 22:14:02 2015 KojiSummaryLSC[HOW TO] 3f modulation cancellation

When I finished my measurements, the modulation setup was reverted to the conventional one.
If someone wants to use the 3f cancellation setting, it can be done along with this HOW-TO.


The 3f cancellation can be realized by adding a carefully adjusted delay line and attenuation for the 55MHz modulation
on the frequency generation box at the 1X2 rack.  Here is the procedure:

1) Turn off the frequency generation box

There is a toggle switch at the rear of the unit. It's better to turn it off before any cable action.
The outputs of the frequency generation box are high in general. We don't want to operate
the amplifiers without proper impedance matching in any occasion.

2) Remove the small SMA cable between 55MHz out and 55MHz in (Left arrow in the attachment 1).

According to the photo by Alberto (svn: /docs/upgrade08/RFsystem/frequencyGenerationBox/photos/DSC_2410.JPG),
this 55MHz out is the output of the frequency multiplier. The 55MHz in is the input for the amplifier stages.
Therefore, the cable length between these two connectors changes the relative phase between the modulations at 11MHz and 55MHz.

3) Add a delay line box with cables (Attachment 2).

Connect the cables from the delay line box to the 55MHz in/out connectors. I used 1.5m BNC cables.
The delay line box was set to have 28ns delay.

4) Set the attenuation of the 55MHz EOM drive (Right arrow in the attachment 1) to be 10dB.

Rotate the attenuation for 55MHz EOM from 0dB nominal to 10dB.

5) Turn on the frequency modulation box


For reference, the 3rd attachment shows the characteristics of the delay line cable/box combo when the 3f modualtion reduction
was realized. It had 1.37dB attenuation and +124deg phase shift. This phase change corresponds to the time delay of 48ns.
Note that the response of a short cable used for the measurement has been calibrated out using the CAL function of the network analyzer.

  11033   Sun Feb 15 16:20:44 2015 KojiSummaryLSC[ELOG LIST] 3f modulation cancellation

Summary of the ELOGS

3f modulation cancellation theory http://nodus.ligo.caltech.edu:8080/40m/11005

3f modulation cancellation adjustment setup http://nodus.ligo.caltech.edu:8080/40m/11029

Experiment http://nodus.ligo.caltech.edu:8080/40m/11031

Receipe for the 3f modulation cancellation http://nodus.ligo.caltech.edu:8080/40m/11032

Modulation depth analysis http://nodus.ligo.caltech.edu:8080/40m/11036

  11035   Mon Feb 16 00:08:44 2015 KojiSummaryLSC[ELOG LIST] 3f modulation cancellation

This KTP crystal has the maximum allowed RF power of 10W (=32Vpk) and V_pi = 230V. This corresponds to the maximum allowed
modulation depth of 32*Pi/230 = 0.44. So we probably can achieve gamma_1 of ~0.4 and gamma_2 of ~0.13. That's not x3 but x2,
so sounds not too bad.

Then Kiwamu's triple resonant circuit LIGO-G1000297-v1 actually shows the modulation up to ~0.7. Therefore it is purely an issue
how to deliver sufficient modulation power. (In fact his measurement shows some nonlinearity above the modulation depth of ~0.4
so we should keep the maximum power consumption of 10W at the crystal)

This means that we need to review our RF system (again!)

- Review infamous crazy attn/amp combinations in the frequency generation box.
- Use Teledyne Cougar ampilfier (A2CP2596) right before the triple resonant box. This should be installed closely to the triple resonant box in order to
minimize the effects of the reflection due to imperferct impedance matching.
- Review and refine the triple resonant circuit - it's not built on a PCB but on a universal board. I think that we don't need triple
resonance, but double is OK as the 29.5MHz signal is small.

We want +28V supply at 1X1 for the Teledyne amp and the AOM driver. Do we have any unused Sorensen?

  11036   Mon Feb 16 01:45:12 2015 KojiSummaryLSCmodulation depth analysis

Based on the measured modulation profiles, the depth of each modulation was estimated.
Least square sum minimization of the relative error was used for the cost function.
-8th, -12th~-14th, n=>7th are not included in the estimation for the nominal case.
-7th~-9th, -11th~-15th, n=>7th are not included in the estimation for the 3f reduced case.

Nominal modulation

m_f1 = 0.194
m_f2 = 0.234
theta_f1f2 = 41.35deg
m_IMC = 0.00153

3f reduced modulation

m_f1 = 0.191
m_f2 = 0.0579
theta_f1f2 = 180deg
m_IMC = 0.00149

(Sorry! There is no error bars. The data have too few statistics...)

  11038   Mon Feb 16 03:10:42 2015 KojiUpdateLSCALS fool measured decoupling TF

Wonkey shape: Looks like a loop supression. Your http://nodus.ligo.caltech.edu:8080/40m/11016 also suggests it too, doesn't it?

  11044   Tue Feb 17 16:44:04 2015 KojiUpdateLSCDelay line installed again

For tonight's experiment, I re-installed the delay line cable and changed the attenuation to 10dB for the 55MHz modulation.

I quickly locked the PLL and checked that the modulation is the ratio of the field strength between the worst (19ns) and best
case (28ns) is 31dB, that is ~35 times reduction.

  11045   Tue Feb 17 19:49:51 2015 KojiUpdateLSCDelay line un-installed again

The modulation setting was reverted.
Demod phase for REFL11/33/55/165 and AS55 were reverted to the previous numbers too.

  11048   Wed Feb 18 19:06:40 2015 KojiUpdateLSCALS Fool impulse response

  11059   Mon Feb 23 21:57:13 2015 KojiUpdateLSCDelay line installed again (experiment, round 1)

Last Wednesday we tried PRMI 3f modulation cancellation. Under the 3f modulation cancellation, the PRMI could not be locked
with REFL signals, and the PRCL signal was just barely sufficient to lock PRCL with help of AS55Q MICH.

- The PRCL signal level in REFL33 was reduced by factor of 20 compared with the conventional modulation setting.
=> The 3f modulation cancellation does not chage the level of 11/22MHz sidebands, it is expected that REFL33 signal
has no significant change of the signal level. But it does.  If we change the relative phase between the modulations
at 11 and 55MHz, the signal level is recovered by factor of 5. Therefore something related to 55MHz modulation
(55MHz x 22MHz, or 44MHz x 11MHz) was contributing more than -11MHzx22MHz.

- Under the 3f demodulation cancellation, MICH signal in the REFL ports were extremely weak and there was
no hope to use it for any feedback control.

- WIth the PRMI locking by REFL33->PRCL and AS55Q->MICH, the sensing matrix was measured. All of the REFL
ports however, showed extremely degenerate sensing matrix between MICH and PRCL.

This was enough confusing to us, and we didn't draw any useful information from these. Here are some ideas to
investigate what is happening in out optical and electrical system.

- One approach is to use as simple optical setup as possible to inspect our sensing systems. For example,
we may want to try PRX/PRY/XARM/YARM cavities to check the functions of the REFL diodes and qualitatively characterize
the sensing chain (Optical gain [W/m], noise level, demodulation phase) so that we can compare these with
an interferometer seinsing model.

- Another approach is to change the mdulation setting more freely and empirically try to find the characteristic
of our optical/electrical systems. e.g. change the relative modulation phase and/or 55MHz attenuation, and try to understand
how 11-22, 11-44, 22-55, 0-33 pairs are contributing the signal.

  11066   Wed Feb 25 12:16:27 2015 KojiUpdateLSCDelay line re-installed, measurements round 2

WHAT? WHAT? WHAT? It's obviously opposite.

If the reflectivity of the front mirror is fixed (=PRM reflectivity), the finesse increases when the reflectivity of the end
mirror (=Compond mirror reflectivity) increases. i.e. 11MHz has higher finesse, 55MHz has lower finesse.

{\cal F} = \frac{\pi \sqrt{r_{\rm PRM} r_{\rm COM}}}{1-r_{\rm PRM} r_{\rm COM}}

If the reflectivity of the front mirror is fixed, the amplitude gain of the cavity is higher when the reflectivity of the end mirror increases. i.e. 11MHz has higher gain, 55MHz has lower gain

g_{\rm PRM} = \frac{t_{\rm PRM}}{1-r_{\rm PRM} r_{\rm COM}}
 

Quote:

Our Schnupp asymmetry is small (3.9cm, IIRC), so the transmission of the 11MHz signal out the dark port is small.  This means that the finesse of the PRC for 11MHz isn't so huge.  On the other hand, since 55MHz is a higher frequency, the transmission out the dark port is larger and is a closer match to the PRM transmission, so the finesse of the PRC for 55MHz is higher. 

 

  11074   Thu Feb 26 01:53:35 2015 KojiUpdateLSCModelled effect of relative modulation phase

Ok... This is what I was afraid of, and it seems true.
i.e. the relation ship of the modulations for the 3f cancellation is making the PRCL signals cancel each other.

It agrees with Anamaria's analysis that 11x44 is the strongest component in aLIGO 27MHz signal.
In fact,

00x33 has the order of \frac{m_1^2 m_2}{16}+\frac{m_1^3}{48}

11x22 has the order of \frac{m_1^3}{16}

11x44 has the order of \frac{m_1^2 m_2}{8}

22x55 has the order of \frac{m_1^2 m_2}{16}

Therefore 11x44 is inherently the strongest contribution at 33MHz.
(And then, of couse, the signal amplitudes have additional dependences on the reflectivity
and the gain of the IFO at each freq)

If we believe this result, it may be difficult to exploit the benefit of the signals under the 3f cancellation.
We probably have to go back to the original idea of cancelling the 3f modulation by adding 3f modulation.
(i.e. Produce 33MHz signal by freq tripling, add this signal to Kiwamu's box to elliminate 3f.)

  11117   Sun Mar 8 00:05:37 2015 KojiConfigurationLSCCARM and DARM on RF signals!!!!!!!!!!!!!!!!!!!!

Exciting! How long was it?

  11129   Tue Mar 10 19:59:13 2015 KojiFrogsCamerasMessage from the IFO

  11134   Wed Mar 11 19:15:03 2015 KojiSummaryLSCROUGH calibration of the darm spectrum during the full PRFPMI lock

I made very rough calibration of the DARM spectra before and after the transition for the second lock on Mar 8.

The cavity pole (expected to be 4.3kHz) was not compensated. Also the servo bump was not compensated.

[Error calibration]

While the DARM/CARM were controlled with ALS, the calibration of them are provided by the ALS phase tracker calibration.
i.e 1 degree = 19.23kHz

This means that the calibration factor is

DARM [deg] * 19.23e3 [Hz/deg] / c [m Hz] * lambda [m] * L_arm [m]
= DARM* 19.23e3/299792458*1064e-9*38.5 = 2.6e-9 *DARM [m]

[Feedback calibration]

Then, the feedback signal was calibrated by the suspension response (f=1Hz, Q=5)
so that the error and feedback signals can match at 100Hz.

This gave me the DC factor of 5e-8.


The spectra at 1109832200 (ALS only, even not on the resonance) and 1109832500 (after DARM/CARM transitions) were taken.
Jenne said that the whitening filters for AS55Q was not on.

  11135   Wed Mar 11 19:48:25 2015 KojiUpdateGeneralFOL troubleshooting

There is a frequency counter code written by the summer student.
The code needed some cleaning up.
It's still there in /opt/rtcds/caltech/c1/scripts/FOL as armFC.c

This code did not provide unified way to send commands to the FCs.
Therefore I made a code to change the frequency range of the FCs
by removing unused variables and instructions, adding more comments,
adding reasonable help messages and trouble shooting feedbacks.

Obviously these codes only run on domenica (raphsberry Pi host)


/opt/rtcds/caltech/c1/scripts/FOL/change_frange

change_frange : change the freq range of the frequency counter UFC-6000

Usage: ./change_frange DEVICE VALUE
    DEVICE: '/dev/hidraw0' for Xarm, '/dev/hidraw1' for Yarm
    VALUE:
0 - automatic
1 -    1MHz to   40MHz
2 -   40MHz to  190MHz
3 -  190MHz to 1400MHz
4 - 1400MHz to 6000MHz

  11137   Thu Mar 12 11:57:38 2015 KojiUpdateGeneralFOL troubleshooting

BTW, during this trouble shoot, we looked at the IR beatnote spectrum between the Xend and the PSL.
It showed a set of sidebands at ~200kHz, which is the modulation frequency.
There was another eminent component present at ~30kHz.
I'm afraid that there is some feature like large servo bump, a mechanical resonance, or something else, at 30kHz.

We should check it. Probably it is my job.

  11151   Fri Mar 20 13:29:33 2015 KojiUpdateIOOWaking up the IFO

If the optics moved such amount, could you check the PD alignment once the optics are aligned?

  11171   Wed Mar 25 18:27:34 2015 KojiSummaryGeneralSome maintainance

- I found that the cable for the AS55 LO signal had the shielding 90% broken. It was fixed.

- The Mon5 monitor in the control room was not functional for months. I found a small CRT down the east arm.
It is now set as MON5 showing the picture from cameras. Steve, do we need any safety measure for this CRT?

  11173   Wed Mar 25 18:48:11 2015 KojiSummaryLSC55MHz demodulators inspection

[Koji Den EricG]

We inspected the {REFL, AS, POP}55 demodulators.

Short in short, we did the following changes:

- The REFL55 PD RF signal is connected to the POP55 demodulator now.
Thus, the POP55 signals should be used at the input matrix of the LSC screens for PRMI tests.

- The POP55 PD RF signal is connected to the REFL55 demodulator now.

- We jiggled the whitening gains and the whitening triggers. Whitening gains for the AS, REFL, POP PDs are set to be 9, 21, 30dB as before.
However, the signal gain may be changed. The optimal gains should be checked through the locking with the interferometer.


- Test 1

Inject 55.3MHz signal to the demodulators. Check the amplitude in the demodulated signal with DTT.
The peak height in the spectrum was calibrated to counts (i.e. it is not counts/rtHz)
We check the amplitude at the input of the input filters (e.g. C1:LSC-REFL55_I_IN1). The whitening gains are set to 0dB.
And the whitening filters were turned off.

REFL55
f_inj = 55.32961MHz -10dBm
REFL55I @999Hz  22.14 [cnt]
REFL55Q @999Hz  26.21 [cnt]


f_inj = 55.33051MHz -10dBm
REFL55I @ 99Hz  20.26 [cnt]  ~200mVpk at the analog I monitor
REFL55Q @ 99Hz  24.03 [cnt]


f_inj = 55.33060MHz -10dBm
REFL55I @8.5Hz  22.14 [cnt]
REFL55Q @8.5Hz  26.21 [cnt]


----
f_inj = 55.33051MHz -10dBm
AS55I   @ 99Hz 585.4 [cnt]
AS55Q   @ 99Hz 590.5 [cnt]   ~600mVpk at the analog Q monitor

f_inj = 55.33051MHz -10dBm
POP55I  @ 99Hz 613.9 [cnt]   ~600mVpk at the analog I monitor
POP55Q  @ 99Hz 602.2 [cnt]

We wondered why the REFL55 has such a small response. The other demodulators seems to have some daughter board. (Sigg amp?)
This maybe causing this difference.

-----

- Test 2

We injected 1kHz 1Vpk AF signal into whitening board. The peak height at 1kHz was measured.
The whitening filters/gains were set to be the same condition above.

f_inj = 1kHz 1Vpk
REFL55I 2403 cnt
REFL55Q
2374 cnt
AS55I   2374 cnt
AS55Q   2396 cnt
POP55I  2365 cnt
POP55Q
  2350 cnt

So, they look identical. => The difference between REFL55 and others are in the demodulator.

  11174   Wed Mar 25 21:44:20 2015 KojiUpdateLSCIFO recovery / PRFPMI locking activity

[Koji, Den]

- Aligned the arms with ASS. It had alot of offset accumulated. We offloaded it to the suspension.

- We could lock the PRMIsb with the new setup.
PRCL: REFL165I (-14deg, analog +9dB)) -0.1, Locking FM4/5, Triggered FM 2
MICH: REFL165Q (-14deg, analog +9dB) -1.5, Locking FM4/5, Triggered FM2/6/9

- Demod phases at REFL were adjusted such that PRCL in Q signals were minimized :
REFL165 -80deg => -14deg
POP55 -63deg
REFL11 +164 => +7
REFL33 +136 => +133

Note: analog gains: REFL11: +18dB,  REFL33: +30dB, POP55: +12dB, REFL165: +9dB

- Try some transition between REFL signals to check the signal quality.
Measure TFs between the REFL signals

PRCL gain
REFL11I/REFL165I = +58
REFL33I/REFL165I = +8.5
POP55I /REFL165I = -246

MICH gain
REFL11Q/REFL165Q = +11
REFL33Q/REFL165Q = -1.5
POP55Q /REFL165Q = +280

- This resulted us to figure out the relationships of the numbers in the input matrix 

REFL55I/Q -4e-3/4e-3
REFL165I/Q 1.0/1.0 (reference)
REFL11I/Q  0.02/0.1
REFL33I/Q +0.12/-0.7


Full locking trial

Arm locked -> ALS -> Arm offset locked
PRMI locking
REFL165 phase tuned -110deg
PRCL gain -0.1 / MICH gain -2

We needed script editing.
Previous script saved in: /opt/rtcds/caltech/c1/scripts/PRFPMI/carm_cm_up_BACKUP.sh

Change:
- PRMI gain setting (input matrix & servo gain)
- CARM/DARM transition setting (see below)


The current CARM/DARM transition procedure:

== CARM TRANSITION (PART1) ==
- CM REFL1 gain is set to be -32
- CARM_B is engaged and the gain is ramped from 0 to +2.5
- Turn on FM7 (integrator)
- MC IN2 (AO path) engaged
- MC IN2 gain increased from -32 to -21

== DARM TRANSITION (PART1) ==
- DARM_B is engaged and the gain is ramped from 0 to +0.1
- Turn on FM7 (integrator)

== CARM TRANSITION (PART2) ==
- CM REFL1 Gain is increased from -32 to -18
- Ramp down CARM A gain to 0

== DARM TRANSITION (PART2) ==
- DARM_B gain is incrased to 0.37. At the same time DARM_A gain is reduced to 0


We succeeded to make the transition several times in the new setting.

- But later the transition got hard. We started to see big jump of the arm trans (TRX/Y 50->100) at the CARM transition.

- We tested the PRCL transition from 165MHz to 55MHz. 55MHz (i.e. POP55 which is REFL55PD) looks alot better now.

- ~1:30 The PMC was realigned. This  increased PMC_TRANS about 10%. This let the Y arm trans recover ~1.00 for the single arm locking

- Decided to end around 3:00AM

ELOG V3.1.3-