ID |
Date |
Author |
Type |
Category |
Subject |
9096
|
Mon Sep 2 18:06:21 2013 |
Jenne | Update | Electronics | RF distribution box: 110 MHz LO options |
After scrounging for parts, and opening up the box, I have modified my proposal to the following:

Note that the freq multiplier is supposed to take, at maximum, 15 dBm. The reason I put the 5 dB attenuator, then an amplifier, then another attenuator is that I don't know of / can't find easily a 10 dB amplifier with the usual case type on the MiniCircuits site. (If anyone knows of one off the top of their head, that would be handy. Then I'd remove the attenuator between the multiplier and the amplifier, and make the 10 dB attenuator a 5 dB.)
Anyhow, the ZFL-500HLN can only output 16 dBm of power, and I don't think I have space for another ZHL-2 (which can output up to 26 dBm) inside the box, so I put an attenuator before, as well as after, the amplifier.
I think I have space inside the box for all the bits and pieces I'll need, although to do things correctly, I need to drill holes in the teflon mounting plate to mount the amplifier and splitter.

I also think that I have space on the front panel to put another isolated SMA feedthrough.

I have, on my desk, all the parts (except for mounting screws, and cables between things) to make these modifications to the distribution box. |
9099
|
Tue Sep 3 21:08:13 2013 |
Jenne | Update | Electronics | RF distribution box: 110 MHz LO options |
The RF distribution box is still on the bench, so again, don't be surprised that the MC doesn't lock.
I have completed my modifications as proposed in elog 9096, but I want to do a couple of quickie tests in the morning before I declare it ready for service. |
9100
|
Tue Sep 3 21:10:36 2013 |
Jenne | Configuration | Electronics | putting together a 110 MHz LSC demod board for AS |
Quote: |
I should actually stick in the SXBP-100's, which will band pass from 87-117 MHz.
|
I have removed the 135 MHz low pass from my new AS110 demod board, but these SXBPs have different feet than the SCLFs, so I want to confirm with Koji or someone that I can solder them in the same way, before I get carried away and destroy anything. I should be able to finish this up tomorrow, plug in the demod board and the distribution box, and try out AS110 triggering, etc, tomorrow night. |
9101
|
Wed Sep 4 16:06:40 2013 |
Jenne | Update | Electronics | RF distribution box: Reinstalled |
I have reinstalled the RF distribution box, as well put in the AS110 demod board. I plugged everything back in, and turned it all on.
The switch on the distribution box may be starting to fail. When I was turning the box on, I could depress the button, and see the blue glow, but it wouldn't catch, so when I removed my finger, the glow went away. I was afraid that I'd have to pull the box, but after a few more button toggles, I got it to stay on. I'm leaving it for now, but we should remember that this may be a problem.
I will look at the phases of all the PDs, but none should need changing except POP 110. Every other PD has the exact same cables as before. |
9106
|
Wed Sep 4 21:44:54 2013 |
Not Jenne | Update | Electronics | RF distribution box: Reinstalled |
Temporary fix for the switch: give a bit of oil to the button
Permanent fix: buy better switches. |
9208
|
Sun Oct 6 22:27:35 2013 |
rana | Frogs | Electronics | MC3 LL sensor cable was loose |
I noticed that the MC3 LL sensor was apparently dead according to its suspension screen. Since it was only the fast ADC channel and not the SLOW PDmon, I could tell that it was just in the ADC cabling. I pushed in a few of the MC3 sensor cables on the front and back of the PD whitening board and it came back OK. According to this trend of the past 40 days and 40 nights, it started slipping on this past Wednesday morning.
Was anyone walking near MC2 or the suspension electronics racks before noon on Wednesday (Oct. 2nd)? |
Attachment 1: MC3_LL.png
|
|
9350
|
Tue Nov 5 19:50:07 2013 |
manasa | Update | Electronics | IOO rack +/-5V power supplies |
The power supply to the ADC box on the IOO rack (that reads the beat I & Q signals) was pulled out because it did not run through any fuse and was connected directly to the power supply.
There were already connections running from the +/-5 V power supply. They were powering the mode cleaner demod board rack. In order to remove the ADC power connectors from the power supply, I notified Jenne in the control room because turning off the power supply would affect the MC. I switched off the +/-5V power supplies at the same time. The ADC power connectors were removed. The +/-5V power supplies were then turned ON again at the same time. Jenne relocked the MC after this.
I have still not connected the ADC to the fuse rack power supply because this requires the +/-5V power supplies to be turned OFF again in order to pull out new connections from the fuse rack and I need to make a new ADC power connector with thicker wires. |
9356
|
Wed Nov 6 15:59:41 2013 |
manasa | Update | Electronics | IOO rack +/-5V power supplies |
Quote: |
The power supply to the ADC box on the IOO rack (that reads the beat I & Q signals) was pulled out because it did not run through any fuse and was connected directly to the power supply.
There were already connections running from the +/-5 V power supply. They were powering the mode cleaner demod board rack. In order to remove the ADC power connectors from the power supply, I notified Jenne in the control room because turning off the power supply would affect the MC. I switched off the +/-5V power supplies at the same time. The ADC power connectors were removed. The +/-5V power supplies were then turned ON again at the same time. Jenne relocked the MC after this.
I have still not connected the ADC to the fuse rack power supply because this requires the +/-5V power supplies to be turned OFF again in order to pull out new connections from the fuse rack and I need to make a new ADC power connector with thicker wires.
|
I switched OFF the +/-5V power supplies on the IOO rack to hook up the ADC power connectors through 250mA fuses to +/-5V. Since these power supplies were powering the MC demod boards, MC remained unlocked during the process. I turned the power supplies back ON and MC relocked itself after this. |
9377
|
Wed Nov 13 18:37:19 2013 |
rana | Configuration | Electronics | DAC available in c1lsc IO chassis for DAFI |
The first picture shows that there is indeed a DAC next to the ADC in the LSC IO chassis. The second picture shows how there are two cables, each one carrying 8 channels of DAC. The third one shows how these come out of the coil drivers to handle the Tip/Tilt mirrors which point the beam from the IMC into the PRC. It should be the case that the second Dewhitening filter board can give us access to the next 8 channels for use in driving an audio signal into the control room or an ISS excitation. |
9563
|
Tue Jan 21 19:41:59 2014 |
Jenne | Update | Electronics | RF distribution box power button fail |
Rana, Gabriele and I are trying to measure the FSR of the PRC (elog about that later), and we turned off the power to the RF generation box so that we could switch cables at the EOM combiner. However, as in elog 9101, the power button won't latch when we try to turn the power back on. All 3 of us tried, to no avail. For our measurement, poor Gabriele is standing holding the button pushed in, so that we can have some RF sidebands.
Tomorrow, we'll have to pull the RF generation box, and put in a better switch. |
9566
|
Wed Jan 22 16:36:45 2014 |
ericq | Update | Electronics | RF distribution box power button fail |
Quote: |
Rana, Gabriele and I are trying to measure the FSR of the PRC (elog about that later), and we turned off the power to the RF generation box so that we could switch cables at the EOM combiner. However, as in elog 9101, the power button won't latch when we try to turn the power back on. All 3 of us tried, to no avail. For our measurement, poor Gabriele is standing holding the button pushed in, so that we can have some RF sidebands.
Tomorrow, we'll have to pull the RF generation box, and put in a better switch.
|
I replaced the stupid broken fancy button with a simple sturdy switch. I had to file out the hole in the chassis a bit, but the switch is pressed in tightly and securely. I put the box back in the rack, but the power cable was coming directly from the power supplies with no fuses. The box was drawing ~.9 and 1.5 Amps from two supplies, so I put 2A fuses on both. Plugged everything back in, and the mode cleaner locks, so it looks like all is well.
RXA: When its so close, I prefer to size it up by 1 step. Please change to 5A fuses. Otherwise, we may blow them from power glitches.
Q: 5A fuses have been swapped in |
9637
|
Fri Feb 14 02:09:55 2014 |
ericq | Update | Electronics | Transmon QPD whitening |
[Quick post, will follow up with further detail later. Excuse my sleepy ELOG writing]
Goal: Check out the transmon QPD signal chain; see if whitening works. Assess noise for 1/sqrt(TRX/Y) use.
First impression: Whitening would not switch on when toggling the de-whitening. The front monitors on the whitening boards are misleading; they are taken a few stages before the real output. ADC noise was by far the limiting noise source.
I updated the binary logic in the c1scx and c1scy to actually make the binary IO module output some bits.
After consulting a secret wiring diagram on the wiki, not linked on the rack information page (here), I worked out which bits correspond to the bypass switches in the whitening board ( a fairly modified D990399, with some notes here)
Now, FM1 and FM2 (dewhitening filters on the ETM QPD quadrants) trigger the corresponding whitening in the boards. Here's a quick TF I took of the quadrant 1 board at ETMY. (I should take a whitening+dewhitening TF too, and post it here...)

Seems to roughly work. Some features may be due to non-accounted for elements in the anti-imaging of the DAC channels I used for the excitation, or such things. The board likely needs some attention, and at least a survey of what is there.
I also need to take dark noise data, and convert into the equivalent displacement noise in the 1/sqrt(TRX/Y) error signals. For the no-whitening ADC noise, I estimated ~1pm RMS noise on a 38pm linewidth of PRFPMI arms. |
9642
|
Mon Feb 17 20:35:19 2014 |
ericq | Update | Electronics | Transmon QPD whitening |
My apologies for all of that crap I left at the Y-end... I cleaned the rest of it up today.
I took transfer functions of the four ETMY QPD whitening channels today. (Attempted the ETMX ones too, but had troubles driving the board; detailed below). I've attached a zip with the DTT xml files for the cases of no whitening / 1 whitening stage / both whitening stages engaged. Here's a plot of both whitening stages engaged.

Given the way I measured, the DAC output anti-imaging is in the TFs as well. ( This is a D000186 board; with something like a 4th order elliptic LP, but I need to look at the board / fit the TF to see the parameters, there are different revisions with different filter shapes.)
The c1scy model had excitation blocks on some of the unused DAC channels (C1:SCY-XXX_CHAN9 etc.), but these were in the second DAC output connection, and not cabled up. However, the 8th channel on the DAC had no connection in the simulink model, so I added another excitation block there (C1:SCY-XXX_CHAN8), and used the anti-imaging front panel lemo connector to drive the input of the whitening board.
I also added a similar channel to the SCX model, but no data would show up in the channel as viewed by data viewer (though the channel name was black), or in analog world. There's the additional weirdness that the SCY excitation channels show up under SCX in DTT and awggui... I'm not entirely sure what's going on here.
I still need to look at the noise, and peek inside the boards, to check for homemade modifications and see if there are bad things like thick film resistors that may be spoiling the noise performance... |
Attachment 2: ETMY_QPD_whitening.zip
|
9661
|
Mon Feb 24 13:21:00 2014 |
Jenne | Update | Electronics | Measured REFL165 demod board |
I measured the REFL 165 demod board's I/Q separation.
Our 11MHz signal is currently 11.066092 MHz, so I put a signal to the RF input of the REFL165 demod board at 165.992380 MHz (15*11 MHz + 1kHz), with a signal of -13 dBm.
I then used the SR785 to measure the transfer function between the I and Q output channels.
I got 82.7 degrees, at -0.64 dB. (I don't remember now if I had I/Q, or Q/I, not that it really matters). So, it seems that the REFL165 demod board has good separation, and at least isn't totally broken. |
9666
|
Mon Feb 24 17:59:31 2014 |
RANA | Update | Electronics | Measured REFL165 demod board |
Demod boards should be at 90 deg, not 82.7 or 12 or yellow or ****. We should re-inject the RF and then set the D Phase in the filter module to make the signals orthogonal. 165 is a challenging one to get right, but its worth it since the signals are close to degenerate already. |
9716
|
Tue Mar 11 15:19:45 2014 |
Jenne | Update | Electronics | High gain Trans PD electronics change |
As part of our CESAR testing last night, we had a look at the noise of the 1/sqrt(TR) signal.
Looking at the time series data, while we were slowly sweeping through IR resonance (using the ALS), Rana noted that the linear range of the 1/sqrt(TR) signal was not as wide as it should be, and that this is likely because our SNR is really poor.
When a single arm is at a normalized transmission power of 1, we are getting about 300 ADC counts. We want this to be more like 3000 ADC counts, to be taking advantage of the full range of the ADC.
This means that we want to increase our analog gain by a factor of 10 for the low gain Thorlabs PDs.
Looking at the photos from November when I pulled out the Xend transmission whitening board (elog 9367), we want to change "Rgain" of the AD620 on the daughter board. While we're at it, we should also change the noisy black thick film resistors to the green thin film resistors in the signal path.
The daughter board is D04060, S/N 101. The main whitening board for the low gain trans QPD is D990399, RevB, S/N 104.
We should also check whether we're saturating somewhere in the whitening board by putting in a function generator signal via BNC cable into the input of the Thorlabs whitening path, and seeing where (in Dataviewer) we start to see saturation. Is it the full 32,000 counts, or somewhere lower, like 28,000?
Actually the gain was changed. From gain of 2 (Rgain = 49.4kOhm) to 20 (Rgain = 2.10kOhm), Corresponding calibration in CDS was also changed by locking the Xarm, running ASS, then setting the average arm power to be 1. Confirmed Xarm is locking. And now the signal is used for CESAR. We see emperically that the noise has improved by a factor of approximately 10ish. |
Attachment 1: IMG_1309.JPG
|
|
9720
|
Tue Mar 11 19:07:24 2014 |
ericq | Update | Electronics | High gain Trans PD electronics change |
Speaking of the whitening board, I had neglected to post details showing the the whitening was at least having a positive effect on the transmon QPD noise. So, here is a spectrum showing the effects that the whitening stages have on a QPD dark noise measurement like I did in ELOG 9660, at a simulated transmission level of 40 counts.
The first whitening stages gives us a full 20dB of noise reduction, while the second stage brings us down to either the dark noise of the QPD or the noise of the whitening board. We should figure out which it is, and fix up the board if necessary.

The DTT xml file is attached in a zip, if anyone wants it. |
Attachment 2: sqrtinvWhitening.zip
|
9823
|
Thu Apr 17 16:04:40 2014 |
Jenne | Update | Electronics | High gain Trans PD electronics change |
I have made the same modification to the Yarm trans PD whitening board as was done for the xend, to increase our SNR. I put in a 2.1kOhm thin film resistor in the Rgain place.
When I was pulling the board, the ribbon cable that goes to the ADC had its connector break. I redid the ribbon connector before putting the board back.
I see signals coming into the digital system for both the high gain and low gain Y transmission PDs, so I think we're back. I will re-do the normalization after Jamie is finished working on the computers for the day. |
9828
|
Fri Apr 18 09:40:28 2014 |
Steve | Update | Electronics | it is a kick |
10 days of on-off glitching? It is a kick. The LSC is off, so it must be the ALS |
Attachment 1: theLifeofGlithes.png
|
|
Attachment 2: glitchingEndsMC2.png
|
|
Attachment 3: itisaKick.png
|
|
9991
|
Sat May 24 22:56:57 2014 |
Jenne | Update | Electronics | Amplifier removed from BeatX path |
I just realized that I forgot to elog this, but yesterday afternoon I bypassed the amplifier in the BeatX path, and now the X beatnote is about -27dBm. Arms lock nicely with ALS. |
9992
|
Mon May 26 07:59:23 2014 |
Koji | Update | Electronics | Amplifier removed from BeatX path |
And the out-of-loop level of the ALSX compared with the previous measurement is ...?
Quote: |
I just realized that I forgot to elog this, but yesterday afternoon I bypassed the amplifier in the BeatX path, and now the X beatnote is about -27dBm. Arms lock nicely with ALS.
|
|
9995
|
Tue May 27 11:58:45 2014 |
Jenne | Update | Electronics | Amplifier removed from BeatX path |
Sorry, I had been in a hurry when I worked on this last week, and again when I wrote the elog, but I wanted to at least put in a note for any weekend workers.
The ALS beatnote setups need alignment on the PSL table. However, even at very low RF beat frequency, the X beatnote now at low frequencies matches our best measurement from last week. The "HEPA off" (teal and purple) measurements are from last week, and the red and blue are from this week. The X beatnote was 10MHz and the Y beatnote today was 31MHz.

|
10008
|
Mon Jun 9 09:51:11 2014 |
Sai Akhil | Update | Electronics | Frequency Error Measurement of UFC-6000 RF Frequency Counter |
Motivation:
To test the precision of Mini-Circuits Model UFC-6000 RF Frequency Counter which will be used for recording the beat note for the Frequency Offset Locking Loop(FOLL).
Setup:
Mini Circuits RF Frequency Counter Model UFC-6000 has three I/O ports:
1)REF IN,2)USB INTERFACE,3)RF IN.
The USB INTERFACE is connected to the PC(Windows/Linux) through a USB cable.
The test RF input from an SRS Function Generator(Model DS 345 with tested precision up to 1mHz)is fed in through RF IN using an SMA cable with an SMA-BNC adaptor to connect to the Function Generator.
The REF IN is open since we want to test the counter.
What I did:
1. First interfaced the counter with the PC with windows OS.
2. Installed the user friendly GUI on my Laptop so as to record the data from the counter into a .txt file.
3. Gave an RF input through the function generator and recorded the response of the counter for different frequencies ranging from 1MHz to 30MHz.
4.Analyzed the collected data by plotting the histograms(attached) in Matlab(script attached in .zip file)
What was Expected:
The measurement statistics of the instrument would give knowledge about the error and tolerance in the measurement which will be helpful to negotiate the error when the counter is being used in the setup.
Results:
The obtained plots(for sampling time of 1s) are attached in a figure.
The measurement error of the frequency counter for 1s sampling time is:
data file Frequency Mean in MHz Standard Error(+/-)in Hz
1MH.txt 1MHz 0.999999846 0.0109
5MHz.txt 5MHz 5.000000293 0.0134
10MHz.txt 10MHz 10.00000148 0.0108
15MHz.txt 15MHz 15.0000018 0.0072
20MHz.txt 20MHz 20.00000053 0.0259
30MHz.txt 30MHz 30.00000146 0.0230
The measurement error of the UFC-6000 RF Frequency Counter is in the order of 0.01-0.02 Hz. This error varies at different frequencies as inferred from the table.
The error for different sampling times of the FC are also plotted.
Plan:
To complete interfacing the counter with the Raspberry-pi.
Make this Frequency Counter talk to EPICS through slow channels.
|
Attachment 1: Data_and_Script_Files.zip
|
Attachment 2: Error_Measurement_FC.pdf
|
|
Attachment 3: Error_freq.jpg
|
|
10009
|
Mon Jun 9 10:55:48 2014 |
Nichin | Summary | Electronics | BBPD D1002969-v8 transimpedence measurement |
My SURF week-1 work...
Motivation:
To measure the transimpedence of the Broadband photodiode (D1002969-v8), using a New focus photodiode (1611) as reference. The amplitude modulated Jenne Laser (1.2mW) was used.
The steps involved in getting the transimpedence are as follows:
Acquiring data
- Get 2 sets of data from Network Analyzer Agilent 4395: One set of data will be for the transfer function of Ref PD over RF out. The other set for Test PD over Ref PD.
- The following conditions were set:
1) Frequency sweep range: 1MHz to 200 MHz.
2) Number of Points sampled in the range: 201
3) Type of sweep: Logarithmic
- Set the NA to give the corresponding transfer function values in dB and also Phase response in degrees.
- Save the data into floppy disk for processing on the computer (The wireless way of acquiring data was not working when the experiment was conducted )
Plotting
- The matlab code attached (TransimpedencePlot.m) will then give plots for the absolute values of transimpedence in V/A.
- Logic involved in the code:
- Transimpedence = Voltage response / (Responsivity of the photodiode * Power incident)
- Responsivity for BBPD is taken as 0.1 A/W and for NF1611 as 0.68 A/W as given in their datasheets.
- Voltage response of Test PD w.r.t RF output of NA (in dB) = Voltage response of Test PD w.r.t Ref PD (in dB) + Voltage response of Ref PD w.r.t RF output of NA (in dB)
Results
The Plots of transimpedence obtained are attached (results.pdf) . The results obtained for BBPD is consistent with the ones obtained before, but the same method and code gives a different transimpedence for 1611.
The transimpedence of NF 1611 was obtained to be around 4-5 V/A which is very much off-track compared to the one given in the datasheet (elog: 2906).
The transimpedence of Broadband photodiode (D1002969-v8) was around 1200 - 1300 V/A for most of the range, but the value started falling as the frequency approached 100 MHz. This result is consistent with DCC document: T1100467-v2.
|
Attachment 1: PD_transimpedence_measurement.png
|
|
Attachment 2: results.pdf
|
|
Attachment 3: code_and_data.zip
|
10012
|
Mon Jun 9 16:55:31 2014 |
Koji | Summary | Electronics | BBPD D1002969-v8 transimpedence measurement |
How is the modulation depth assumed in the calculation?
If you don't know the modulation depth, you can't calibrate the transimpedance of each PD individually. |
10034
|
Thu Jun 12 16:56:31 2014 |
Nichin | Update | Electronics | PD Inspection |
I and Eric Gustafson inspected the automated PD frequency response measurement system which Alex Cole built last summer. We just lifted the tops off the tables [AS table, POY table and ITMX table] and looked at the alignment checking to see if the correct optical fibers from the fiber splitter were illuminating the correct photodiodes. We did not change anything at all and put the covers back on the tables.
The PDF attached shows the state of each PD fiber pair. The fibers labeled REFL11 and REFL55 were reversed and illuminating the wrong photodiodes.
We will do a manual measurement of REFL33 tomorrow using the network analyzer and the modulatable laser but not the RF switch. Afterward we will check to make sure the RF cables are connected to the correct channels of the RF switch according to the switch list (/users/alex.cole/switchList). |
Attachment 1: Inspection_PD_Freq_Resonse_system_12th_June_2014.pdf
|
|
10036
|
Fri Jun 13 11:33:55 2014 |
Akhil | Update | Electronics | Characterization of UFC-6000 RF Frequency Counter |
Goal:
To characterize the Mini-Circuits RF FC (Model UFC-6000) and plot Bode Plots at varying Modulation frequencies.
Work Done:
Here are the list of measurements(files attached) taken from FC using SRS(Model DS345) Synthesized Function Generator for a Sinusoidal signal at different Modulation Frequencies ranging from 0.01 Hz to 1 KHz:
Carrier Frequency Modulation Depth Attached measurement Folder
5 MHz Δ f = 5 MHz Bode_5
10 MHz Δ f = 10 MHz Bode_10
20 MHz Δ f = 20 MHz Bode_20
The measured data will be used to estimate:
1) Transfer Function of FC
2) Quantization noise from Power Spectral Density(PSD) vs Hz
To Do Next:
1)Complete interfacing the Pi with EPICS.
2)Make bode plots (Matlab script attached) and PSD plots and estimate the control parameters for optimal design of FOLL PID loop.
|
Attachment 1: Bode_Plots.zip
|
10037
|
Fri Jun 13 18:16:00 2014 |
Nichin | Update | Electronics | Changes to the PD frequency response measurement system |
As we had planned yesterday (ELOG 10034) I and Eric Gustafson wanted to manually measure the transimpedence for REFL33. But on closer inspection I found the RF signal cable coming from the Photodiode REF DET (mounted on the POY table), that we were supposed to plug into the network analyzer, did not have an SMA connector at the end. There was just the Teflon and metal part sticking out of the insulation. So we disconnected the cable labeled REF DET from the PD and pulled it out to fix it. (POY table and from near the 1Y1 rack)
Being unable to locate any SMA male connectors in the 40m lab [pasternack PE4025], we headed over to Downs where Rich Abbott did a quick and awesome job of soldering the SMA connector and also teaching me in the process. I will write an ELOG on how to do a clean solder of the SMA connectors to the RF cable shortly for future reference.
Coming back to the 40m we rerouted the REF DET cable from near the 1Y1 rack and into the POY table. This job was done mostly by Eric. We were also unable to locate a torque wrench to tighten the cable at the PD’s end and had to leave it finger tight. Eric is planning to buy a new torque wrench as we will need it often.
Also, I cross checked the SwithList located at /users/alex.cole/switchList with the RF switch connections at 1Y1 rack and turns out it is consistent, except that at CH2 of the first switch where MC REFL was to be connected, there is a unlabeled cable. It might belong to the correct PD, but must be made sure of. The rest of the channels that are not mentioned in the list were unconnected on the RF switch.
Now instead of disconnecting REFL 33 to make measurements with the NA, we had to take out AS55 from the RF switch, as the former was very hard to remove without the torque wrench. Then Eric removed the optical fiber which was illuminating the AS55 (AS table) from its mount to hook it up to the power meter. But then we were not sure of how to operate the Laser diode controller (LDC 3744C) and decided to leave stuff as it is and continue either tomorrow or on Monday. Right now we closed the optical fiber of AS55 with a cap and it remains unmounted. The RF cables of REF DET and AS55 were left hanging near the 1Y1 rack. |
10058
|
Wed Jun 18 15:25:06 2014 |
Nichin | Update | Electronics | BBPD Transimepedence plot |
Motivation:
To measure the transimpedence of the Broadband photodiode (D1002969-v8), using a New focus photodiode (1611) as reference. The amplitude modulated Jenne Laser (1.2mW) was used @20mA
The steps involved in getting the transimpedence:
Acquiring data
- The following conditions were set on Network Analyzer Agilent 4395:
1) Frequency sweep range: 500KHz to 300 MHz.
2) Number of Points sampled in the range: 301
3) Type of sweep: Logarithmic
- Set the NA to give the corresponding transfer function value (output of BBPD over output of 1611) and also Phase response in degrees.
- Save the data into floppy disk for processing on the computer.
Plotting
- The matlab code attached (Trans_plot.m) will then give plots for the absolute values of transimpedence in V/A.
- Logic involved in the code will be presented clearly in a separate Elog.
Results
The Plots of transimpedence obtained are attached. The data and matlab code used is in the zip file.
The transimpedence of Broadband photodiode (D1002969-v8) was around 1200 - 1300 V/A for most of the range (2), but the value started falling as the frequency approached 200 MHz. |
Attachment 1: BBPD.png
|
|
Attachment 2: BBPD_readings_06-18-2014.zip
|
10059
|
Wed Jun 18 16:44:55 2014 |
Manasa | Update | Electronics | BBPD installed for BEATX detection |
This BBPD is the spare that we pulled out and is installed for ALSX-PSL beat note detection. |
10062
|
Wed Jun 18 18:16:26 2014 |
Nichin | Update | Electronics | Changes to the PD frequency response measurement system |
[Nichin, Eric G, Koji]
Continuing out work from elog:10037, we wanted to check if the frequency response of AS55. Having figured out exactly how to use the Laser diode controller (LDC 3744C), we hooked up a fiber power meter to the optical fiber illuminating AS55 (that we disconnected from its mount last Friday ) and raised up the current to 150mA to get almost 0.8mW power reading.
When aligning the fiber to illuminate the PD, we found that the beam was pretty wide. So we pulled out the collimator and tweaked it to get a focused beam. The fiber was mounted back and was aligned to get a maximum DC reading. The multimeter readout 30mV finally. Taking the transimpedence as 200ohm approx., the hot current is about 1.5mA.
Network analyzer was now connected to the modulation input of the laser and the RF output from REF DET and AS55 (inputs to RF switch at rack 1Y1) were connected as input to measure the transfer function. We got just noise on the scope of NA. So, then we tried REFL33 as the Input and still got nothing (We were also not sure if this PD was properly illuminated, we did not check). However the REF DET was giving a nice response on the scope. Turns out all the PDs were disconnected form the Demodulator (D990511) on rack 1Y2.
On closer inspection the RF cable between domodulator and RF switch that was labelled AS55 had a loose SMA connector at the switch end. I will have to fix that tomorrow . For the time being Koji connected the cable labelled REFL33 to the AS55 demodulator and we finally got a response form the AS55 PD on the NA. However no readings were recorded. The power supply to REF DET was turned off in the end as Eric G claimed that it has been ON for almost a year now, which is not a good thing. Also, we removed the modulation input from NA to the diode laser and terminated the input with a 50ohm terminator.
We planned to pull out and check each and every RF cable (especially the SMA ends for faulty soldering and loose connections) and fix/ replace them as needed. |
10065
|
Wed Jun 18 21:53:48 2014 |
Koji | Update | Electronics | Changes to the PD frequency response measurement system |
Not "hot" current but "photo" current. Is this my bad!?
It was me who told Nichin that the DC transimpedance was 200Ohm. But according to this entry I checked the RF transimpedance of AS55 before.
In my code, the DC transimpedance was defined to be 50Ohm. If we believe it, 30mV corresponds to 0.6mA.
Quote: |
The multimeter readout 30mV finally. Taking the transimpedence as 200ohm approx., the hot current is about 1.5mA.
|
|
10070
|
Thu Jun 19 12:10:18 2014 |
Akhil | Update | Electronics | Gain plots to Characterize UFC-6000 RF Frequency Counter |
The goal is to characterize the Mini-Circuits RF FC (Model UFC-6000) by plotting Gain Plots.
Work Done:
The sampling rate of the UFC-6000 RF FC is 1s (should look into making the sampling time smaller). So to satisfy Nyquist criterion, the maximum modulation frequency is 0.5 Hz beyond which aliasing effects are seen.
The measurements taken (mentioned in my previous elog) are used to plot Gain vs Modulation frequency for carrier frequencies of 5 MHz and 25 MHz.
Calculations:
A modulated signal can be represented as X(t)= A*sin (Fc*t+D*sin(Fm*t+phase1)) where Fc and Fm are carrier and modulation frequencies respectively and D is the modulation depth.
This signal Y(t) is input to the FC and the output frequencies of the FC are recorded.
Let the output of the FC is Y(t)= A'*sin(Fc*t+D'*sin(Fm'*t+phase2));
Gain = D'/D;
phase = phase2 - phase1;
D' is calculated by subtracting the carrier frequency from the output frequency and calculating the amplitude of the resulting fitted sine wave.
The phase can be calculated if the phase of the input is known(which will be done next).
Plotting the Bode plots would give response of the FC to modulation.
The plots generated will be used to estimate:
1) Transfer Function of FC to be known to build an FOL-PID loop.
2) Quantization noise from Power Spectral Density(PSD) vs Hz.
To Do Next:
1)Calculate the phase difference to complete the Bode plot. This would require interfacing of the ADC on raspberry pi.
2)Estimate the quantization noise from the digital output.
|
Attachment 1: GainVsFreq.png
|
|
10079
|
Fri Jun 20 11:41:18 2014 |
Nichin | Update | Electronics | Transimpedence measurement-BBPD |
EDIT: Please ignore the following data. The revised data and plot are in Elog 10089
Yesterday evening, I conducted the same measurements done in Elog-10059 using the same REF PD (NF 1611) and the same model of BBPD, but on different piece that needed to be checked.
I moved the NA from near rack 1Y1 to the Jenne laser table and back again after the readings were done.
Acquiring data
- The following conditions were set on Network Analyzer Agilent 4395:
1) Frequency sweep range: 1MHz to 300 MHz.
2) Number of Points sampled in the range: 201
3) Type of sweep: Logarithmic
- Set the NA to give the corresponding transfer function value (output of BBPD over output of 1611) and also Phase response in degrees.
- Save the data into floppy disk for processing on the computer.
Results
The Plots of transimpedence obtained are attached. The data and matlab code used is in the zip file.
The transimpedance of Broadband photodiode (D1002969-v8) was around 50kV/A-70kV/A (Unusually high) for most of the range (2), but the value started falling as the frequency approached 200 MHz.
The high impedance might be because the PD is faulty.
|
Attachment 1: BBPD_readings_06-19-2014.zip
|
Attachment 2: BBPD_transimpedence_19thJune2014.pdf
|
|
10082
|
Fri Jun 20 16:36:44 2014 |
Nichin | Update | Electronics | RF cables removed |
[Nichin, Eric G]
As mentioned in Elog 10062, we found RF cables running between demodulators in rack 1Y2 and RF switch in 1Y1 to have bad SMA connectors (No shield / bad soldering / no caps).
we pulled out all the cables belonging to PD frequency response measurement system , 8 in total, and all of them about 5.5m in length.
Their labels read :
REFL33, REFL11, REFL55, AS55, POX11, REFL165, POP22 and POP110.
All of them are now sitting inside a plastic box in the contorl room.
On another note, instead of fixing all the cables ourselves, Steve and Eric G decided to order custom made RF cables from Pasternack as professionally soldered cables are worth it. We have placed an order for 2 cables (RG405-550CM) to check out and test them before we order all of the cables. |
10085
|
Fri Jun 20 19:09:23 2014 |
Koji | Update | Electronics | Transimpedence measurement-BBPD |
Oh, nice! This must be a new technique to have a higher transimpedance by breaking the PD.
Now both BBPDs are showing abnormally high impedance.
(Remember, you have not revised your previous entry after my pointing out you have a bug in the code.)
You should break down the measurement into each raw numbers for validation.
And if this high impedance is still true, you should point out what is causing of this anomaly. |
10086
|
Sat Jun 21 01:25:12 2014 |
Nichin | HowTo | Electronics | PD Trasimpedence measurement theory |
Here is the logic that I have been using to calculate the transimpedence of PDs. Please let me know if you think anything is wrong. |
Attachment 1: Transimpedence_Calculation_.pdf
|
|
10087
|
Sat Jun 21 01:46:28 2014 |
Nichin | Update | Electronics | BBPD Transimepedence plot |
Sorry for the late update Koji.
There was a bug in my code that was pointed out by koji and here is the revised plot of transimpedence. The correct code attached.
The transimpedence value is unusually high, about 50kV/A-70kV/A for most of the range. The same was observed when the transimpedence was calculated on another BBPD in Elog.
It is highly unlikely that both the BBPDs are faulty and might be because I am doing the calculations wrong. Must dig deeper into this. Maybe it is a good idea to try the shot noise method of calculating the transimpedence and see how the values turn out. Will do that ASAP. |
Attachment 1: BBPD_06-18-2014.pdf
|
|
Attachment 2: BBPD_readings_06-18-2014.zip
|
10089
|
Mon Jun 23 21:16:14 2014 |
Nichin | Update | Electronics | Transimpedence measurement-BBPD |
[Nichin, Koji]
Today evening, me and koji decided to get down to the problem of why the trasimpedence plots were not as they were supposed to be for Broadband photodiode (D1002969-v8) S1200269. There were a few problems that we encountered:
- Turns out the REF PD was not illuminated properly, for maximum output. The DC output voltage turned out to be much higher than the previous measurement. Since I assumed that the REF PD had not been touched since the first day I took readings, I did not check this.
- The fork holding the Test PD was a bit out of shape and only one side of it was clamping down the PD. This made the PD vulnerable swivel about that one side. We replaced it with a new one.
- I was setting the current diving the Jenne laser to about 20mA and this resulted in nocthes at higer frequencies in the network analyzer due to over driving of the diode laser. Once we reduced this to about 12.5-13 mA they disappeared. Also, the current limit setting was set at 40mA which is way too high for the jenne laser and might have resulted in damaging it if someone had accidentally increased the current. We have now set it at 20mA.
After these changes the measurements are as follows:
I moved the NA from near rack 1Y1 to the Jenne laser table.
Acquiring data
- Jenne Laser driving current: 12.8mA
- The following conditions were set on Network Analyzer Agilent 4395:
1) Frequency sweep range: 1MHz to 300 MHz.
2) Number of Points sampled in the range: 801
3) Type of sweep: Logarithmic
- Set the NA to give the corresponding transfer function value (output of BBPD over output of 1611) and also Phase response in degrees.
- Save the data into floppy disk for processing on the computer.
Results
DC output voltage of REF PD: 0.568V
DC output voltage of BBPD: 18mV
Power incident on REF PD and BBPD respectively: 0.184mW and 0.143mW
Hence, Responsivity for REF PD and BBPD respectively: 0.315 A/W and 0.063 A/W
Responsivity given in the Datasheet for REF PD and BBPD : 0.68 A/W and 0.1 A/W
The reason for these differences are unknown to me and must be investigated.
The Plots of transimpedence obtained are attached. The data and matlab code used is in the zip file.
The transimpedance of Broadband photodiode (D1002969-v8) S1200269 was around 1kV/A-2kV/A for most of the range, but the value started falling as the frequency approached 100 MHz. This BBPD is best when used at 10-30 MHz. |
Attachment 1: BBPD_transimpedence_06-23-2014.pdf
|
|
Attachment 2: BBPD_readings_06-23-2014.zip
|
10093
|
Tue Jun 24 16:52:43 2014 |
Nichin | Update | Electronics | An RF cable re-installed |
Quote: |
[Nichin, Eric G]
As mentioned in Elog 10062, we found RF cables running between demodulators in rack 1Y2 and RF switch in 1Y1 to have bad SMA connectors (No shield / bad soldering / no caps).
we pulled out all the cables belonging to PD frequency response measurement system , 8 in total, and all of them about 5.5m in length.
Their labels read :
REFL33, REFL11, REFL55, AS55, POX11, REFL165, POP22 and POP110.
All of them are now sitting inside a plastic box in the contorl room.
On another note, instead of fixing all the cables ourselves, Steve and Eric G decided to order custom made RF cables from Pasternack as professionally soldered cables are worth it. We have placed an order for 2 cables (RG405-550CM) to check out and test them before we order all of the cables.
|
The new RF cables arrived. But unfortunately we did not realize that RG405 was a Semi-rigid coax cable, with a copper shielding. These are meant to be installed in setups that will not be changed / disturbed. We need to order a different set of cables. The new cables have joined the other cables in the plastic box mentioned above.
For now to check if the old setup is still working, I have installed an RF cable (that we earlier pulled out and looks like in good shape, labelled REFL33) between the AS55 Demodulator output PD RF MON in rack 1Y2 and the network analyzer input. Since Manasa and the others were busy working with the interferometer, I did not switch on the laser and did not take any readings. The power supply to REF DET remains off.
I will continue with the measurements tomorrow morning and also try to get the data wirelessly using Alex's code. |
10102
|
Wed Jun 25 17:13:10 2014 |
Nichin | Update | Electronics | Laser power check - PDFR system |
[Nichin, Manasa]
I wanted to make sure Alex's system of Diode laser + laser controller + optical splitter was working fine and then make a manual measurement for AS55 PD. Manasa was supervising my work and helping me with unhooking the fibers and taking power meter readings. I have tuned on the power to REF DET from under the POY table.
I switched on the laser sitting in the 1Y1 rack and turned up the driving current to 240mA. On checking the laser power readings at AS55 (AS table) and REF DET (POY table) simultaneously, we got readings of 1.6mA and 2.4mA respectively. This much difference in readings was not expected and I did not continue taking the readings for transimpedence measurement.
I will rectify if this unequal splitting of power by the 1x16 optical splitter is going to cause any difficulties for the automated PDFR system measurement technique and resolve it if needed.
|
10104
|
Wed Jun 25 19:29:19 2014 |
Akhil | Update | Electronics | Analog-to-Digital Converter |
I have been trying to use an ADC with the Raspberry Pi to be able to measure the phase difference between FC input and output signals.I had a hard time interfacing the ADC with the Pi (setup attached) even after trying to debug the issue for last two days. So I and Eriq Q performed a system reboot on the Pi and tried all the possible ways for the Pi to detect the ADC but we were not able to. At the end we decided to order another IC(Microchip MCP 3008) which we hope can be interfaced with the Pi. Till then I will finish to write data from the FC into pipes so that the control computers can access the real time data. I will also look the correctness of the sampling time that is provided by the spec of the MCL-Mini circuits that is if we could really achieve 0.1 s sampling time with the FC. |
Attachment 1: IMG_1496.png
|
|
10105
|
Wed Jun 25 20:45:04 2014 |
Nichin | Update | Electronics | AS55 Bodeplot |
[Nichin]
I finally did carry out a measurement on the network analyzer. This proves that the previous system will work properly. Just the optical splitter problem is to be taken care of.
For this, after Elog 10102, I did not touch any of the tables or photodiodes. Only turned on the laser at 1Y1 and took readings from the NA located nearby. I switched off the laser after measurements. The power to REF PD remains on.
I plotted transimpedence plots in the usual way and got ridiculous values of 15 ohms at 55MHz. Obviously there is the problem of varying amount of power illuminating the REF PD and AS55.
So, I just plotted the bode plots of transfer function got from the NA to check if the characteristics of AS55 looks as it was supposed to be and Yes! I got a nice peak at 55MHz.
Acquiring data
RACK 1Y1
- Diode Laser driving current: 240mA
- The following conditions were set on Network Analyzer Agilent 4395:
1) Frequency sweep range: 1MHz to 100 MHz.
2) Number of Points sampled in the range: 801
3) Type of sweep: Linear
- Set the NA to give the corresponding transfer function value (output of AS55 over output of 1611) and also Phase response in degrees.
- Save the data into floppy disk for processing on the computer.
The experimental values obtained were:
DC output voltage of REF PD: 7.48V
DC output voltage of AS55: 53.7mV
Power incident on REF PD and AS55 respectively: 2.4mW and 1.6mW
Taking the DC transimpedence of AS55 as 66.2 ohms (from schematic given at D1300586-v1) and for REF PD as 1E04 ohms
Hence, Responsivity for REF PD and AS55 respectively are: 0.312 A/W and 0.51 A/W
The data and code used are in the zip file.
|
Attachment 1: AS55_06-25-2014.zip
|
Attachment 2: AS55_bodeplot.pdf
|
|
10107
|
Fri Jun 27 12:54:13 2014 |
Akhil | Update | Electronics | Gain plots of UFC-6000 for 0.1s Sampling Rate |
Finally, the 0.1s sampling rate of the frequency counter(FC) has been achieved. For this I had to :
Send in byte codes to set a particular range of the frequency counter.
I was digging in to find how exactly the circuit inside the frequency counter works and how the processor inside is able to read and write bytes through a HID-USB interface. I found out that the 'AutoRange' setting (which I have been using so far) has an independent multiplexing circuit which consumes some time(that varies with the drift in frequencies) and thus, the the processor waits for some specific time for this process and cannot reach the minimum 0.1 s sampling time. To mitigate this issue, I set the range bytes to the appropriate range of frequencies so that I can bypass the MUX delay. Here is the list of Range and frequencies for the FC:
Range 1: 1 - 40 MHz
Range 2: 40 - 190 MHz
Range 3: 190 - 1400 MHz
Range 4 : 1400 - 6000 MHz
I then took measurements for sampling time of 0.1 s at carrier frequencies of 5 MHz and 25 MHz from SRS DS345 and plotted the improvised gain plots(attached) to those in my previous elog(10070) with the same procedure mentioned before.
To do Next:
Plot the gain plots for higher carrier frequencies till range 3 using Marconi Function generator.
Write the data from FC into C1: ALS-Y_SLOW_SERVO1_OFFSET EPICS channel.
|
Attachment 1: Sampling-0.1s.pdf
|
|
Attachment 2: 12.png
|
|
10118
|
Tue Jul 1 21:20:37 2014 |
Akhil | Update | Electronics | Gain plots of UFC-6000 for 0.1s Sampling Rate |
The attached are the gain plots at carrier frequencies of 100 MHz, 500 MHz and 1 GHz measured using IFR 2023B (Marconi). |
Attachment 1: gain.png
|
|
Attachment 2: gain.pdf
|
|
10128
|
Thu Jul 3 16:28:38 2014 |
Nichin | Update | Electronics | RF cables installed |
[ Nichin, Eric G]
RF cables have been installed between deomodulator output PD RF MON and the RF switch for the following PDs:
REFL33, AS55, REFL55,REFL165,REFL11,POX11,POP22
The cables are labelled on both ends and have been run on the overhead tray.
The cabling looks neat on 1Y2, but not so much in 1Y1(RF switch). I will better organize them later.
There were quite a few more demodulator units labelled with PD names. Do any of them need to be included in the automated frequency response measurement system? Please let me know so that I can include them to the RF switch and check them for proper illumination, which i will do for all the above PDs next week.
Test run:
I tested the RF switch selection code and then the data acquisition code for the NWAG4395A network analyzer and they both seemed to work fine. I selected the channel to which AS55 is hooked up to and then remotely got its transfer function.
There is quite some noise in the system as the plot shows. Especially the phase. Maybe my driving power was a bit too low. Have to figure out the reason behind this.
Further work:
- Make sure all the PDs are properly illuminated.
- Create a DC voltage reading's database for all PDs.
- Canonical plots for each PD to compare with the current data.
- Implement a script to fit the transfer function and extract required information about the PD.
|
Attachment 1: AS55_03-07-2014_162634.pdf
|
|
10129
|
Fri Jul 4 09:17:13 2014 |
Akhil | Configuration | Electronics | Setup Used for Characterization of Frequency Counter |
Goal:
To complete the characterization of the Mini Circuits UFC-6000 RF Frequency Counter to be used for beat note measurement as a part of frequency offset locking loop. The aim of this setup was to obtain the bode plots and PSD plots for the FC.
Detail about the Setup:
UFC RF Frequency Counter: Described in detail in one of my previous elog (http://nodus.ligo.caltech.edu:8080/40m/10020)
Raspberry Pi: Raspberry Pi will be running Raspbian which is a version of Linux, and not a RTOS. When sampling data at a certain frequency we want samples to occur at fixed time intervals corresponding to the sampling period. A normal operating system cannot provide us with this functionality, and there will be jitter (variation) in the time difference between consecutive samples. Whether this is an issue depends on how much jitter we have and what the specific application is. In our application(measuring phase and noise), the jitter has to be taken into consideration. Hence for data acquisition we need to sample with much more tightly defined sampling periods (reduced jitter) which can be done by providing an external timing standard(Like a square pulse of the frequency same as the sampling rate of the FC ).
ADC : The ADC serves for two different conversion processes in the setup:
1) For converting modulating analog signal(from SRS 30 MHz Wave Generator) into digital signal for data analysis on Raspberry Pi.
2) To provide an external clock reference to the Raspberry Pi.
Interfacing ADC(ADS1115) with Pi:
Configuring the ADS1115 - Configuration Register
In order to set the modes of operation defined above we must set the config register within the ADS1115. A register is simply a memory location within the chip. Registers are made up of bytes (8 bits) of data. Registers are typically either one or two bytes long. The bits are:
Bit [15] This bit is used to start a conversion, by setting this bit to 1 a conversion is initiated. When reading the config register this bit remains equal to 0 while the conversion is carried out, and is set to 1 once the conversion is complete, we can monitor this bit to find the status of a conversion
Bits [14:12] These bits set which pin to use as input to the ADC. Note that we can choose either single ended or differential mode through setting these bits. Note that each configuration has two inputs AIN~p~ and AIN~n~. By setting AIN~n~ to GND we obtain a single ended input with AIN~p~ as the input.
Bits [11:9] These bits set which setting of the programmable gain amplifier to use
Bit [8] Continuous conversion / No Continuous conversion
Bits [7:5] Set the samples per second (sps) value
Bit [4:2] Comparator setup, we will not use the comparator so these bits are irrelevant
Bit [1:0] Comparator mode, set to 11 to disable the comparator.
Four channels are used in differential mode for A-D conversion of two analog signals, one the slow modulating signal input and the other for a square signal of 10 Hz (same as sampling rate of FC(0.1 s)).
The raspberry Pi reads the external trigger from ADC and starts reading input from the FC only when the square signal is 1. Thus in this way we can avoid the clock jitter and timing can be as accurate as the RTOS.
Function Generators:
Three function generators are used in the setup:
- IFR Marconi Generator used for RF Carrier signal.
- SRS 30 MHz Function Generator used for slow modulating signal (upto 5Hz).
- SRS 30 MHz signal for square wave used as clock(10 Hz).
The setup is attached as pdf. The computer scripts will follow this elog.
Measurements Taken:
The input and output modulated signals are recorded and the delay and noise of the FC are to be estimated.
|
Attachment 1: setup.pdf
|
|
10133
|
Mon Jul 7 10:35:43 2014 |
Jenne | Update | Electronics | RF PDs needed |
Quote: |
REFL33, AS55, REFL55,REFL165,REFL11,POX11,POP22
There were quite a few more demodulator units labelled with PD names. Do any of them need to be included in the automated frequency response measurement system? Please let me know so that I can include them to the RF switch and check them for proper illumination, which i will do for all the above PDs next week.
|
In the order that makes more sense to me, it looks like you have:
REFL11, REFL33, REFL55, REFL165,
AS55
POX11
POP22
We don't really need POP22 right now, although we do want the facility to do both POP22 and POP110 for when we (eventually) put in a better PD there. Also, we want cabling for POP55, so that we can illuminate it after we re-install it. If we're working on 2f PDs, we might as well consider AS110 also, although I don't know that there was a fiber layed for it. The big one that you're missing is POY11. |
10137
|
Mon Jul 7 13:56:13 2014 |
Akhil | Configuration | Electronics | Setup Used for Characterization of Frequency Counter |
When I was trying to plot PSD of the measurements, I still couldn't get better resolution. There still seems to be a problem with timing and synchronization of the R Pi with the FC even after addition of the external trigger circuit. Now, I am looking to debug this issue. Attached are the plots showing missing data points and data from the FC at uneven spacing(zoomed in plot).
|
Attachment 1: FreqVsTime.png
|
|
Attachment 2: Missing_Data.png
|
|
10142
|
Mon Jul 7 16:52:02 2014 |
manasa | Update | Electronics | RF cables need to be rerouted |
The RF cables have been routed incorrectly. The cables run to the module from the front of the rack. We cannot close the doors to the racks if they are to remain this way.
I have asked Nichin to reroute the cables properly. |