40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 104 of 344  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  4614   Tue May 3 15:48:26 2011 Larisa ThorneUpdateElectronicslaser temperature control LPF, final version!

This is a continuation of this

 The low pass filter is finally acceptable, and its Bode graph is below (on a ~3Hz frequency span that shows the cutoff frequency is at 0.1Hz)

Attachment 1: LPF100k.2.jpg
LPF100k.2.jpg
  4618   Tue May 3 17:19:25 2011 kiwamuUpdateElectronicsHeliax connectors on 1Y2 rack : tightened

My observation wasn't accurate enough.

The looseness came from the fact that the N-SMA bulk heads were slipping on the black plate.

This is actually what Suresh pointed out (see here). So the thickness of the black plate doesn't matter in this case.

Somehow I was able to tighten the bulk heads using two wrenches and I think they are now tight enough so that the heliax's heads don't move any more.

Quote from #4601

I found that all the Heliax cables landing on the bottom of 1Y2 were too loose.

The looseness basically comes from the fact the black plate is too thick for the Heliax cable to go all the way. It permits the Heliax's heads to rotate freely.

 

  4630   Wed May 4 17:32:06 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

Building on what was posted previously

 

 

The configuration has now evolved into an Inverting Op Amp Feedback Low Pass Filter circuit.

Had to change out some components to satisfy conditions: R1=1k Ohm, R2=10k Ohm, C=0.1uF. These were changed in order to decrease the magnitude of the current passing through the op amp by a factor of 10 (10V supplied through the R1 resistor yields about 10mA). The configuration itself was changed from non-inverting to inverting in order to get the frequency vs. gain part of the Bode plot to continue to decrease across higher frequencies instead of leveling off around 4kHz.

Attachment 1: SeisLPF3.jpg
SeisLPF3.jpg
  4634   Thu May 5 12:01:53 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

 Having finished the bulk of the work for the LPF itself ( see here ), I have begun trying to design the seismometer box to Jenne's specifications.

 

Currently looking into what the voltage buffer amplifier might look like for this.

 

 

Suggestions/corrections would be much appreciated!

 

 

Attachment 1: STS2diagram.png
STS2diagram.png
  4685   Wed May 11 10:49:16 2011 valeraConfigurationElectronicsMC3 LL PD has no signal

Yesterday we found that MC3 OSEM LL PD did not have a sensible signal - the readback was close to zero and it was making MC move around. I disabled the PD LL so that the damping is done with just three face plus side PDs. There still no signal from MC3 LL PD today. It needs debugging.

  4690   Wed May 11 16:04:36 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

The schematic for the seismometer box from this last time  has been updated...

 

Koji was helpful for coming up with a general diagram for the voltage buffer amplifier, which has now been added to the configuration pictured below.

The only thing that remains now before I try to plot it with Eagle/LISO is to pick an op amp to use for the voltage buffer itself. Someone suggested THS4131 for that (upon Googling, it hit as a "high speed, low noise, fully-differential I/O amplifier"). It looks good, but is it the best option?

Attachment 1: STS2diagram2.png
STS2diagram2.png
  4691   Wed May 11 17:10:04 2011 kiwamuConfigurationElectronicsfixed : MC3 LL PD has no signal

[Valera / Kiwamu]

It was because of a loose connection. Pushing the connector solved the issue.

looseconnectionMC3.png

We really have to think about making reliable connections and strain reliefs.

Quote from #4685

Yesterday we found that MC3 OSEM LL PD did not have a sensible signal - the readback was close to zero and it was making MC move around. I disabled the PD LL so that the damping is done with just three face plus side PDs. There still no signal from MC3 LL PD today. It needs debugging.

 

  4728   Mon May 16 17:11:28 2011 steveUpdateElectronicsstrain relieved 1X1

1X1 is strain relieved in the back. I will use similar approach on the rest of the racks .

Attachment 1: P1070724.JPG
P1070724.JPG
  4742   Wed May 18 18:48:46 2011 kiwamuUpdateElectronicsidentification of RFPD interface cables

[Haixing / Kiwamu]

 As a part of the Wednesday's cabling work, we spent some times for identifying the RFPD interface cables.

The RFPD interface cables are made of a 15 pin flat cable, containing DC power conductors for the RFPDs and the DC signal path.

The list below is the status of the interface cables.

 

- - - - RFPD name, (cable status) - - - -

- REFL11 (identified and labeling done)

- REFL33 (identified and labeling done)

- REFL55 (identified and labeling done)

- REFL165 (no cable found)

- AS55 (identified and labeling done)

- AS165 (identified and labeling done)

- POP22/110 (identified and labeling done)

- POX11 (identified and labeling done)

- POY11 (identified and labeling done)

- POY55 (identified and labeling done)

We still have two cables which are not yet identified. Their heads are around the LSC rack and labeled 'unidentified'

  4747   Thu May 19 03:13:54 2011 kiwamuUpdateElectronicsREFL11 not working

I took REFL11 out from the AS table for a health check because it wasn't working properly.

The symptoms were :

   - a big offset of ~ -3 V on the RF output. No RF signals.

   - The DC output seemed to be okay. It's been sensitive to light.

I did a quick check and confirmed that +/- 5V were correctly supplied to the op-amps.

It looks that the last stage (MAX4107) is saturated for some reasons. Need more inspections.

At the moment the REFL11 RFPD is on the bench of the Jenne laser.

 

  4756   Fri May 20 11:37:44 2011 KojiUpdateElectronicsREFL11 fixed (REFL11 not working)

- Found the inductor which shunts the positive input of MAX4107 was not touching the ground.
This left the positive input level undetermined at DC. This was why MAX had been saturated.
The PCB has a cut, so it was surprising once the circuit worked.

- Resoldered the inductor to the ground. This made the circuit responding to the intensity-modulated beam.

- But the resonances and the notches were totally off, and the 200MHz oscillation has resurrected.

- Attached 40Ohm+22pF network between the neg-input of MAX and the gnd. This solved the oscillation.

- Made the tuning and the characterizations. The PD is on Kiwamu's desk and ready to go.

More to come later

Quote:
I took REFL11 out from the AS table for a health check because it wasn't working properly.

The symptoms were :

   - a big offset of ~ -3 V on the RF output. No RF signals.

   - The DC output seemed to be okay. It's been sensitive to light.

I did a quick check and confirmed that +/- 5V were correctly supplied to the op-amps.

It looks that the last stage (MAX4107) is saturated for some reasons. Need more inspections.

At the moment the REFL11 RFPD is on the bench of the Jenne laser.

 

Attachment 1: REFL11_transimpedance.pdf
REFL11_transimpedance.pdf
  4758   Sat May 21 17:02:38 2011 KojiUpdateElectronicsAlberto's 11MHz was modified to POP55MHz

- Resonant at 55MHz. The transimpedance is 258Ohm. That is about half of REFL55 (don't know why).

- 11MHz&110MHz notch

- The 200MHz oscillation of MAX4106 was damped by the same recipe as REFL11.

POP55_transimpedance.pdf

 

Attachment 1: POP55_schematic_110520_KA.pdf
POP55_schematic_110520_KA.pdf POP55_schematic_110520_KA.pdf
Attachment 2: POP55_transimpedance.pdf
POP55_transimpedance.pdf
  4774   Tue May 31 16:07:57 2011 Larisa ThorneConfigurationElectronicsSeismometer Box Update

 (Continuation of this)

 

I plugged the circuit into the LISO program to generate the graphs below....the first graph is a plot of frequency (f, in Hz) versus gain (in dB), and frequency (f, Hz) versus phase (in degrees). Also included is the second graph, which is a noise plot of all circuit parts which contribute to the total noise of the circuit.

 

The only issue I had was that two of the op amps I'd picked (see third attachment for the original circuit diagram) for the circuit were not in LISO's op amp library. So I replaced THS4131 (from the voltage buffer part) and AD826 (from the ADC driver part) with AD797 and LT1037, respectively in order to generate the plots below....   

 

There are notes calling the AD797 "ultra low noise, low distortion", whose data sheet can be found here: AD797 

Notes also call LT1037 "low noise, high speed precision op amp", whose data sheet can be found here: LT1037

 

I've put these in temporarily only, as I don't know if they are appropriate choices for the job or even if we have them. Suggestions?

Attachment 1: SeisBoxLISOplot1.pdf
SeisBoxLISOplot1.pdf
Attachment 2: SeisBoxLISOplot2.pdf
SeisBoxLISOplot2.pdf
Attachment 3: STS2diagram_original.pdf
STS2diagram_original.pdf
  4777   Wed Jun 1 13:33:22 2011 koji, taraUpdateElectronicsTTFSS #7

We replaced GE81 by PZT2907A (PNP transistor) in TTFSS #7, it's working fine.

  Last time I broke Q4 transistor, which is used in the low noise power module for TTFSS, (see the schematic) and could not find another PZT2907A, so GE81 was used temporarily. Now we changed it back to PZT2907A as designed.  I tested it by checking the voltage outputs of the board. It works fine, all voltage outputs are correct. I labeled one of the slot on the blue cabinet tower and kept the rest of the transistors there.

q4.png

Quote:

I brought TTFSS set #7 to 40m and kept it in the electronic cabinet.

note that Q4 transistor has not been replaced back to PZT2907A yet. It's still GE82.

Q3 is now pzt3904, not PZT2222A.

 

 

  4782   Thu Jun 2 23:10:10 2011 KojiUpdateElectronicsREFL11 test results (Re: REFL11 fixed)

The full characterization of REFL11 is found in the PDF.

Resonance at 11.062MHz
Q of 15.5, transimpedance 4.1kOhm
shotnoise intercept current = 0.12mA (i.e. current noise of 6pA/rtHz)

Notch at 22.181MHz
Q of 28.0, transimpedance 23 Ohm

Notch at 55.589MHz
Q of 38.3, transimpedance 56 Ohm

 

Attachment 1: REFL11_test.pdf
REFL11_test.pdf REFL11_test.pdf REFL11_test.pdf REFL11_test.pdf
  4783   Fri Jun 3 14:27:32 2011 KojiUpdateElectronicsPOP55 test results

The full characterization of POP55 is found in the PDF.

Resonance at 54.49MHz
Q of 2.5, transimpedance 241Ohm
shotnoise intercept current = 4.2mA (i.e. current noise of 37pA/rtHz)

Notch at 11.23MHz
Q of 2.4, transimpedance 6.2 Ohm

Notch at 110.80MHz
Q of 53.8, transimpedance 13.03 Ohm

 

Attachment 1: POP55_test.pdf
POP55_test.pdf POP55_test.pdf POP55_test.pdf POP55_test.pdf
  4785   Sat Jun 4 15:26:04 2011 Larisa ThorneUpdateElectronicsSeismometer Box Update

 (continuation of this)

 

Here are the transfer function and noise plots of the seismometer box, using the op amps that are actually indicated on the original plan (THS4131, AD826). I added them to the LISO op amp library (can be found in /cvs/cds/caltech/apps/linux64/liso/filter/opamp.lib)

Next step is to compare the noise graph below to the seismic noise curve of the interferometer to verify that the seismometer box configuration won't affect the curve...

Attachment 1: SeisBoxLISO_transfer.pdf
SeisBoxLISO_transfer.pdf
Attachment 2: SeisBoxLISO_noise.pdf
SeisBoxLISO_noise.pdf
  4786   Mon Jun 6 02:09:39 2011 ranaUpdateElectronicsPOY11 Rework Nearly Complete

I've finished tuning POY11 and it is now sitting on top of the analyzer waiting for Koji to test its noise.

 Notes:

  1. R2 has been switched from a 50 -> 110 Ohm R and a (29 Ohm | 47 pF) in parallel to it. This makes the gain of the MAX4107 be ~20 above 100 MHz and ~5 around 11 MHz. The high gain at high frequency makes it stable (squashes the 200 MHz oscillation) and the low gain at low frequency is to prevent saturation (the raw 11 MHz transimpedance is too high).
  2. There are two notches: 22.12 MHz and 55.3 MHz.
  3. The TEST IN input has been disabled since it wasn't useful.
  4. 107 Ohms inserted into between the U11 output and the TSENSE feedthrough. This is to prevent oscillations when driving the long Dsub cable. This needs to be done on all Gold Box RFPDs.
  5. R4 -> 50 Ohms.
  6. Had trouble tuning this to get the resonance at 11.06 MHz. This turned out to be the parallel inductance coming from L3 (previously 1.45 uH) whereas we needed a total inductance of ~1.6 uH. So I changed L3 to 33 uH to get it to be negligible compared to 1.7 uH at 11 MHz. This needs to be considered for all the 11 MHz diodes.

 

Attachment 1: 777.png
777.png
  4787   Mon Jun 6 16:44:34 2011 KojiUpdateElectronicsPOY11 tested

The full characterization of POY11 is found in the PDF.

Resonance at 11.03MHz
Q of 7.6, transimpedance 1.98kOhm
shotnoise intercept current = 0.17mA (i.e. current noise of 7pA/rtHz)

Notch at 21.99MHz
Q of 56.2, transimpedance 35.51 Ohm

Notch at 55.20MHz
Q of 48.5, transimpedance 37.5 Ohm

 

Attachment 1: POY11_test.pdf
POY11_test.pdf POY11_test.pdf POY11_test.pdf POY11_test.pdf
  4807   Fri Jun 10 20:23:56 2011 Larisa ThorneUpdateElectronicsSeismometer Box Update/graphs

 (continuation of this)

 

The noise graphs relating total noise of the Seismometer circuit (GURALP stuff) to the LIGO seismic noise curve have been completed started.

 

 

I apparently harbor hate towards Matlab (you may have notice I do everything in Mathematica)....I will try to change my ways  DX

Attachment 1: SeisNoiseGraphs.jpg
SeisNoiseGraphs.jpg
  4810   Mon Jun 13 16:27:10 2011 JenneUpdateElectronicsSeismometer Box Update/graphs

Quote from elog 4807:

The noise graphs relating total noise of the Seismometer circuit (GURALP stuff) to the LIGO seismic noise curve have been completed started.

 What Larisa meant to post (I'm sure) is something more like this (sorry it's a little squished...I put too many words in the legend):

I've only included the 2 noise contributions from the LISO model that seem to dominate the sum noise.  The plot gets a little crazy if you include all of the non-important sources.

NewSeisBoxNoise.png

So, what's the point??

First, the new box design doesn't have any crazy-special op-amps in it, so the noise of the new box is probably comparable to the old box.  So, if that's true, the old box may not have been limiting the differential seismic noise.  This definitely needs to be checked out.  I'll make a quickie LISO model of the old Guralp breakout box, to see what its noise actually looks like, according to LISO.  If it wasn't ever the breakout box that was limiting us, what the heck was it??

Second, the current box design seems to be better than the Guralp Spec sheet noise by ~a factor of 10.  It would be nice if that number were more like a factor of 100.  Or at least 30.  So some work needs to be done to find a lower-noise op amp for the voltage buffer (the first op amp in the circuit).

Next steps:

Since Larisa is now starting her SURF project with Tara and Mingyuan, I'll look into improving the design of this box by a factor of 3 or 10. 

Then I'll need to make a mock-up of it, and test it out. 

If successful, then I'll draw it up in Altium and have it made.  Recall that there should be 2 outputs per seismometer channel, one with high gain, one with low gain.  Then 3 seismometer channels per seismometer (X, Y, Z), and perhaps multiple seismometer inputs per box.  So lots and lots of stuff all in the same box.  It's going to be pretty cool.

  4830   Fri Jun 17 00:17:26 2011 ranaConfigurationElectronics2 RFPDs sent to LLO

Koji and I found 2 RFPD boxes to send to LLO. We've put them onto Steve's desk to be overnighted to Valera.

One of them is our old 21.5 MHz gold box RFPD from the FSS (which we don't use). The other one is a 2mm gold box one which was previously tuned for 66 MHz.

 

They shipped out on Friday

Attachment 1: P1070895.JPG
P1070895.JPG
  4900   Tue Jun 28 15:23:21 2011 steveUpdateElectronicsCoilcraft RF-design kits are restocked

Our design kits are full again. They are waiting for a new brilliant PD design.

Attachment 1: P1070917.JPG
P1070917.JPG
Attachment 2: P1070915.JPG
P1070915.JPG
  4979   Sat Jul 16 18:54:05 2011 Ishwita, ManuelConfigurationElectronicsAA board

We fixed the anti-aliasing board in its aluminum black box,  the box couldn't be covered entirely because of the outgoing wires of the BNC connectors, so we drilled additional holes on the top cover to slide it backwards by 1cm and then screw it.

We had to fix the AA board box in rack 1X7, but there wasn't enough space, so we tried to move the blue chassis (ligo electro-optical fanout chassis 1X7) up with the help of a jack. We removed the blue chassis' screws but we couldn't move it up because of a piece of metal screwed above the blue chassis, then we weren't able to screw the two bottom screws again anymore because it had slided a bit down. Thus, the blue chassis (LIGO ELECTRO-OPTICAL FANOUT CHASSIS 1X7) is still not fixed properly and is sitting on the jack.

To accommodate the AA board (along with the panel-mounted BNC connectors) in rack 1X7 we removed the sliding tray (which was above the CPU) and fixed it there. Now the sliding tray is under the drill press.

 

Attachment 1: DSC_3236.JPG
DSC_3236.JPG
Attachment 2: pic1.png
pic1.png
Attachment 3: DSC_3237.JPG
DSC_3237.JPG
  5008   Wed Jul 20 22:16:27 2011 Ishwita, ManuelUpdateElectronicslying seismometer cable and plugging it

We laid the cable along the cable keeper from the BACARDI seismometer to the rack 1X6, the excess cable has been coiled under the X arm.

We plugged the cable to the seismometer and to the seismometer electronics box in rack 1X6. We also plugged the AC power cable from the box to an outlet in rack 1X7 (because the 1X6 outlets are full)

With the help of a function generator we tested the following labeled channels of AA board...

2, 3, 11, 12, 14, 15, 16, 18, 19, 20 and 24

that are the channels that can be viewed by the dataviewer, also the channel 10 can be viewed but it's labeld BAD so we cannot use it.

We leveled the seismometer and unlocked it, and saw his X,Y,Z velocity signals with an oscilloscope.

  5022   Sun Jul 24 20:36:03 2011 haixingSummaryElectronicsAA filter tolerance analysis

Koji and Haixing,

We did a tolerance analysis to specify the conner frequency for passive low-pass filtering in the AA filter of Cymac. The
link to the wiki page for the AA filter goes as follows (one can have a look at the simple schematics):
http://blue.ligo-wa.caltech.edu:8000/40m/Electronics/BNC_Whitening_AA

Basically, we want to add the following passive low-pass filter (boxed) before connecting to the instrumentation amplifier:

low_pass.png

Suppose (i) we have 10% error in the capacitor value and (ii) we want to have common-mode rejection
error to be smaller than 0.1% at low frequencies (up to the sampling frequency 64kHz), what would be
conner frequency, or equivalently the values for the capacitor and resistor, for the low-pass filter?

Given the transfer function for this low-pass filter:
transfer_function.png     f0.png
and the error propagation equation for its magnitude:
error.png
we found that the conner frequency needs to be around 640kHz in order to have
DT.pngwith Dc.png
 



  5023   Sun Jul 24 20:47:21 2011 ranaSummaryElectronicsAA filter tolerance analysis

This is sort of OK, except the capacitor connects across the (+) terminals of the two input opamps, and does not connect to ground.

Also, we don't care about the CMRR at 64 kHz. We care about it at up to 10 kHz, but not above. The sample frequency of the ADC is 64 kHz, but all of the models run at 16 kHz or less, so the Nyquist frequency is 8 kHz.

And doesn't the value depend on the resistors?

  5024   Sun Jul 24 22:19:19 2011 haixingSummaryElectronicsAA filter tolerance analysis

 

>> This sort of OK, except the capacitor connects across the (+) terminals of the two input opamps, and does not connect to ground:

low_pass_new.png

 

>> Also, we don't care about the CMRR at 64 kHz. We care about it at up to 10 kHz, but not above.

In this case, the conner frequency for the low-pass filter would be around 100kHz in order to satisfy the requirement.


>>And doesn't the value depend on the resistors?

Yes, it does. The error in the resistor (typically 0.1%)  is much smaller than that of the capacitor (10%). Since the resistor error propagates in the same as the capacitor,
we can ignore it.

Note that we only specify the conner frequency (=1/RC) instead of R and C specifically from the tolerance analysis, we still need to choose appropriate
values for R and C with the conner frequency fixed to be around 100kHz, for which we need to consider the output impedance of port 1 and port 2.

 

 

  5034   Mon Jul 25 23:43:20 2011 ManuelHowToElectronicsManual for 1201 Low Noise Preamplifier

I found the manual for the Low Noise Preamplifier Model 1201 at this link and I attached it.

The one we have in the lab (S/N 48332) miss the battery packs and miss also the remote programming options input/output. Its inside battery compartment is empty and I found 2 unscrewed screws with washers and nuts inside the preamplifier box. The battery cable are disconnected and they have 2 green tape labels (-) and 2 red tape label (+).

 

 

Attachment 1: ITHACO_1201_Instruction_&_Maintenance.pdf
ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf
Attachment 2: DSC_3249.png
DSC_3249.png
  5038   Tue Jul 26 21:11:40 2011 haixingSummaryElectronicsAA filter tolerance analysis

Given this new setup, we realized that the previous tolerance analysis is incorrect. Because the uncertainty in the capacitance value
does not affect the common mode rejection, as two paths share the same capacitor. Now only the imbalance of two resistors is relevant.
The error propagation formula goes as follows:


We require that the common-mode rejection error at low frequency up to 8kHz, namely
with , one can easily find out that the corner frequency needs to be around 24kHz.


 

  5673   Sun Oct 16 02:30:00 2011 ranaUpdateElectronicsTesting REFL165

Unless the bias feedback circuit has been tuned for the 1 mm diode, its possible that you are seeing some C(V) effects. Its easy to check by looking at the phase response at 165 MHz v. the DC photocurrent. Then the feedback or feedforward gain can be tuned.

 

  5682   Mon Oct 17 23:28:32 2011 ranaUpdateElectronicsStochMon

To get to the bottom of the RFAM mystery, we've got to resurrect the StochMon to trend the RFAM after the IMC.

We will put an 1811 on the MC_TRANS or IP_POS beam (the 1811 has an input noise of 2.5 pW/rHz).

Then the Stochmon has an input pre-amp, some crappy filters, and then Wenzel RMS->DC converters. We will replace the hand-made filters with the following ones from Mini-Circuits which happen to match our modulation frequencies perfectly:

11 MHz     SBP-10.7+

55 MHz     SBP-60+

29.5 MHz   SBP-30+

  5706   Wed Oct 19 18:18:03 2011 SureshUpdateElectronicsStochMon : Filters installed

Quote:

To get to the bottom of the RFAM mystery, we've got to resurrect the StochMon to trend the RFAM after the IMC.

We will put an 1811 on the MC_TRANS or IP_POS beam (the 1811 has an input noise of 2.5 pW/rHz).

Then the Stochmon has an input pre-amp, some crappy filters, and then Wenzel RMS->DC converters. We will replace the hand-made filters with the following ones from Mini-Circuits which happen to match our modulation frequencies perfectly:

11 MHz     SBP-10.7+

55 MHz     SBP-60+

29.5 MHz   SBP-30+

 

The Stochmon had a four-way splitter, four hand-made filters and four mini-circuits ZX47-60-S+ Power Detectors.

Using the filters from our stock I have replaced the hand-made filters with the ones mentioned in Rana's elog.   The power supply solders to the ZX47-60-S+ Power Detectors were weak and came off during reassembly. And some of the handmade short SMA cables broke off at the neck.  So I changed the power supply cables and replaced all the short SMA cables with elbows.  I also removed one of the Power Detectors since there were four in the box and we need only three now.

The power supply connector on the box is illegal.  The current lab standard for  {+15, 0 , -15}  uses that connector.  So we are going to change it as soon as possible.  We need to identify a good {0, 5} lab standard and stock them.

The following were removed from the box:

PA190146.JPG

 

The box now looks like this:

PA190143.JPG

 

Steps remaining in installation of Stochmon:

1) Install the Newfocus 1811 PD at the IPPOS by diverting some of the power in that path

2) Connect the outputs of the Stochmon to ADC inputs in 1X2 rack.

  5734   Tue Oct 25 11:48:02 2011 KatrinHowToElectronicssolder tiny smd op amps

Yesterday, I had the great pleasure to solder a tiny 4 x 4 mm op amp with 16 legs (AD8336).

I figured out that the best and fastest way to do it is

  1. to put solder with the soldering iron on every contact of the electronic board (top side)
  2. heat the bottom side of the electronic board with a heat gun
  3. use a needle to test if the solder is melted
  4. if it is melted place the op amp on the electronic board
  5. apply some vertical force on the op amp for proper contact and heat for 1 to 2 more minutes
  6. done

 

  5748   Fri Oct 28 00:53:39 2011 ranaUpdateElectronicsPOP 22/110 Design

The attached PDF shows a possible gain / input noise config for the POP 22/110 that we would use to detect the RF power in the DRMI. Design is in the SVN.

If Kiwamu/Jenne say that this has good enough sensing noise for the lock triggering than we will build it. This is using a 2mm diode.

If we can get away with 1 mm, we might as well use a PDA10CF for now.

Attachment 1: poy22110.pdf
poy22110.pdf poy22110.pdf
  5764   Sun Oct 30 14:08:35 2011 ranaUpdateElectronicsRFAM monitor in place. ( Uncalibrated ) EPICS troubles

Quote:

{Suresh, Jamie, Mirko]

We adapted the Stochmon box to include LP filters at 1.8Hz behind the RMS parts.
Then measured the RMS signals for different RF signal levels at 11.0.65, 29.5, 55.325MHz provided by a RF freq. generator.
As you can see in the data below the suppression of the BP filters of neighboring frequencies is only 35-35dB in power (see also manufacturer specs).

We therefor want to substract crosstalk, by calculating it out. We decided to use C-code in CDS. No computer crashing this time :)

 This is neat idea, but it seems like it would be easier to just add another set of rf BP filters inside of the StochMon box. Luckily, Steve was thinking ahead and ordered extra filters.

  5868   Fri Nov 11 00:18:53 2011 ZachUpdateElectronicsPrecision temperature controller

I have made a first draft of the precision temperature controller circuit, which could find use at the 40m for stabilizing EOM RFAM as well as in the Bridge labs. Please read the entry on the ATF Lab elog and give me your feedback.

  6265   Thu Feb 9 20:01:02 2012 ranaSummaryElectronicsUsing RF LP filters as dispersion units for the MFD

 WE currently use long cables to give us the dispersion that we want for the MFD. A cable gives a long delay - both the phase delay and the group delay.

But we only need the dispersion (group delay). We can get this by just using a very sharp low pass filter and having the corner be above the frequency that we have the beat signal.

For example, the MiniCircuits SLP-200+ has got a corner frequency of 200 MHz and a group delay of ~10 ns (like a 3 m vacuum delay). So we would have to use 10 of these to get the delay we now get. The passband attenuation is only 0.5 dB, so we would lose 5 dB. The cost is $35 ea. We have a few on the shelf.

OTOH, if we tune the beat frequency down to 30 MHz, we can use the SLP-30 which has a group delay of 30 ns around 30 MHz. That's like 9m at light speed. We could easily get a nice result by just using 4 or 5 SLP in series.

So why is Kiwamu using cables?? And how should we really choose the beat note frequency??

  6290   Thu Feb 16 21:13:07 2012 SureshUpdateElectronicsREFL165 repair: PD replaced, DC response checked with a torch light

[Koji, Suresh]

Kiwamu mentioned that REFL165 is not responding and its DC out seems saturated at 9V.  Koji and I checked to see if changing the power supply to the PD changed its behaviour. It did not.  

I then look a close look at the PD and found that the front window of the PD was not clear and transparent.  There was a liquid condensation inside the window, indicating an over heating of the PD at some point.  It could have arisen due to excessive incident power.  The pic below shows this condensation:

PC_30641_old.jpg

 

I also checked the current flowing through the reverse bias voltage line.  There was a voltage drop of 3V across R22 (DCC D980454-01-C)   indicating a 150mA of current through the PD.  This is way too much above the operating current of about 20mA.   The diode must have over heated.

I pulled out the old PD out and installed a new one from stock.  The pic below shows the clear window of a new PD.

PD_30641_new.jpg

After changing the PD I checked the DC output voltage while shining a torch light on to the PD.  It showed an output of about 30 to 40 mV.  This seemed okay because the larger 2mm photodiodes showed ~100mA DC output with the same torch.Below is the current state of the ckt board.

IMG_0548.JPG

 

I will tune the PD to 165 MHz tomorrow and measure its transimpedance.

  6333   Tue Feb 28 16:31:08 2012 SureshUpdateElectronicsREFL165 repair: Characterization

The transfer function and current noise were measured.  The location of the peak shifts with the amount of incident light power (RF or DC).  The TF was measured at an incident 1064nm light power of 0.4 mW which produced a DC output voltage of 14 mV => DC photocurrent of 0.28 mA. 

Many of the effects that Koji noted in the previous characterization are still present.

In addition I observed a shift of the peak towards lower frequencies as the RF power supplied to the AM Laser (Jenne Laser) is increased.  This could create a dependance of the demodulation phase on incident RF power.

The plots are attached below.

Attachment 1: REFL165_Characterization.pdf
REFL165_Characterization.pdf REFL165_Characterization.pdf REFL165_Characterization.pdf REFL165_Characterization.pdf
Attachment 2: REFL165_response_shift.pdf
REFL165_response_shift.pdf
  6337   Wed Feb 29 00:22:35 2012 SureshUpdateElectronicsREFL165 repair: Installed on the AS table

1) The REFL165 has been replaced onto the AS table.

2) When the PD interface cable is attached the PD shows a DC out put of 6mV and does not respond to a flash light.  I changed the PD interface port in the LSC rack by swapping the other end of the cable with an unused (Unidentified PD) interface cable,  The PD is working fine after that.   There could be a problem with some binary switch state on the PD interface where the REFL165 cable was plugged in earlier.

 

  6339   Wed Feb 29 01:14:40 2012 SureshUpdateElectronicsREFL165 repair: Characterization

Quote:

The transfer function and current noise were measured.  The location of the peak shifts with the amount of incident light power (RF or DC).  The TF was measured at an incident 1064nm light power of 0.4 mW which produced a DC output voltage of 14 mV => DC photocurrent of 0.28 mA. 

Many of the effects that Koji noted in the previous characterization are still present.

In addition I observed a shift of the peak towards lower frequencies as the RF power supplied to the AM Laser (Jenne Laser) is increased.  This could create a dependance of the demodulation phase on incident RF power.

The plots are attached below.

 [Koji, Suresh]

To determine the amount of RF power in the AM laser beam at various RF drive levels I measured the RF power out of the Newfocus 1611 PD while driving the AM laser with a Marconi.  During this measurement the DC output was 2.2V.  With the DC transimpedance of 10^4 and a sensitivity of 0.8 A/W we have carrier power as 0.275 mW (-5.6 dBm).  [Incidentally the measured carrier power with a power meter is about 0.55 mW. Why this discrepancy?]

  1 2 3 4 5 6
Marconi Output (dBm) 0 -5 -10 -15 -20 -25
AG 4395 measurement (dBm) -8.1 -13.0 -18.0 -23 -28 -33
RF/DC ratio dB -2.5 -7.4 -12.4 -17.6 -22.6 -27.6

 

Estimation of the signal strength at the REFL165 PD:

   From the 40m Sensing Matrix for DRFPMI we see that the signal strength at REFL165 in CARM is about 5x10^4 W/m.  Since we expect about 0.1nm of linear range in CARM length we expect about 0.05 mW of RF power.  If the (DC) carrier power is about 10 mW at the photodiode (18mW is about the max we can have since the max power dissipation is 100 mW in the diode)  then the RF : DC power ratio is 5x10^-3 => -23 dB

As this is lower than the power levels at which the PD transfer function was determined and where we noted the distorsion and shift of the resonance peak, it is likely that these effects may not be seen during the normal operation of the interferometer.

The shift due to the carrier power level (DC) change may still however pose a problem through a changing demodulation phase. 

 

  6423   Fri Mar 16 06:17:56 2012 SureshUpdateElectronicsREFL165 calibration : measurements

 

These are the measurements for estimating the amplitude of the signal recorded in the CDS when a known amount of modulated light is incident on the photodiode. 

I mounted the PD characterisation setup onto a small breadboard which could then be placed close AP table.  I then placed position markers for REFL165 on the AP table before moving it onto my small breadboard.  The AM laser was driven by an RF function generator (Fluke 6061A) at a frequency of 165.98866 MHz, which is 102 Hz offset from the 165MHz LO.  The power level was set at -45dBm.  This power level was chosen since anything higher would have saturated the AntiAliasing  Whitening Filters.  The counts in the CDS were converted to voltage using the ADC resolution = 20V per 2^16 counts.

  

  RF source RF power to AM laser 1611 PD 1611 PD REFL165 REFL165 CDS CDS
  power set (dBm) Actual power out (dBm) DC (V) RF out (dBm) DC (mV) RF out (dBm) Amplitude (V)   102 Hz Amplitude (V) 102 Hz
                 
1  -45  -50.6  -2.5 -58.9  10  -37.4  0.171 0.172
2  -48  -53.5  -2.5 -62.1  10  -40.3  0.122  0.121
3  -51  -56.5  -2.5 -65.0  10  -43.1  0.085  0.085

    

 When the 166MHz power is decreased by a factor of 2 the amplitude of 102Hz wave recorded in CDS goes down by sqrt(2) as expected.   The RF AM power incident on the REFL165 was estimated to be 0.011mW(rms)  (case #1 in the above table)  using the DC power ratio and using the transimpedance of the 1611 BBPD to be 700 Ohms.  This produces a 171 mV amplitude wave at 102 Hz.  I then stepped down the power by factor of 2 and repeated the measurement. 

(These numbers however are not agreeing with the power incident on REFL165 if we assume its transimpedance to be 12500.  It will take a bit more effort to make all the numbers agree.  Will try again tomorrow)

Here is a picture of the small black breadboard on which I have put together the PD characterisation setup.  It would be great if we can retain this portable set up as it is, since we keep reusing it every couple of weeks.  It would be convenient if we can fiber couple the path to the PD under test with a 2m long fiber.  Then we will not have to remove the PD from the optical table while testing it.

IMG_0552.JPG

 

  6424   Fri Mar 16 10:37:52 2012 JenneUpdateElectronicsJenne Laser

Quote:

Here is a picture of the small black breadboard on which I have put together the PD characterisation setup.  It would be great if we can retain this portable set up as it is, since we keep reusing it every couple of weeks.  It would be convenient if we can fiber couple the path to the PD under test with a 2m long fiber.  Then we will not have to remove the PD from the optical table while testing it. 

 This is totally sweet Suresh!  I don't remember how much more fiber is coiled up under the plate that has the "Jenne Laser" label, but there's a reasonable amount.  It's not 2m, but maybe we can just extend the blue snakey thing some?

  6425   Fri Mar 16 16:01:53 2012 ranaUpdateElectronicsREFL165 calibration : measurements

 To characterize the RF V to counts we need to know the state of the whitening filter board. Was the filter on or off ? What was the value of the whitening gain slider?

  6428   Mon Mar 19 21:25:31 2012 SureshUpdateElectronicsREFL165 calibration : measurements

Quote:

 To characterize the RF V to counts we need to know the state of the whitening filter board. Was the filter on or off ? What was the value of the whitening gain slider?

 The filter was ON and the whiterning filter gain was 45dB

 

  6590   Mon Apr 30 22:58:57 2012 JenneUpdateElectronics11MHz Marconi set to default after power outage

After a power outage, a Marconi comes back to it's defaults.  It needed to be reset to the values in elog 5530.  I'm putting a label on the Marconi so we don't have to look it up next time.

Before fixing the Marconi, POY11, AS11 and AS55 all looked like noise, no real signals, even though the arm is flashing.  Now they all look PDH-y, so things are better.

  6638   Thu May 10 21:13:01 2012 DenUpdateElectronicsADC 3

ADC 3 INPUT 4 (#3 in the c1pem model if you count from 0) is bad. It adds DC = ~1 V to the signal as well as noise. I plugged in GUR2 channels to STS1 channels (7-9).

  6857   Fri Jun 22 20:00:14 2012 JamieOmnistructureElectronicstwo RG-405 cables ran from 1X2 rack to control room

[Yaakov, Eric, Jenne, Yuta]

Two of our surfs, Yaakov and Eric, pulled two unused RG-405/SMA cables that had been running from 1X2 to (mysteriously) 1Y2 racks.  They left the 1X2 end where it was and pulled the 1Y2 end and rerouted it to the control room.  We labeled both ends appropriately.

The end at 1X2 is now plugged into a splitter that is combining the RF input monitor outputs for the X and Y beatbox channels, so that we can watch the beat signals with the HP8591 in the control room.

  7372   Tue Sep 11 17:17:51 2012 Eric Q., Mike J.ConfigurationElectronicsAS beam scan

We conducted a beam scan on the AP table of the AS beam. We used a lens to focus the beam onto a power meter, and slowly moved a razor blade across the beam using a micrometer, vertically and horizontally both in front of and behind the beam. We also had to block the beam next to the AS beam in order to do this, but is unblocked now. Mike will begin curve fitting the data to try and see if there is a different spot size given by the x-axis vs. the y-axis, and if the lens has any effect.

ELOG V3.1.3-