40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 109 of 344  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  799   Tue Aug 5 12:52:28 2008 YoichiUpdateSUSITMX, SRM OSEM spectra
Free swinging spectra of ITMX and SRM.
ITMX seems to be ok after yesterday's work, though the OSEM DC values are still a bit off from the normal value of 0.9.
(ITMX OSEM values: UL=1.12, UR=1.38, LR=0.66, LL=0.41, SIDE=0.66)
SRM is still clearly wrong.
  14584   Mon Apr 29 16:34:27 2019 gautamUpdateElectronicsITMX/IMTY mis-labelling fixed at 1X4 and 1X5

After the X and Y arm naming conventions were changed, the labelling of the electronics in the eurocrates was not changed 😞 😔 😢 . This meant that when we hooked up the new Acromag crate, all the slow ITMX channels were in fact connected to the physical ITMY optic. I ♦️fixed♦️ the labelling now - Attachments #1 and #2 show the coil driver boards and SUS PD whitening boards correctly labelled. Our electronics racks are in desperate need of new photographs.

The "Y" arm runs in the EW direction, while the "X" arm runs in the NW direction as of April 29 2018.

ITMX was freed. ITMY is being worked on is also free..

  6600   Thu May 3 21:13:48 2012 KojiSummarySUSITMX/PRM/BS OPLEV aligned

[Jenne/Den/Koji]

We locked Xarm/Yarm and manually alignmed ITMX/ITMY/BS/ETMX/ETMY/PZT1/PZT2.

ITMY OPLEV was largely misaligned ==> The beam was centered on the QPD.

----

Then we aligned PRM using SB locking PRMI.

We noticed that OPLEV servo does not work. It made the PRM just noiser.

We went into the PRM table and found that the OPLEV beam was clipped in the vacuum chamber.
We tried to maximize the reflected beam from the window by touching the steering mirrors at the injection side.

Then the reflected beam was introduced to the center of the QPD.

After the alignment, the OPLEV QPD SUM increased to 4000ish from 200ish.
According to the OPLEV trend data, this is a nominal value of the QPD SUM.

Now the OPLEV servo does not go crazy.

 --

BS OPLEV beam was centered on the QPD.

  2469   Wed Dec 30 20:33:36 2009 rana, albertoConfigurationCamerasITMY & MC2 Camera work

We restored the good state of the ITMY camera and neatened both the MC2 and ITMY camera.

The MC2 camera was driving a triple T jungle into some random cables and spoiling the image. We removed all T's and the MC2 camera now drives only The Matrix.

The ITMY camera was completely unmounted and T'd. So it was misaligned just by the force of gravity acting on its BNC cable. We swapped the lens for a reasonable sized one and remounted it in its can. We then used orange cable ties to secure the power and BNC cable for the MC2 and ITMY cameras so that tugging on the cables doesn't misalign the cameras. This is part of the camera's SOP.

No more driving 50 Ohm cables and T's with video cables, Steve! If you need a portable video, just use a spigot of the Matrix and then you can control it with a web browser.

DSC_1064.JPGDSC_1065.JPGDSC_1066.JPG

I also wiped out the D40's memory card after uploading all of the semi-useful files to the Picasa page.

  16370   Fri Oct 1 12:12:54 2021 StephenUpdateBHDITMY (3002) CAD layout pushed to Box

Koji requested current state of BHD 3D model. I pushed this to Box after adding the additional SOSs and creating an EASM representation (also posted, Attachment 1). I also post the PDF used to dimension this model (Attachment 2). This process raised some points that I'll jot down here:

1) Because the 40m CAD files are not 100% confirmed to be clean of any student license efforts, we cannot post these files to the PDM Vault or transmit them this way. When working on BHD layout efforts, these assemblies which integrate new design work therefore must be checked for most current revisions of vault-managed files - this Frankenstein approach is not ideal but can be managed for this effort. 

2) Because the current files reflect the 40m as built state (as far as I can tell), I shared the files in a zip directory without increasing the revisions. It is unclear whether revision control is adequate to separate [current 40m state as reflected in CAD] from [planned 40m state after BHD upgrade]. Typically a CAD user would trust that we could find the version N assembly referenced in the drawing from year Y, so we wouldn't hesitate to create future design work in a version N+1 assembly file pending a current drawing. However, this form of revision control is not implemented. Perhaps we want to use configurations to separate design states (in other words, create a parallel model of every changed component, without creating paralle files - these configurations can be selected internal to the assembly without a need to replace files)? Or more simply (and perhaps more tenuously), we could snapshot the Box revisions and create a DCC page which notes the point of departure for BHD efforts?

Anyway, the cold hard facts:

 - Box location: 40m/40m_cad_models/Solidworks_40m (LINK)

 - Filenames: 3002.zip and 3002 20211001 ITMY BHD for Koji presentation images.easm (healthy disregard for concerns about spaces in filenames)

  2777   Tue Apr 6 22:54:34 2010 KojiUpdateSUSITMY (south) aligned

Kiwamu and Koji

ITMY (south) was aligned with regard to the 40m-long oplev with the green laser pointer. Now the cavity is waiting for the green light injected from the end table

The OSEMs were adjusted with the aligned optics, but still a bit off from the center. They need to be adjusted again.
One round-shaped counter-weight removed from the table. Some counter weights are moved.

Some tools and the level gauge were removed from the table.

BAD news: I could clearly see scatter of the green beam path because of the dusts in the arm tube. Also many dusts are seen on the ITM surface.

 

Picture of the ETM - reflection from the ITM is hitting the mirror and the suspension structures.

IMG_2362.jpg

 


1. Shoot the ITM center with the green beam.

- Two persons with walkie-talkies required for this work.

- Turn on the end green pointer. We could see the long trace of the beam sliced by the beam tube wall.

- Look at the tube peeping mirror for the CCD.

- Adjust yaw such that the beam trace on the tube wall is parallel to the arm.

- Adjust pitch such that the beam trace on the tube gets longer. This means that spot gets closer to the ITM.

- Continue pitch adjustment until some scatter appears on the ITM tower.

- Once the spot appears on the tower, you can easily adjust it on the mirror

2. Adjust pitch/yaw bias such that the reflection hits the ETM.

- Initially the ITM alignment is totally bad. ==> You clealy see the spot on the wall somewhere close to the ITM.

- Adjust pitch/yaw bias such that the spot goes farther as far as possible.

- Once you hit the suspension tower, the scatter is obviously seen from the peeping mirror.

- You can match the incident beam and the scattering of the reflection. You also can see the reflection from the ETM towards the ITM as the spot size gets huge (1/2 tube diameter).

- We found that the bias is ~-2 for pitch and ~-6 for yaw.

3. Go into the chamber. Check the table leveling.

- Open the light door.

- I found that the table is not leveled. Probably it drifted after the move of the weight (i.e. MOS removal).

- Removed one of the round-shaped weight. Moved the other weights such that the table was leveled.

4. Remove the bias for yaw and rotate suspension tower such that the reflection hit the center of the ETM.

- Removed the yaw bias. This makes the reflected spot totally off from the ETM.

- Rotate suspension tower so that the beam can approximately hit the ETM.

- Look at the peeping mirror, the beam is aligned to the ETM.

5. Adjust OSEMs

- Push/pull the OSEMs such that we have the OSEM outputs at the half of the full scale.

6. Adjust alignment by the bias again.

- Moving OSEMs changes the alignment. The pitch/yaw biases were adjusted to have the beam hitting on the ETM.

- Bias values at  the end of the work: Pitch -0.8159 / Yaw -1.2600

7. Close up the chamber

- Remove the tools and the level gauge.

- Close the light door.

  4066   Fri Dec 17 00:30:05 2010 KojiUpdateIOOITMY / SRM / BS / PRM OPLEVs aligned

[Steve and Koji]

The invac OPLEV mirrros were aligned before we get to the PMA party.

The OPLEV mirrors were adjusted in accordance with the optical layout.
Surprisingly the optical layout was enough precise such that we have the healthy red beams on the optical tables.
Steve placed the apertures at the position of the returning spots while I shook the stack to check if the range of the spot motion is sufficient.

The sole thing that has been deviated from the optical layout was that the SRM returning beam had to be reroute
as the SRM has better reflectivity on the AR surface in stead of the HR one.

  4069   Fri Dec 17 03:37:47 2010 ranaUpdateSUSITMY / SRM / BS / PRM OPLEVs aligned

Quote:

The sole thing that has been deviated from the optical layout was that the SRM returning beam had to be reroute
as the SRM has better reflectivity on the AR surface in stead of the HR one.

 I suppose that if we were really clever we would intentionally choose either the AR or HR surface so as to minimize the effect of the thermal lensing and/or thermal expansion from the locked interferometer absorption.

  17298   Tue Nov 22 10:29:31 2022 AnchalSummarySUSITMY Coil Strengths Balanced

I followed this procedure to balance the coil strengths on ITMY. The position sensor was created by closing PSL shutter so that IR laser is free running, and locking the green laser to YARM, this makes C1:ALS-BEATY_FINE_PHASE_OUT a position sensor for ITMY. The oplev channels C1:SUS-ITMY_OL_PIT_IN1 and C1:SUS-ITMY_OL_YAW_IN1 were used for PIT and YAW sensors. Everything else followed the procedure. The coil gains were changed as follow:

C1:SUS-ITMY_ULCOIL_GAIN :   1.036 -> 1.061
C1:SUS-ITMY_URCOIL_GAIN : -1.028 -> -0.989
C1:SUS-ITMY_LRCOIL_GAIN :   0.930 -> 0.943
C1:SUS-ITMY_LLCOIL_GAIN : -1.005  -> -1.007

I used this notebook and this diaggui to do this balancing.

  14484   Mon Mar 18 17:06:12 2019 gautamUpdateOptical LeversITMY HeNe replaced

Oplev HeNe was replaced this afternoon. We did some HeNe shuffling:

  1. A new HeNe was being used for the fiber illumination demo at EX. We took that out and decided to use it as the new ITMX HeNe. It had 2.6mW output at 632nm (measured with the Ophir power meter)
  2. Old ETMY HeNe was used for fiber illumination demo.
  3. Old ITMX HeNe was putting out no light - it will be disposed.

Attachment #1 shows the RIN and Attachment #2 and #3 show the PIT and YAW TFs with the new HeNe.

The ITMX Oplev path is still not great - the ingoing beam is within 2mm of clipping on a 2" lens used in the POX path, and there is a bunch of scattered red light everywhere. We should take the opportunity when the chamber is open to try and have a better layout (it may be tricky to optize without touching the two in-vacuum steering optics).

Quote:

I'll ask Chub to replace it this afternoon.

  5198   Thu Aug 11 18:30:40 2011 KojiUpdateSUSITMY OSEM adjustment

[Jamie, Koji]

ITMX OSEMs were adjusted so as to have the right DC numbers and the more uniform response to POS excitation.

It is waiting for the free-swinging test.

- ITMX was moved from its position to the north side of the table.

- The table was rebalanced.

- We found that the output of the LR OSEM has an excess noise compared with the other OSEMs.
We tried to swap the LR and SD OSEMs, but the SD OSEM (placed at the LR magnet) showed
the same excess noise at around 10-50Hz.

- We found that one of the EQ stops was touching the mirror. By removing this friction, all of the OSEMs
come to show similar power spectra. Good!

 - Then we started to use LOCKIN technique to measure the sensitivity of the OSEMs to the POS excitation.

Originally the response of the OSEMs was as follows
UL 3.4 UR 4.3 
LL 0    LR 2.5   

After the adjustment of the DC values, final values became as follows
UL 3.9 UR 4.4
LL 3.9  LR 3.2

- We decided to close the light door.

  9231   Thu Oct 10 11:46:43 2013 JenneUpdateSUSITMY OpLev Noise

For my work designing a cost function, so that I can try out new feedback servo designs on the oplevs, I wanted to know what the dark noise of an oplev is.  Since the pitch and yaw channels are divided by the sum channel, when the laser is off, the noise in the pitch and yaw channels looks much higher than it really is.  So, I collected some data from the 4 individual quadrants of the ITMY oplev, when the laser was on (but damping was off), and when the laser was off.  I used the values of the oplev input matrix to re-create the non-normalized pitch and yaw signals.  What I see is that we have some kind of real signal below 1 kHz, but we're hitting the noise at around 1 kHz.  So, we definitely don't want to use oplev error signal information above 1 kHz when designing new servos.

The last word in the title is "off".  OSEM damping was on, but the oplev damping was off.  These are uncalibrated, because the calibrations that we have to go from counts to microradians are for the normalized signals. 

ITMY_OpLev_Noise.png

  5429   Fri Sep 16 00:08:30 2011 PaulUpdateSUSITMY Oplev QPD dark and bright noise spectra

 I tried again at plotting the ITMY_QPD noise spectra in for dark and bright operation. Before we had the strange situation where the dark noise seemed higher, but Kiwamu noticed this was caused by dividing by the SUM before the testpoint I was looking at. This time I tried just multiplying by the measured SUM for bright and dark to normalise the spectra against each other. The results looks more reasonable now, the dark noise is lower than the bright noise for a start! However, the dark noise spectrum now doesn't look the same as the one I showed in my previous post.

  5427   Thu Sep 15 22:26:32 2011 PaulUpdateSUSITMY Oplev QPD dark noise PSD

 I took a dark noise measurement for the ITMY QPD, for comparison with measurements of the oplev noise later on. Initially I was plotting the data from test points after multiplication by the oplev matrix (i.e. the OLPIT_IN1 / OLYAW_IN1), but found that the dark noise level seemed higher than the bright noise level (!?). Kiwamu realised that this is because at that test point the data is already divided by QPD SUM, thus making the dark noise level appear to be greater than the bright level, since QPD SUM is much smaller for the dark measurements. The way around this was to record the direct signals from each quadrant before the division. I took a power spectrum of the dark noise from each quadrant, then added them in quadrature, then divided by QPD SUM at the end to get an uncalibrated PSD. Next I will convert these into the equivalent for pitch and yaw noise spectra. To calibrate the plots in radians per root Hz requires some specific knowledge of the oplev path, so I won't do this until I have adjusted the path.

  10253   Tue Jul 22 15:54:19 2014 ericqUpdateSUSITMY Oplev Recentered

 ITMY oplev was nearly clipping in yaw, causing wonky behavior (POY lock popping in and out frequently). I recentered it and the arm is locking fine now. 

  16780   Thu Apr 14 18:34:51 2022 PacoSummaryBHDITMY Oplev reinstalled (Re: 2 in oplev mirrors incompatible with LMR2V)

[Paco, Yehonathan]

We installed ITMYOL1 and ITMYOL2 on the ITMY chamber. We aligned the ITMY OpLev beam and closed the loop successfully, we then had a second round of YARM aligment, where we brought the Y peak transmission up from 0.04 counts to 0.09 counts (up by a factor of two). We still couldn't close the YARM loop but we have a better alignment.

  5436   Fri Sep 16 16:34:54 2011 PaulUpdateSUSITMY SRM oplev telescope plan

I've calculated a suitable collimating telescope for the ITMY/SRM oplev laser, based on the specs for the soon-to-arrive 2mW laser (model 1122/P) available here: http://www.jdsu.com/ProductLiterature/hnlh1100_ds_cl_ae.pdf

Based on the fact that the 'beam size' value and 'divergence angle' value quoted don't match up, I am assuming that the beam radius value of 315um is _not_ the waist size value, but rather the beam size at the output coupler. From the divergence angle I calculated a 155um waist, (zR = 12cm). This gives the quoted beam size of about 316um at a distance of 8.5" away from the waist. This makes me think that the output coupler is curved and the waist is at the back of the laser, or at least 8.5" from the output coupler.

The collimating telescope gives a waist of size 1142um (zR=6.47m) at a distance of 1.427m away from the original laser waist, using the following lens combo:

 

L1 f=-0.15 @ 0.301m

L2 f=0.3 @ 0.409m

 

This should be fine to get a small enough spot size (1-2mm) on the QPDs.

 

  13830   Thu May 10 11:38:19 2018 gautamUpdateGeneralITMY UL

Looking at Steve's plot, I was reminded of the ITMY UL OSEM issue. The numbers don't make sense to me though - 300um of DC shift in UL with negligible shifts in the other coils should have made a much bigger DC shift in the Oplev spot position.

  975   Mon Sep 22 12:06:58 2008 robUpdateSUSITMY UL OSEM


Last week I found the ITMY UL OSEM dead. I went around and checked the connections on the various flat ribbon cables
in the suspension control chain; pushing hard on the rack end of the long cable that goes from the sus electronics rack to the
ITMY sat amplifier fixed the problem. It's been fine since then.

NB: A visual inspection of the cable connection would not have revealed a problem. You just can't trust those flat
ribbon connectors with the hook latches.
  2024   Tue Sep 29 23:43:46 2009 robUpdateSUSITMY UL OSEM

We had a redo of elog entry 975 tonight.  The noisy OSEM was fixed by jiggling the rack end of the long cable.  Don't know exactly where--I also poked around the OSEM PD interface board.

In the attached PDF the reference trace is the noisy one.

  12638   Wed Nov 23 16:21:02 2016 gautamUpdateLSCITMY UL glitches are back

 

Quote:

As an aside, we have noticed in the last couple of months glitchy behaviour in the ITMY UL shadow sensor PD output - qualitatively, these were similar to what was seen in the PRM sat. box, and since I was able to get that working again, I did a similar analysis on the ITMY sat. box today with the help of Ben's tester box. However, I found nothing obviously wrong, as I did for the PRM sat. box. Looking back at the trend, the glitchy behaviour seems to have stopped some days ago, the UL channel has been well behaved over the last week. Not sure what has changed, but we should keep an eye on this...

I've noticed that the glitchy behaviour in ITMY UL shadow sensor readback is back - as mentioned above, I looked at the Sat. Box and could not find anything wrong with it, perhaps I'll plug the tester box in over the Thanksgiving weekend and see if the glitches persist...

  12643   Mon Nov 28 10:27:13 2016 gautamUpdateSUSITMY UL glitches are back

I left the tester box plugged in from Thursday night to Sunday afternoon, and in this period, the glitches still appeared in (and only in) the UL channel.

So yesterday evening, I pulled the Sat. Box. out and checked the DC voltages at various points in the circuit using a DMM, including the output of the high current buffer that supplies the drive current to the shadow sensor LEDs. When we had similar behaviour in the PRM box, this kind of analysis immediately identified the faulty component as the high current buffer IC (LM6321M) in the bad channel, but everything seems in order for the ITMY box. 

I then checked the Satellite Amplifier Termination Board, which basically just adds 100ohm series resistors to the output of the PD readout, and all the resistors seem fine, the piece of insulating material affixed to the bottom of this board is also intact. I then used the SR785 in AC coupled mode to look at the high frequency spectrum at the same points I checked the DC voltages with the DMM (namely the drive voltage to the LEDs, and the PD readout voltages on the PCB as well as on the pins of the connector on the outside of the box after the termination board (leading to the DAQ), and nothing sticks out here in the UL channel either. Of course it could be that the glitches are intermittent, and during my tests they just weren't there...

I am hesitant to start pulling out ICs and replacing them without any obvious signs of failure from them, but I am out of debugging ideas...


One possibility is that the problem lies upstream of the Sat. Box - perhaps the UL channel in the Suspension PD Whitening and Interface Board is faulty. To test, I have now hooked up ITMY Sat. Box. + tester box to the signal chain of ETMY. If I can get the other tester box back from Ben, I will plug in the ETMY sat. box. + tester to the ITMY signal chain. This should tell us something...

  12644   Tue Nov 29 11:07:37 2016 SteveUpdateLSCITMY UL glitches are back

400 days plot. Satelite amp ITMY has been swapped with ETMY

Unlabeled sat.amps are labeled. This plot only makes sense if you know the Cuh-Razy sat amp locations.

  16920   Wed Jun 15 17:03:17 2022 yutaUpdateSUSITMY ULCOIL issue solved, loose connection in sat amp box

[Anchal, Yuta]

We fixed the issue of ITMY ULCOIL not driving ITMY by replacing one of the 64pin ribbon cable in the satellite amplifier box.
We thought the coil driver and the sat amp box are OK by checking the voltage change at the output of the sat amp box by giving an offset to UL coil driver, but it was not giving a current change, probably due to too much contact resistance in the cables.
It was sneaky because it was not completely disconnected.

All the coils for our suspensions are now working!

What we did:
 - Using breakout boards, the output current of sat amp box was measured using FLUKE multimeter. It turned out that UL is not giving measurable current. We also confirmed that UR coil driver can drive UL by re-directing the current from UR coil driver to UL. This means that the UL magnet was not de-magnetized!
 - Measured the coil resistance from at the coil driver output and found that UL coil seen from there has too high resistance which cannot be measured with the multimeter, whereas UR coil was measured to be ~30 Ohms.
 - Went back to the feedthru and measured the resistance of UL coil. Upto the output of the Satellite Amp Terimator, the resistance was measured to be ~16 Ohms, but not at the input of the Satellite Amp Terimator (Attachment #1,2).
 - It turned out that #16 pin of 64pin ribbon cable in between the Satellite Amp Terimator (LIGO-D990021) and the Satellite Amp board (LIGO-D961289) at the Satellite Amp Terimator side was not good (Attachment #3).
 - Replaced the cable and confirmed that ULCOIL can kick ITMY (Attachment #4).
 - C1:SUS-ITMY_TO_COIL matrix was reverted to default values.

Next:
 - We might have to re-commission Yarm ASS again since pitch-yaw coupling have changed. -> EDIT: Checked that it works (except for ITM PIT L), including offloading offsets (writeASS_offsets.py), 18:30 local.
 - Now that LO1 LLCOIL issue is solved and LO2 stuck is solved, we should do the free swing test again to identify the resonant frequencies.
 - OSEM sensor diagonalization (input matrix), coil balancing (and F2A)

  16896   Tue Jun 7 17:26:21 2022 yutaUpdateSUSITMY ULCOIL mystery not solved

[Paco, Yuta]

We investigated the ITMY ULCOIL issue (40m/16873).
ULSEN is sensing the optic motion but ULCOIL cannot move the optic.
We confirmed that the coil input is there upto satellite amplifier output.
We also checked that ULCOIL have 3.3 mH and 16 Ohms, which are consistent with other coils.
Mystery remains...
We need to investigate ITMY ULCOIL in the next vent.

What we did:
 - Checked again that C1:SUS-ITMY_ULCOIL_OFFSET does not kick ITMY using OSEM sensor signals and oplev signals. ULSEN moves when ITMY is kicked by other coils.
 - Checked that kick gives voltage changes at coil driver and satellite amplifier output. We unplugged J1 DB25 cable from the feedthru flange and checked the signals sent to coil with oscilloscope.
 - Measured inductance (using BK PRECISION LCR meter) and resistance (using Fluke) of coils for ITMY. Below is the result. UL coil seems to be consistent with other coils. (It seems like BK PRECISION one wil give wrong resistance if the dial is set to the resistance value which is too low compared with the one you want to measure. If you want to measure 16Ω, set the dial to larger than 20Ω, not 2Ω)

Feedthru connector: ITMY1
Pin 3-15 / R = 16.3Ω / L = 3.32 mH (UL)
Pin 7-19 / R = 16.4Ω / L = 3.30 mH (UR)
Pin11-23 / R = 16.2Ω / L = 3.31 mH (LL)

Feedthru connector: ITMY2
Pin 3-15 / N/A
Pin 7-19 / R = 16.3Ω / L = 3.30 mH (SD)
Pin11-23 / R = 16.4Ω / L = 3.33 mH (LR)


Discussions:
 - UL is the only short OSEM in ITMY OSEMs.
 - ITMY have dumbells for magnets.
 - If UL magnet is off, ULSEN would not work. Something not magnetic is working for shadow sensing for UL? Dumbells?
 - ULSEN just sensing some coupling from other OSEMs?

  16903   Wed Jun 8 18:16:20 2022 yutaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

To see if the ULCOIL channel of the ITMY coil driver is working or not, I swapped ITMY coil driver and ITMX coil driver by swapping DB15 cable (see Attachment #2).

With this swap, I confirmed that ITMX can be kicked with C1:SUS-ITMY_ULCOIL_OFFSET, but ITMY cannot be kicked with C1:SUS-ITMX_ULCOIL_OFFSET (see Attachment #1).

This means that the issue is not the in-air electronics.
Mystery remains again...
We need to investigate ITMY ULCOIL in the next vent.


I revereted the swap and confirmed that damping loops work fine again.

  16904   Thu Jun 9 23:08:39 2022 ranaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

what was the result of the inductance measurement? should be ~3.3 mH as measured from the flannge or cable that goes to the flange from sat amp.

 

  16905   Fri Jun 10 13:02:14 2022 yutaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

ITMY ULCOIL was measured to have ~3.3 mH as measured from the flange. RTFE 40m/16896 .
 

Quote:

what was the result of the inductance measurement? should be ~3.3 mH as measured from the flannge or cable that goes to the flange from sat amp.

 

 

  16908   Fri Jun 10 15:04:23 2022 ranaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

Its good that the inductance test passed. This means that the coil is OK. How does the inspection photo look? This is the one you guys took of the ITM OSEM that shows the position of the magnet w.r.t. the coil. Also, how does the free swinging spectra look? Either one of these might indicate a broken magnet, or a sticky EQ stop.

  16910   Fri Jun 10 21:10:01 2022 yutaUpdateSUSITMY ULCOIL mystery: Coil driver swap test

We checked the photos we have, but we didn't have the photos which show ULCOIL situation clearly.

Free swing of ITMY (and others) will be done this weekend to see the OSEM spectra and resonant frequencies.

  14627   Mon May 20 22:06:07 2019 gautamUpdateSUSITMY also kicked

For good measure:

The following optics were kicked:
ITMY
Mon May 20 22:05:01 PDT 2019
1242450319
  8172   Tue Feb 26 16:13:18 2013 BrettUpdateSUSITMY and ETMY mysterious loop gain difference of 2.5

While doing initial measurements for the new global damping infrastructure I discovered that the ETMY loop between the OSEM actuation and the OSEM sensors has a gain that is 2.5 times greater than the ITMY.  The result is that to get the same damping on both, the damping gain on the ETMY must be 2.5 times less than the ITMY. I do not know where this is coming from, but I could not find any obvious differences between the MEDM matrices and gains.

I uploaded a screenshot of measured transfer functions of the damped ITMY and ETMY sus's. Notice that the ETMY measurement is 2.5 times higher than the ITMY. The peak also has a lower Q, despite having the same damping filters running because of this mysterious gain difference. Lowering the damping gain of the ETMY loop by this 2.5 factor results in similar Q's.

  5422   Thu Sep 15 18:24:54 2011 PaulUpdateSUSITMY and SRM Oplev current status - comparison with ITMY

Just to find out where we are currently, I plotted the ITMY and SRM oplev spectra along with the ETMY oplev spectra. ETMY seems to be very good, so comparing with this seemed useful, so we know how much we have to improve by. The SRM power spectrum appears to be around 2 orders of magnitude higher than ETMY over pretty much the whole measurement band. The ITMY power spectrum is not so bad as the SRM above about 60Hz. Next thing to do is to check the dark noise level for the ITMY and SRM QPDs.

  5423   Thu Sep 15 18:31:27 2011 PaulUpdateSUSITMY and SRM Oplev current status - comparison with ITMY

Quote:

Just to find out where we are currently, I plotted the ITMY and SRM oplev spectra along with the ETMY oplev spectra. ETMY seems to be very good, so comparing with this seemed useful, so we know how much we have to improve by. The SRM power spectrum appears to be around 2 orders of magnitude higher than ETMY over pretty much the whole measurement band. The ITMY power spectrum is not so bad as the SRM above about 60Hz. Next thing to do is to check the dark noise level for the ITMY and SRM QPDs.

 The title of this post should of course have been " ... - comparison with ETMY" not " ... - comparison with ITMY"

  5418   Thu Sep 15 16:45:59 2011 PaulUpdateSUSITMY and SRM Oplev status

Today I worked on getting the ITMY and SRM oplevs back in working order. I aligned the SRM path back onto the QPD. I put excitations on the ITMY and SRM in pitch and yaw and observed the beam at the QPDs to check for clipping. They looked clean from clipping.

 
Measurements of the beam power at various points:
 
Straight after the laser - 7.54mW
After the BS in the SRM path - 1.59mW
After the BS in the ITMY path - 3.24mW
Incident on the SRM QPD - 0.03mW
Incident on the ITMY QPD - 0.25mW
 
Counts registered from the QPD sum channels:
 
SRM QPD SUM dark count - 1140
SRM QPD SUM bright count - 3250
 
ITMY QPD SUM dark count - 150
ITMY QDP SUM bright count - 12680
 
The power incident on the SRM QPD seems very low with respect to the ITMY QPD. Is the SRM mirror coating not very reflective for the He-Ne laser?There are some back reflections from lenses, which we should be careful of to avoid scattering.
  5501   Wed Sep 21 16:31:28 2011 PaulUpdateSUSITMY and SRM actuator response functions

 I divided the open loop transfer functions by the filter response and the sensor responses (previously measured calibration factors) to leave just the actuator responses. I've attached the actuator responses plotted in radians/count and phase over frequency.

Next step: fit the actuator response with poles and zeros.

EDIT: I divided by the wrong filter function earlier - the plots there now are divided by the correct filter function

  5510   Thu Sep 22 00:00:10 2011 PaulUpdateSUSITMY and SRM actuator response functions - complex fitting results

Here are the results of the complex fitting. The residuals are bigger this time, but still probably small enough to be ok(?), with the possible exception of ITMY PITCH (due again I think to the data points straddling the resonance).

ITMY YAW actuator response complex fit

-- Fit completed after 282 iterations--

 Started with: Gain = 3e-05,
 Q factor = 5,
 Pole frequency = 0.6776,
 Fit results:  Gain = 1.14673e-06,
 Q factor = 12.9471,
 Pole frequency = 0.766531
 Residual (normalised against the sum of input datapoints) = 0.0688174
 
ITMY PITCH actuator response complex fit
-- Fit completed after 191 iterations--
 Started with: Gain = 3e-05,
 Q factor = 5,
 Pole frequency = 0.6776,
 Fit results:  Gain = 1.25105e-06,
 Q factor = 3.88981,
 Pole frequency = 0.706744
 Residual (normalised against the sum of input datapoints) = 0.144165
 
SRM YAW actuator response complex fit
-- Fit completed after 246 iterations--
 Started with: Gain = 3e-05,
 Q factor = 5,
 Pole frequency = 0.6776,
 Fit results:  Gain = 3.34137e-06,
 Q factor = 9.6875,
 Pole frequency = 0.854913
 Residual (normalised against the sum of input datapoints) = 0.0153646
 
SRM PITCH actuator response complex fit
-- Fit completed after 266 iterations--
 Started with: Gain = 3e-05,
 Q factor = 5,
 Pole frequency = 0.6776,
 Fit results:  Gain = 7.97529e-06,
 Q factor = 7.63888,
 Pole frequency = 0.568227
 Residual (normalised against the sum of input datapoints) = 0.0319653
  5507   Wed Sep 21 23:05:16 2011 PaulUpdateSUSITMY and SRM actuator response functions - fitting results

 I used an fminsearch function to fit the SRM and ITMY actuator response magnitudes. The testfunction was just that for a single second order pole, but it gave what I consider to be good fits for the following reasons:

*for 3 of the 4 fits the residuals were less than 0.5% of the summed input data points. The worst one (ITMY pitch) was about 2.7%, which I think is due to the resonance happening to be right in the middle of two data points.

*the tolerance of 1 part in 10^9 was reached quickly from not very finely tuned starting points.

The test function was: G=abs(Gp./(1+1i.*f./fp./Qp-(f./fp).^2)), where G(f) is the actuator response magnitude, Gp is the pole gain, fp is the pole frequency, and Qp is the pole Q factor.

In the end I just fitted the response magnitude. I was initially fitting the complex response function, but ran into problems which I think were cased by overall phase offsets between the data and test function. Can I canvass for opinion if fitting the magnitude is OK, or should I try again fitting the phase too?

Anyway, here are the results of the fits, and I've attached plots of each too (each one in linear and log y axis because each on its own might be misleading for fits):

EDIT - I added more points to the otherwise sparse looking fitted curves

 

ITMY PITCH actuator response fit

-- Fit completed after 190 iterations--

 Started with: Gain = 3e-06,

 Q factor = 5,

 Pole frequency = 1,

 Fit results:  Gain = 1.32047e-06,

 Q factor = 4.34542,

 Pole frequency = 0.676676

 Residual (normalised against the sum of input datapoints) = 0.0268321

 

ITMY YAW actuator response fit

-- Fit completed after 156 iterations--

 Started with: Gain = 3e-06,

 Q factor = 5,

 Pole frequency = 1,

 Fit results:  Gain = 1.14456e-06,

 Q factor = 8.49875,

 Pole frequency = 0.730028

 Residual (normalised against the sum of input datapoints) = 0.00468077

 

SRM PITCH actuator response fit

 -- Fit completed after 192 iterations--

 Started with: Gain = 3e-06,

 Q factor = 5,

 Pole frequency = 1,

 Fit results:  Gain = 7.94675e-06,

 Q factor = 7.16458,

 Pole frequency = 0.57313

 Residual (normalised against the sum of input datapoints) = 0.00301265

 

SRM YAW actuator response fit

 -- Fit completed after 156 iterations--

 Started with: Gain = 3e-06,

 Q factor = 5,

 Pole frequency = 1,

 Fit results:  Gain = 3.34179e-06,

 Q factor = 9.57601,

 Pole frequency = 0.855322

 Residual (normalised against the sum of input datapoints) = 0.000840468

  5499   Wed Sep 21 14:44:25 2011 PaulUpdateSUSITMY and SRM open loop transfer functions

 

 Here are the open loop transfer functions for ITMY and SRM. The various settings for the OLTFs were as follows:

Oplev filter used for all OLTFs: 300^2:0

Gains for oplev servos (for each OLTF only the 1 servo for the measured TF was on. They are all set back to 0 now):

SRM yaw gain = 1

SRM pitch gain = -1

ITMY yaw gain = -1

ITMY pitch gain = 1

measurement band = 0.2Hz to 200Hz

points = 33

swept sine magnitude envelope: amp = 2 for f > 60Hz, amp = 0.1 for f < 60Hz

Measurement points were from e.g. C1-SUS-ITMY-OLPIT-IN2 to C1-SUS-ITMY-OLPIT-IN1 to give a TF of -(loop gain).

Next step is to divide this through by the sensor reponse (i.e. the calibration factor measured earlier) and the filter response to get just the actuator response. 

 

  5457   Mon Sep 19 12:23:30 2011 PaulUpdateSUSITMY and SRM oplev beam size reduced + next steps

I replaced the lenses that were there with a -150mm lens followed by a +250mm lens. This gave a significantly reduced beam size at the QPDs. With the beam analyzer up and running it should be possible to optimize this later this afternoon. Next I will remove the SRM QPD from the path and make measurements of the beam spot position movement and corresponding OSEM values for different DC mirror offsets. I will then repeat the process for ITMY.

  5487   Tue Sep 20 18:03:45 2011 PaulUpdateSUSITMY and SRM oplev calibrations - measured and estimated

The measured calibration factors for the oplevs are as follows:

 
SRM pitch: 666urad per count on channel C1-SUS-SRM-OLPIT-INMON
SRM yaw: 557urad per count on channel C1-SUS-SRM-OLYAW-INMON
 
ITMY pitch: 470urad per count on channel C1-SUS-ITMY-OLPIT-INMON
ITMY yaw: 491urad per count on channel C1-SUS-ITMY-OLYAW-INMON
 
Since I'm going to calibrate all the other oplevs with the rougher technique of estimating the angle from the OSEM signals directly, I thought I would check the result of such an estimation for the oplevs I have calibrated already. My method was as follows:
 
dA = change in angle
dx = change in OSEM flag position
dV = change in OSEM PD voltage
dC = change in OSEM counts
D = optic diameter
L = distance between OSEMs = D/sqrt(2)-0.002m = 0.052m
dV/dx = OSEMs volts per meter flag position change = 1700 V/m
dC/dV = OSEM counts per volt = 2^16/40 = 65536/40 counts/V
 
counts per radian = dC/dA = dV/dx  x   dC/dV   x  1/L = 1700*65536/40/0.052 = 5.3564x10^7 counts/rad
 
radians per count = dA/dC = 1.867x10^-8, or 0.019 urad/count
 
This is around a factor of 1000 smaller than what I measured earlier, reported in entry 5468. I guess this might be an issue with the whitening filter on the OSEMs, but my initial feeling was that this was only a factor of a few. If anyone can see a big obvious mistake in my above calculations please let me know!
 
 
  5488   Tue Sep 20 19:00:49 2011 PaulUpdateSUSITMY and SRM oplev calibrations - measured and estimated

 

Kiwamu noticed that the 1/L in the counts per radian should have just been L, which accounts for most of the discrepancy. We checked the input filters on the OSEMs, and they have 10dB of gain at DC. Accounting for this, estimates on the order of 20urad/count, which is much more reasonable!

  5494   Wed Sep 21 00:37:01 2011 ranaUpdateSUSITMY and SRM oplev calibrations - measured and estimated

I found that some of the Optical Lever Servos were ON today and injecting nonsense into the interferometer optics. I have set all of the gains = 0 to save us more headaches.

Please leave them OFF until we review the servo and noise characterization results in the elog.

  5496   Wed Sep 21 09:10:15 2011 PaulUpdateSUSITMY and SRM oplev calibrations - measured and estimated

Quote:

I found that some of the Optical Lever Servos were ON today and injecting nonsense into the interferometer optics. I have set all of the gains = 0 to save us more headaches.

Please leave them OFF until we review the servo and noise characterization results in the elog.

 I had previously set the gains to zero, see the first line of my entry on Monday 5468. I should have the servo and noise characterisation done today for these oplevs today, so we can review it soon.

  4878   Fri Jun 24 10:38:01 2011 steveUpdateCamerasITMY camera gets fixed

ITMY gets new Tamron M118FM50 that has improved close focusing. It is a small fixed focal length camera so the video tube cover can be put on.

The Watec LCL-902K 1/2" ccd camera was losing it power supply voltage because of bad connection. It was replaced.

  5351   Wed Sep 7 00:01:23 2011 SureshUpdateIOOITMY chamber ready for heavy doors

[Jenne, Suresh]

We did the following things in the ITMY chamber today:

1) We tried to get the ITMY stuck again by adjusting the coil gains so that it goes into the orientation where it used to get stuck.  We (reassuringly) failed to get it stuck again.  This, as we came to know later, is because kiwamu had rotated the side OSEM such that the optic does not get stuck . However the OSEM beam is at about 30 deg to the vertical and the SD is sensitive to POS motion now resulting in the poorer separation of modes as noted by Jenne earlier (5439)

2) We checked the earthquake stops and repositioned two at the bottom (towards the AR side of the optic)  which we had backed out earlier.

3) We took pics of all the OSEMS.

4) Checked to see if there are any stray beams with an IR card.  There were none.

5) I obtained the max values of the OSEMS by misaligning the optic with the coil offsets.  These values are in good agreement with those on the wiki

OSEM     UL     UR     LR     LL      SD

Max      1.80    1.53   1.68   1.96    2.10

Current  0.97   0.79    0.83   0.97   1.02

 

We can close the heavy doors tomorrow morning.

  16868   Fri May 20 20:03:48 2022 PacoUpdateBHDITMY chamber work finished - LO and AS overlapped

[Paco, Anchal, Yuta]

Today, in short we:

  • Recovered alignment of arm cavities, PRC (only ITMX aligned), and then altogether with SRM and PRM aligned to maximize all DCPD levels (AS, POP, REFL, TRX, TRY), but SRC was not flashing and the SRM yaw alignment slider was around its max value, so after recording beam positions on cameras Anchal went into the BS chamber and helped steer the SRC alignment using a combination of SRM, SR2 and AS1. After this every beam was nominally aligned except for LO and AS, which remained to be mode matched.
  • Mode matched LO3-LO4 by hand -- cheeky -- from the ITMY chamber, the final separation between these two mirrors grew by almost 3 inches with respect to the design (!!!) but the LO and AS beams came out nicely. The canonical path used for the steering was LO path, and then we overlapped the beams with the help of a gige basler camera and a couple of DCPDs (Thorlabs).
  • Yuta and Paco started running final checks in preparation for Monday (pumpdown). We aligned the IFO, but noted that using Restore/Misalign sometimes results in hysteresis.. so it is not very reliable for fine alignment modes. Then we optimized DC levels, centered all oplevs, and tweaked Green input alignment on XARM and YARM. The XARM was maximized, but in YARM we could still not get high TEM-00 flashing ...
    • Unfortunately, we discovered a slight clipping of the GTRY beam through PR3 which could mean the current alignment (pointing) is not hitting PR3 center optimally.
  • Attached are the screenshot of current aligned state after the work tonight, with oplevs centered, and the OSEM sensor values.

  16899   Tue Jun 7 19:40:45 2022 AnchalUpdateSUSITMY changed output matrix to disable use of UL coil

Since UL coil actuation is lost, we modified the output matrix of ITMY to use only UR, LR and LL face coils for POS, PIT and YAW actuation. The output matrix was changed to following:

  POS PIT YAW SIDE
UL 0 0 0 0
UR 1 1 0 0
LL 1 0 1 0
LR 0 -1 -1 0
SIDE 0 0 0 1

 

 

 

 

 

After this change, the damping was still working as good as before. I took PIT to POS/PIT/YAW and YAW to POS/PIT/YAW coupling measurements by exciting C1:SUS-ITMY_ASCPIT[YAW]_EXC and seeing effect at C1:SUS-ITMY_SUS[POS/PIT/YAW]_IN1 when the damping loops were off. Attached are the results. We were able to reduce PIT to YAW and YAW to PIT coupling by 10 dB by this simple change in output matrix. More coil balancing or off-diagonal termsmight help more and should be attempted if required. The coupling to POS did not change much.

Note that attachment 1 shows transfer functions from excitation point to the DOF sensing inputs while attachment two looks at ratio of C1:SUS-ITMY_SUS[POS/PIT]_IN1 to C1:SUS-ITMY_SUSYAW_IN1 which is the actual quantity of interest. I didn't repeat the PIT measurement due to lack of time.

Also note that all such measurements are being recorded in our new measurements git repo. We'll populate this repo with diaggui template+data files as we do measurements.

  5562   Wed Sep 28 07:36:41 2011 steveUpdateSUSITMY damping restored

ITMY suspention damping restored

  1188   Mon Dec 8 17:50:21 2008 YoichiUpdateSUSITMY drift
The suspension drift monitor shows that the ITMY alignment was shifted after the earthquake.
Looks like only the UL sensor had a step at the earthquake (see the attachment 1).
So it is probably an electronics problem.
I pushed in the cable between the rack and the ITMY satellite amplifier, but no change observed.
Actually, the ITMY-UL sensor looks like it has been dead before the earthquake.
The second attachment shows a long-term trend of the UL sensor.
The sensor output had been around zero since Nov. 17th.
When I disabled the output of the UL sensor, the sus-drift-mon fields turned green.
So I think the drift-mon's reference values are wrong, and currently the ITMY is in a good alignment.

I also attached the free-swing measurements of the ITMY taken on Aug. 18th and today.
There is no notable change in the resonant frequencies.
ELOG V3.1.3-