ID |
Date |
Author |
Type |
Category |
Subject |
15222
|
Mon Feb 24 08:36:32 2020 |
Chub | Update | General | HVAC repair |
The HVAC people replaced a valve and repaired the pneumatic plumbing on the roof air handler. Temperature has been stable during the day since Thursday. If anyone is in the control room during the evening, please make a note of the temperature.
Chub |
4891
|
Mon Jun 27 16:57:06 2011 |
steve | Update | Photos | Haixing is back |
He has moved the levitation stuff for his surf student to Jan's lab in W-Bridge. |
Attachment 1: P1070914.JPG
|
|
4489
|
Tue Apr 5 19:54:39 2011 |
Koji | Summary | Green Locking | Hamamatsu S3399 test |
Since last Friday I have been testing the broadband RF photodetector in order to figure out the capability of S3399 with the similar circuit as Matt's BBPD
We also like to figure out if it has sufficient performance for the 40m green locking.
The circuit diagram is shown in the first attachment. The RF amplifier is attached at the diode while the reverse bias voltage is applied at the other side of the diode. The amplifier's input impedance is used as the transimpedance resister. Note that the bandwidth of this configuration is limited by the RC filter that consists of the junction capacitance of the diode, the series resistance of the diode, and the transimpedance resister. This cut off freq is in general lower than that cut off obtained with the usual transimpedance amplifier which has the readout resister at the feedback path of the opamp.
The transfer function of the PD is measured using Jenne's laser. At the reverse bias voltage of 30V, the -3dB bandwidth of 178MHz was obtained. This is quite high bandwidth for the most of the applications at the 40m.
Because of the low transimpedance the low-noise level of the RF amplifier is very crucial. Recently we can obtain an ultra low noise RF amplifier like Teledyne Cougar AC688 which has the NF of 0.9dB with the bandwidth between 10MHz - 600MHz. Next step will be to obtain this kind of amplifier to test the noise performance.
|
Attachment 1: S3399_test_110405.png
|
|
Attachment 2: S3399_test_110405.pdf
|
|
651
|
Wed Jul 9 12:42:14 2008 |
John | Update | Locking | Hand off to RF CARM |
Rob, Yoichi, John
Last night we were able to reduce the CARM offset to around 80. This was achieved by increasing the DARM gain and
switching to AS_I when AS_Q went bad. This is probably a temporary solution, we will probably switch to DC readout
for DARM as we bring the arms on resonance.
Having reduced the arm offset enough to get us into the linear region of the RF_CARM signal (POX_I) we worked on
analogue conditioning of this signal to allow us to hand over. Lock was maintained for over 20 minutes as we did
this work.
We were able to partially switch over both the frequency and length paths to this new signal before losing lock. |
Attachment 1: LongLock080709.png
|
|
15584
|
Sat Sep 19 18:46:48 2020 |
Koji | Update | General | Hand soap |
I supplied a bottle of hand soap. Don't put water in the bottle to dilute it as it makes the soap vulnarable for cotamination. |
16
|
Thu Oct 25 23:35:36 2007 |
waldman | Other | OMC | Hang the OMC! |
[Pinkesh, Sam]
We tried, convicted and hung the OMC today. The OMC was found guilty of being overweight, and unsymmetrically balanced. The unsymmetry was kind of expected and was corrected with a hefty stack of counterweights positioned over the counterweighting holes. The stacks will be measured at some future date and correctly sized objects machined. The overweightness showed up when the level hanging breadboard was about 5 mm low. This showed up in the board height above the table as well as the OSEM flag positions within their holes. The problem was remedied with a liposuction of the intermediate mass. We removed both small vertical cylinder weights that Chris added, and then we removed the heavy steel transverse weight that can be used to adjust the tip around the long axis (I forgot what its called).
The top of the breadboard ended up about 154 mm off the table. The breadboard is 39 mm thick, and the optics are centered (30 - 12.7) = 17.3 mm below the surface for a as hanging beams height of 154 -39 - 17.3 = 97.7 mm or about an 0.150 inches lower than we were aiming for. Can I get a refund?
We screwed up in multiple ways:
- The slotted disks that capture the wires do not have the alignment bore used to center the wire in the hole
- We didn't correctly route the far field QPD cable so it runs funny
- We didn't have a tool which could be used to get two of the DCPD preamp box mounting screws (which are M3's chub!)
- We don't have the cable clamps to tie off the electrical cables to the intermediate mass
- We don't have any of the cabling from the OMC-SUS top to the rack so we can't test anything
- We haven't uploaded pretty pictures for all to see
We left the OMC partially suspended by the OMC-SUS and partly resting on the installation lab jacks which are currently acting as EQ stops. After we fix the cabling we will more permanently hang it. PS, It looks like the REFL beam extraction will be tricky so we need to get on that.... |
Attachment 1: IMG_1483.jpg
|
|
Attachment 2: IMG_1481.jpg
|
|
21
|
Sat Oct 27 19:00:44 2007 |
waldman | Configuration | OMC | Hanging, locked OMC with REFL extracted. |
I got the OMC locked to the fiber output today. It was much more difficult than I expected and I spent about 30 minutes or so flailing before stopping to think. The basic problem is that the initial alignment is a search in 4-dimensional space and there is naturally only one signal, the reflected DC level, to guide the alignment. I tried to eyeball the alignment using the IR card and "centering" the beams on mirrors, but I couldn't get close enough to get any light through. I also tried to put a camera on the high reflector transmission, but with 1.5 mW incident on the cavity, there is only 1.5 microwatts leaking through in the best case scenario, and much, much less during alignment.
I resolved the problem by placing a high reflector on a 3.5 inch tall fixed mount and picking off the OMC transmitted beam before it reaches the DC diodes. I took the pickoff beam to a camera. The alignment still sucked because even though the beam cleanly transmitted the output coupler, it wasn't anywhere close to getting through the OTAS. To resolve this problem, I visually looked through the back of M2 at M1 and used the IR card to align the beam to the centers of each mirror. That was close enough to get me fringes and align the camera. With the camera aligned, the rest was very easy.
I restored the PDH setup we know and love from the construction days and locked the laser to the OMC with no difficulty. The laser is in Rana's lab so I send the +/- 10V control signal from the SR560 down a cable to 058E where it goes into the Battery+resistor box, the Throlabs HV amplifier, and finally the FAST channel of the NPRO. BTW, a simple experiment sows that about 35 +/- 3 V are required to get an FSR out of the NPRO, hence the Thorlabs HV. The EOM, mixer, splitter, etc is on the edge of the table.
With this specific OMC alignment, ie. the particular sitting on EQ stops, it looks like all of the ghost beams have a good chance of coming clear. I can fit a 2 inch optic in a fixed mount in between the end of the breadboard and the leg of the support structure. A picture might or might not be included someday. One of the ghost beams craters directly into the EQ stop vertical member. The other ghost barely misses M2 on its way down the length of the board. In its current configuration, the many REFL beam misses the leg by about 1.5 inches. |
4262
|
Tue Feb 8 16:04:58 2011 |
josephb | Update | CDS | Hard coded decimation filters need to be fixed |
[Joe, Rana]
Filter definitions for the decimation filters to epics readback channels (like _OUT16) can be found in the fm10Gen.c code (in /opt/rtcds/caltech/c1/core/advLigoRTS/src/include/drv).
At the moment, the code is broken for systems running at 32k, 64k as they look to be defaulting to the 16k filter. I'd like to also figure out the notation and plot the actual filter used for the 16k.
Rana has suggested a 2nd order, 2db ripple low pass Cheby1 filter at 1 Hz.
51 #if defined(SERVO16K) || defined(SERVOMIXED) || defined(SERVO32K) || defined(SERVO64K) || defined(SERVO128K) || defined(SERVO256K)
52 static double sixteenKAvgCoeff[9] = {1.9084759e-12,
53 -1.99708675982420, 0.99709029700517, 2.00000005830747, 1.00000000739582,
54 -1.99878510620232, 0.99879373895648, 1.99999994169253, 0.99999999260419};
55 #endif
56
57 #if defined(SERVO2K) || defined(SERVOMIXED) || defined(SERVO4K)
58 static double twoKAvgCoeff[9] = {7.705446e-9,
59 -1.97673337437048, 0.97695747524900, 2.00000006227141, 1.00000000659235,
60 -1.98984125831661, 0.99039139954634, 1.99999993772859, 0.99999999340765};
61 #endif
62
63 #ifdef SERVO16K
64 #define avgCoeff sixteenKAvgCoeff
65 #elif defined(SERVO32K) || defined(SERVO64K) || defined(SERVO128K) || defined(SERVO256K)
66 #define avgCoeff sixteenKAvgCoeff
67 #elif defined(SERVO2K)
68 #define avgCoeff twoKAvgCoeff
69 #elif defined(SERVO4K)
70 #define avgCoeff twoKAvgCoeff
71 #elif defined(SERVOMIXED)
72 #define filterModule(a,b,c,d) filterModuleRate(a,b,c,d,16384)
73 #elif defined(SERVO5HZ)
74 #else
75 #error need to define 2k or 16k or mixed
76 #endif |
8935
|
Mon Jul 29 21:57:45 2013 |
gautam | Configuration | endtable upgrade | Hardware installed at 1X9 |
The following hardware has been installed on rack 1X9;
- KEPCO high voltage power supply (kept in a plastic box at the bottom of the rack, with the 3m SMA cable carrying 100V running along the inside side wall of the rack). The HV supply has not been connected to the driver board yet.
- AI board D000186 installed in top eurocrate. The board does not seem to fit snugly into the slot, so I used a longish screw to bolt the front panel to the eurocrate.
- PZT driver board D980323 installed in top eurocrate adjacent to the AI board.
- Six 11m SMB-LEMO cables have been laid out from 1X9 to the endtable. I have connected these to the PZT driver board, but the other end (to the PZTs) is left unconnected for now. They have been routed through the top of the rack, and along the cable tray to the endtable. All the cables have been labelled at both ends.
I have also verified that the AI board is functional in the eurocrate by using the LEMO monitoring points on the front panel.
The driver boards remain to be verified, but this cannot be done until we connect the HV supply to the board.
|
2826
|
Wed Apr 21 16:48:38 2010 |
josephb | Update | CDS | Hardware update |
Alberto and myself went to downs and acquired the 3rd 4x processor (Dual core, so 8x cores total) computer. We also retrieved 6 BIO interface boards (blue front thin boxes), 4 DAC interface boards, and 1 ADC interface boards. The tops have not been put on yet, but we have the tops and a set of screws for them. For the moment, these things have been placed behind the 1Y6 rack and under the table behind the 1Y5 rack
.
The 6 BIO boards have LIGO travelers associated with them: SN LIGO-S1000217 through SN LIGO-S1000222. |
4374
|
Thu Mar 3 18:32:33 2011 |
Larisa Thorne | Update | Electronics | Harmonic distortion calculations for RF distribution box |
Finished calculations for harmonic distortion at each of the 10 outputs of the RF distribution box. The diagram can be found on Suresh's post http://nodus.ligo.caltech.edu:8080/40m/4342
THD calculation consisted of gather data on the dBm at harmonics of the fundamental frequency. These dBm values were converted into units of power and plugged into the appropriate THD equation pulled from Wikipedia: 
On the table, the number 1-6 correspond to the harmonic number of the input frequency used. For example, the first five PD's listed used an 11MHz source, while the second set of five PD's listed used a 55MHz source. Values listed under certain harmonics are dBm measurements at the corresponding frequency. The P-subscript values are essentially the dBm measurements converted to units of power (Watts) for ease of calculation in the equation above. THD is then calculated using these power units; I have converted the ratios to percentages.
It should be noted that as with all THD calculations, the more data points collected, the more precise the THD % will be.
By the way, the outputs on the physical RF distribution box for REFL165 and AS165 are actually labeled as REFL166 and AS166. |
Attachment 1: RFdistribboxcalcs.pdf
|
|
4377
|
Fri Mar 4 09:47:46 2011 |
Suresh | Update | Electronics | Harmonic distortion calculations for RF distribution box |
Fast work indeed! It would be nice if we could have the following details filled in as well
a) A short title and caption for the table, saying what we are measuring
b) the units in which this physical quantity is being measured.
It is good to keep in mind that people from other parts of the group, who are not directly involved in this work, may also read this elog. |
5630
|
Fri Oct 7 14:04:48 2011 |
steve | Update | SUS | He/Ne intensity noise effect on oplevs |
The SRM bounce peak 18.33 Hz. Suresh helped me to retune filter through Foton, but we failed to remove it.
ITMX_OPLEV_PERROR shows high coherence with oplev laser. This is our lousiest set up. I will work on it next week.
Generally speaking we can say that JDSU-Uniphase 1103P and 1125P laser intensity noise do not limit oplev servo performance.
However, the overall well being of filters, gain settings, beam sizes on qpds are poor.
|
Attachment 1: PRMoplevINTn.png
|
|
Attachment 2: BSoplevINTn.png
|
|
Attachment 3: ITMXoplevINTn.png
|
|
Attachment 4: ITMYoplevINTn.png
|
|
Attachment 5: SRM_oplevINTn.png
|
|
Attachment 6: ETMYoplevINTn3.png
|
|
Attachment 7: ETMXoplevINTn.png
|
|
10678
|
Thu Nov 6 11:40:58 2014 |
Steve | Update | General | He/Ne telescope |
Liyuan is measuring the He/Ne telescopes in the Y arm between the tube and CES wall. He'll be here till 1pm |
10684
|
Fri Nov 7 10:29:56 2014 |
Steve | Update | General | He/Ne telescope |
Quote: |
Liyuan is measuring the He/Ne telescopes in the Y arm between the tube and CES wall. He'll be here till 1pm
|
Liyuan is continuing his measurement in the Y arm till noon today. |
10731
|
Fri Nov 21 13:58:51 2014 |
ericq | Update | Optical Levers | HeNe RIN test |
Steve had me measure the RIN of a JDSU HeNe laser. I used a PDA520, and measured the RIN after the laser had been running for about an hour, which let the laser "settle" (I saw the low frequency RIN fall after this period).
Here's the plot and zipped data.
Steve: brand new laser with JDSU 1201 PS

|
Attachment 1: 2014-11-21_HeNeRIN.zip
|
150
|
Fri Nov 30 20:13:57 2007 |
dmass | Summary | General | HeNe UniPhase Laser |
Data for the Uniphase 1.9 mW HeNe laser (labeled: "051507 From ISCT-BS") SN: 1284131 Model: 1103P
I used the Photon Beamscanner to obtain all data, then fit w(z) as shown on the plot with parameters w_0, z_R, and hidden parameter delta,
where z = delta + x, z is waist distance, x is distance from the laser.
Copies of the matlab code used to fit (/plot) are attached in .zip below. |
Attachment 1: Matlabcode.zip
|
Attachment 2: UniPhaseWaist.jpg
|
|
10517
|
Thu Sep 18 09:17:47 2014 |
Steve | Update | SUS | HeNe laser test |
TEST QPD sn 222 was calibrated with 1103P directly looking into it from 1 m. ND2 filter was on the qpd.
|
Attachment 1: calibrated_16hrs.png
|
|
Attachment 2: QPD222cal.jpg
|
|
Attachment 3: 1103P40s40min.png
|
|
10522
|
Mon Sep 22 10:14:07 2014 |
Steve | Update | SUS | HeNe laser test |
Quote: |
TEST QPD sn 222 was calibrated with 1103P directly looking into it from 1 m. ND2 filter was on the qpd.
|
|
Attachment 1: 1103Pmon3d.png
|
|
10525
|
Tue Sep 23 08:34:14 2014 |
Steve | Update | SUS | HeNe laser test |
The room temp drops 1 degree C on the 4th day. The weather has changed. |
Attachment 1: tempDrop.png
|
|
10537
|
Thu Sep 25 10:53:32 2014 |
Steve | Update | SUS | HeNe laser test |
|
Attachment 1: centeredDay6.png
|
|
10459
|
Fri Sep 5 15:28:38 2014 |
Steve | Update | SUS | HeNe laser test preparation |
The SRM qpd was moved to accommodate the HeNe laser qualification test for LIGO Oplev use.
The qpd was saturating at 65,000 counts of 3 mW
ND1 filter lowering the power by 10 got rid of saturation. I epoxied an adapter ring to the qpd.
Atm3 was taken before saturation was realized with Koji's help.
Atm4 ND1 on SRM qpd. Now it is working and everything is moving.
|
Attachment 1: beforeRSMqpdMoved.jpg
|
|
Attachment 2: afterSRMqpdMoved.jpg
|
|
Attachment 3: 1103Ptest.png
|
|
Attachment 4: ND1onQPD.png
|
|
10475
|
Tue Sep 9 08:22:28 2014 |
Steve | Update | SUS | HeNe laser test preparation |
Quote: |
The SRM qpd was moved to accommodate the HeNe laser qualification test for LIGO Oplev use.
The qpd was saturating at 65,000 counts of 3 mW
ND1 filter lowering the power by 10 got rid of saturation. I epoxied an adapter ring to the qpd.
Atm3 was taken before saturation was realized with Koji's help.
Atm4 ND1 on SRM qpd. Now it is working and everything is moving.
|
SRM as set up in Atm4 26,000 count compared with ETMY oplev servo in operation 7,500 counts for 3 days
Next steps: measure beam size at qpd,
place qpd on translation stage for calibration,
change 1103P mount to single one |
Attachment 1: HeNecompared.png
|
|
10479
|
Tue Sep 9 16:59:32 2014 |
Steve | Update | SUS | HeNe laser test preparation |
Quote: |
SRM as set up in Atm4 26,000 count compared with ETMY oplev servo in operation 7,500 counts for 3 days
Next steps: measure beam size at qpd,
place qpd on translation stage for calibration,
change 1103P mount to single one
|
SRM qpd is installed on translation stage and the shims removed from laser V mounts.
The ETMY oplev servo is on.
SRM oplev servo: 100 microrad/count is an estimate, not calibrated one. |
Attachment 1: 1103PqpdTranss.png
|
|
10489
|
Wed Sep 10 15:31:16 2014 |
Steve | Update | SUS | HeNe laser test preparation |
Quote: |
Quote: |
SRM as set up in Atm4 26,000 count compared with ETMY oplev servo in operation 7,500 counts for 3 days
Next steps: measure beam size at qpd,
place qpd on translation stage for calibration,
change 1103P mount to single one
|
SRM qpd is installed on translation stage and the shims removed from laser V mounts.
The ETMY oplev servo is on.
SRM oplev servo: 100 microrad/count is an estimate, not calibrated one.
|
SRM qpd is back to its normal position. The mount base is still on delrin base. SRM and ITMY need centering.
Tomorrow I will set up the HeNe laser test at the SP table with Ontrack qpd
ETMY oplev servo on. SRM qpd with ND1 ------no component------- 1103P |
Attachment 1: SRMqpdisBack0nSRMsus.png
|
|
Attachment 2: slowVSfast.png
|
|
10504
|
Fri Sep 12 16:30:48 2014 |
Steve | Update | SUS | HeNe laser test preparation |
Quote: |
IP POS cable was swapped with old SP-QPD sn222 at the LSC rack. So there is NO IP POS temporarily.
This QPDsn222 will be used the HeNe oplev test for aLIGO
|
QPDsn222 is on translation stage with ND2 filter on SP table. The 1103P is mounted with two large V mounts 1 m away.
This qpd will be calibrated Monday. It has only slow outputs. |
Attachment 1: ND2.png
|
|
Attachment 2: qpd222ND21103P.jpg
|
|
506
|
Fri May 30 12:03:08 2008 |
josephb, Andrey | Configuration | Cameras | Head to head comparison of cameras |
Andrey and myself - Joseph B. - have examined the output of the GC650 (CCD) and GC750 (CMOS) prosilica cameras. We did several live motion tests (i.e. rotate the turning mirror, move and rotate the camera, etc) and also used a microscope slide to try to eliminate back reflections and interference.
Both the GC650 and GC750 produce dark lines in the images, some of which look parallel, while others are in much stranger shapes, such as circles and arcs.
Moving the GC750 camera physically, we have the spot moving around, with the dark lines appearing to be fixed to the camera itself, and remain in the same location on the detector. I.e. coming back to the same spot keeps showing a circle. In reasonably well behaved sections, these lines are about 10% dips in power, and could in principle be subtracted out. Its possible that the camera was damaged with too much light incident in the past, although going back to the pmc_trans images that were taken, similar lines are still visible.
Moving the GC650 camera physically seems to change the position of the lines (if one also rotates the turning mirror to get to the same spot on the CCD). It seems as if a slight change in angle has a large effect on these dark bands, which can either be thin, or very large, bordering on the size of the spot size. My guess is (as the vendor suggested) the light is interacting with the electronics behind the surface layer rather than a surface defect producing these lines. Using a microscope slide in between the turning mirror and the GC650, we were able to produce new fringes, but didn't affect the underlying ones.
Placing a microscope slide in between the last turning mirror and the GC750 does not affect the dark lines (although it does seem to add some), nor does turning the final turning mirror, so it seems unlikely to be caused by back reflection in this case.
So it seems the CMOS may be more consistent, although we need to determine if the current line problems are due to exposure to too much light at some point in the past (i.e. I broke it) or they come that way from the factory.
Attached are the results of image-processing of the images from the two our cameras using Andrey's new Matlab script. |
Attachment 1: Waveform_Reconstruction_May30-2008.pdf
|
|
12308
|
Mon Jul 18 05:05:05 2016 |
Aakash | Update | General | Heater for Seismometer Enclosure | SURF 2016 |
I took off the silicon rubber heaters which were used by a SURF last year for heating the enclosure. The heater data sheet has mentioned the power dentsities, but I doubted the values. So I wanted to measure the actual power density by these heaters. I think the rubber heaters are broken somewhere within, the surface is not heated evenly. Although I don't have a good quantative reason to use, I was thinking to use a thermoelectric cooling module for the enclosure.
From the data I collected few days back, I am trying to obtain a transfer function of temperature inside the enclosure to that of outside. My aim is to measure the pole frequency of temperature fluctuations inside the enclosure relative to the outside fluctuations.

|
Attachment 1: HEATERS.jpeg
|
|
14110
|
Sat Jul 28 00:45:11 2018 |
terra, sandrine | Summary | Thermal Compensation | Heater measurements overview |
[Sandrine, Koji, Terra]
Summary: We completed multiple scans at different heating powers for the reflector set up, observing unique HOM peak shifts of tens of kHz. We also observed HOM5 shifts with the cylinder set up. Initial Lorentzian fittings of the magnitude give tens of Hz resolution. I summarize the main week's work below.
Set-up
Heater set-up is described in several previous elogs, but attachments #1 and #2 show the full heater set-up and wiring/pinouts in and out of vacuum, since we're all intimately aware of how confusing in-vacuum pinouts can be. We are not using the Sorenson power supply (as described in 14071); we just have the BKPrecision power supply 1735 sitting next to the ETMY rack and are manually going out to turn on/off.
We've continued to use the scan setup described in elog 14086, which is run using /users/annalisa/postVent/AGfast.py. Step by step notes for setting up the scan, running the scans, and processing the scans are attached in notes.txt.
Inducing/witnessing HOMs
The aux input beam was already clipped and on wednesday (after Trans was centered, 14093) we also clipped the output aux beam with razor blade (angled vertically and horizontally, elog 14103) before PDA255; we clipped ~1/3 of the output beam. Attachment #3 shows before and after clipping output, where orange 'cold' == unclipped, black 'mean' == clipped (all in cold state). Up to HOM5 is visible.
Measurements
Below is a summary of the available scan data. We also have cold (0A) scans CAR-HOM5 and full FSR scans for most configurations.
Elliptic Reflector
current[A] |
voltage[V] |
power[W] |
scans |
0.4 |
2 |
0.8 |
CAR-HOM3(x1) |
0.5 |
3.4 |
1.7 |
CAR-HOM3(x1) |
0.6 |
5 |
3.0 |
CAR-HOM3(x1) |
0.8 |
9.4(9.7) |
7.5(7.8) |
CAR-HOM5(>x5) |
0.9 |
12 |
10.8 |
CAR-HOM5(x4) |
1.09 |
17 |
18.5 |
CAR-HOM3 |
Cylinder + Lenses
current[A] |
voltage[V] |
power[W] |
scans |
0.9 |
15 |
13.5 |
CAR-HOM5(odds x4) |
We tried the cylinder set-up again tonight for the first time since inital try and can see shifts of HOM5 - see attachment #5; we haven't looked in detail yet, but it looks like odd modes are more effected, suggesting the ring heat pattern is off centered from the beam axis.
Scan data is saved in the following format: users/annalisa/postVent/scandata/{reflector,cylinder}/{parsed,unparsed}/{CAR,HOM1,HOM2,HOM3,HOM4,HOM5}{_datetime}{_parsed,_unparsed}.{txt,pdf}
Minimum heating
On 7/26 we increased the power to the elliptical reflector heater in steps to find the minimum heater power required to see frequency shifts with our measurement setup. Lowest we can resolve is a shift in HOM3 with 1.7W (0.5A/3.4V). According to Annalisa's measurements in elog 14050, this would be something like 30-60 mW radiated power hitting the test mass. We only looked at CAR - HOM3 for this investigation; data for scans at 0.4A, 0.5A, 0.6A is available as indicated above.
Lorentizian Fitting
The Lorentzian fitting was done using the equation a + b / sqrt(1+((x-c)/d*2), where a = constant background, b = peak height above background, c = peak frequency, d = full width at half max.
The fitting is still being edited and optimized. We will crop the data to zoom in around the peak more.
The Lorentzian fit of the magnitude shows ~10Hz of resolution. (See attachment 6 for the carrier at 8A and attachment 7 for HOM 1 at 9A)
We're working on fitting the full complex data.
|
Attachment 1: heater_setup.jpg
|
|
Attachment 2: heater_wiring.jpg
|
|
Attachment 3: notes.txt
|
Notes for running scans:
1. when first turning on Agilent, set initial stuff
> cd /users/annalisa/postVent/20180718
> AGmeasure TFAG4395Atemplate.yml
2. tweak arm alignment and offset PLL
> sitemap (then IFO --> ALIGN and also PSL --> AUX)
> to increase
3. make sure X-arm is misagligned (hit '! Misalign' button for ITMX, ETMX)
3. run scan
> python AGfast.py startfreq stopfreq points
... 36 more lines ...
|
Attachment 4: FSR_clipped.pdf
|
|
Attachment 5: cylinderHOM5.pdf
|
|
Attachment 6: pt8A_CAR.pdf
|
|
Attachment 7: pt9A_HOM1.pdf
|
|
14050
|
Tue Jul 10 23:44:23 2018 |
Annalisa | Configuration | Thermal Compensation | Heater setup assembly |
[Annalisa, Koji]
Today both the heater and the reflector were delivered, and we set down the setup to make some first test.
The schematic is the usual: the rod heater (30mm long, 3.8 mm diameter) is set inside the elliptical reflector, as close as possible to the first focus. In the second focus we put the power meter in order to measure the radiated power. The broadband power meter wavelength calibration has been set at 4µm: indeed, the heater emits all over the spectrum with the Black Body radiation distribution, and the broadband power meter measures all of them, but only starting from 4µm they will be actually absorbed my the mirror, that's why that calibration was chosen.
We measured the cold resistance of the heater, and it was about 3.5 Ohm. The heater was powered with the BK precision DC power supply 1735, and we took measurements at different input current.
Current [A] |
Voltage [V] |
Measured radiated power [mW] |
Resistance [Ohm] |
0.5 |
2.2 |
20 |
4.4 |
0.8 |
6 |
120 |
7.5 |
1 |
11 |
400 |
11 |
1.2 |
18 |
970 |
15 |
We also aimed at measuring the heater temperature at each step, but the Fluke thermal camera is sensitive up to 300°C and also the FLIR seems to have a very limited temperature range (150°C?). We thought about using a thermocouple, but we tested its response and it seems definitely too slow.
Some pictures of the setup are shown in figures 1 and 6.
Then we put an absorbing screen in the suspension mount to see the heat pattern, in such a way to get an idea of the heat spot position and size on the ETMY. (figure 2)
The projected pattern is shown in figures 3-4-5
The optimal position of the heater which minimizes the heat beam spot seems when the heater inserted by 2/3 in the reflector (1/3 out). However, this is just a qualitative evaluation.
Finally, two more pictures showing the DB connector on the flange and the in-vacuum cables.
Some more considerations about in-vacuum cabling to come.
Steve: how are you going to protect the magnets ? |
Attachment 1: IMG_1992.jpg
|
|
Attachment 2: IMG_2002.jpg
|
|
Attachment 3: IR20180710_0364a.png
|
|
Attachment 4: IR20180710_0368.png
|
|
Attachment 5: IR20180710_0360.png
|
|
Attachment 6: IMG_1993.jpg
|
|
Attachment 7: IMG_5322.JPG
|
|
Attachment 8: IMG_5321.JPG
|
|
14078
|
Tue Jul 17 17:37:46 2018 |
Annalisa, Terra | Configuration | Thermal Compensation | Heaters installation |
Summary
We installed two heaters setup on the ETMY bench in order to try inducing some radius of curvature change and therefore HOMs frequency shift.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
We installed two heaters setup.
Elliptic reflector setup (H1): heater put in the focus of the elliptical reflector: this will make a heat pattern as descirbed in the elogs #14043 and #14050.
Lenses setup (H2): heater put in a cylndrical reflector (made up with aluminum foil) 1'' diameter, and 2 ZnSe lenses telescope, composed by a 1.5'' and a 1'' diameter respectively, both 3.5'' focal length. The telescope is designed in such a way to focus the heat map on the mirror HR surface. For this latter the schematic was supposed to be the following:

This setup will project on the mirror a heat pattern like this:

which is very convenient if we want to see a different radius of curvature for different HOMs. However, the power that we are supposed to have absorbed by the mirror with this setup is very low (order of 40-ish mW with 18V, 1.2A) which is probably not enough to see an effect. Moreover, mostly for space reasons (post base too big), the distances were not fully kept, and we ended up with the following setup:

In this configuration we won't probably have a perfect focusing of the heat pattern on the mirror.

In vacuum connections
See Koji's elog #14077 for the final pin connection details. In summary, in vacuum the pins are:
13 to 8 --> cable bunch 0
7 to 2 --> cable bunch 2
25 to 20 --> cable bunch 1
19 to 14 --> cable bunch 3
where Elliptic reflector setup (H1) is connected to cables 0 and 1, and the lenses setup is connected to cables 2 and 3.
Installed setup
This is the installed setup as seen from above:


|
Attachment 5: IMG_5380.JPG
|
|
12571
|
Wed Oct 19 16:41:55 2016 |
gautam | Update | General | Heavy doors back on |
[ericq, lydia, steve, gautam]
- We aligned the arms, and centered the in-air AS beam onto the PDs and camera
- Misaligned the ITMs in a controlled ramp, observed ASDC level, didn't see any strange features
- We can misalign the ITMs by +/- 100urad in yaw and not see any change in the ASDC level (i.e. no clipping). We think this is reasonable and it is unlikely that we will have to deal with such large misalignments. We also scanned a much larger range of ITM misalignments (approximately +/-1mrad), and saw no strange features in the ASDC levels as was noted in this elog - we used both the signal from the AS110 PD which had better SNR and also the AS55 PD. We take this to be a good sign, and will conduct further diagnostics once we are back at high power.
- Opened up all light doors, checked centering on all 6 OM mirrors again, these were deemed to be satisfactory
- To solve the green scattering issue, we installed a 1in wide glass piece (~7inches tall) mounted on the edge of the OMC table to catch the reflection off the window (see Attachment #1) - this catches most of the ghost beams on the PSL table, there is one that remains directly above the beam which originates at the periscope in the BS/PRM chamber (see Attachment #2) but we decided to deal with this ghost on the PSL table rather than fiddle around in the vacuum and possibly make something else worse
Link to IMG_2332.JPG
Link to IMG_2364.JPG
- Re-aligned arms, ran the dither, and then aligned the PRM and SRM - we saw nice round DRMI flashes on the cameras
- Took lots of pictures in the chamber, put heavy doors back on. Test mass Oplev spots looked reasonably well centered, I re-centerd PRM and SRM spots in their aligned states, and then misaligned both
- The window from the OMC chamber to the AS table looked clean enough to not warrant a cleaning..
- PSL shutter is closed for now.
I will check beam alignment, center Oplevs, and realign the green in the evening. Plan is to pump down first thing tomorrow morning
AS beam on OM1
Link to IMG_2337.JPG
AS beam on OM2
I didn't manage to get a picture of the beam on OM5 because it is difficult to hold a card in front of it and simultaneously take a photo, but I did verify the centering...
It remains to update the CAD diagram to reflect the new AS beam path - there are also a number of optics/other in-vacuum pieces I noticed in the BS/PRM and OMC chambers which are not in the drawings, but I should have enough photos handy to fix this.
Here is the link to the Picasa album with a bunch of photos from the OMC, BS/PRM and ITMY chambers prior to putting the heavy doors back on...
SRM satellite box has been removed for diagnostics by Rana. I centered the SRM Oplev prior to removing this, and I also turned off the watchdog and set the OSEM bias voltages to 0 before pulling the box out (the PIT and YAW bias values in the save files were accurate). Other Oplevs were centered after dither-aligning the arms (see Attachment #8, ignore SRM). Green was aligned to the arms in order to maximize green transmission (GTRX ~0.45, GTRY ~0.5, but transmission isn't centered on cameras).
I don't think I have missed out on any further checks, so unless anyone thinks otherwise, I think we are ready for Steve to start the pumpdown tomorrow morning. |
Attachment 1: IMG_2332.JPG
|
|
Attachment 2: IMG_2364.JPG
|
|
Attachment 3: IMG_2337.JPG
|
|
Attachment 4: IMG_2338.JPG
|
|
Attachment 5: IMG_2356.JPG
|
|
Attachment 6: IMG_2357.JPG
|
|
Attachment 7: IMG_2335.JPG
|
|
Attachment 8: Oplevs_19Oct2016.png
|
|
14373
|
Thu Dec 20 10:28:43 2018 |
gautam | Update | VAC | Heavy doors back on for pumpdown 82 |
[Chub, Koji, Gautam]
We replaced the EY and IOO chamber heavy doors by 10:10 am PST. Torquing was done first oen round at 25 ft-lb, next at 45 ft-lb (we trust the calibration on the torque wrench, but how reliable is this? And how important are these numbers in ensuring a smooth pumpdown?). All went smooth. The interior of the IOO chamber was found to be dirty when Koji ran a wipe along some surfaces.
For this pumpdown, we aren't so concerned with having the IFO in an operating state as we will certainly vent it again early next year. So we didn't follow the full close-up checklist.
Jon and Chub and Koji are working on starting the pumpdown now... In order to not have to wear laser safety goggles while we closed doors and pumped down, I turned off all the 1064nm lasers in the lab. |
12480
|
Fri Sep 9 17:50:02 2016 |
gautam | Update | SUS | Heavy doors on BS-PRM, ETMY chambers |
[steve, teng, johannes, lydia, gautam]
- we set about doing some final checks on the Y arm while Johannes and Lydia worked on the X arm alignment
- locked IMC, turned on Oplev HeNes for ITMY, SRM, PRM, BS and ETMY
- I first went into the BS-PRM chamber. Traced Oplev paths for PRM and BS, checked that the beam is approximately centered on all the steering mirrors, and traced the beam with a clean beam card to make sure there was no clipping. The beams make it out of the vacuum onto the PDs, but are not centered
- I also checked the Y arm green - the beam isn't quite centered on the periscope mirrors but I guess this has always been the case and I didn't venture to make any changes
- Checked new PRM foil hats were secure
- Checked the main IR beam out of the IMC, and also the IPANG beam - Steve suggested we keep track of the way this moves during pumpdown. However, I didn't quite think this through and we put the heavy door on the BS-PRM chamber before checking where the IPANG beam was on ETMY table (we later found that the beam was a tad too high. Anyways, this isn't critical, wouldve been nice to have this reference though
- Checked that there were no tools lying around inside the chamber, and proceeded to put the heavy door on
- Moved to ETMY table, and did much of the same as above - Oplev beam makes it successfully out off the ETM, OSEM cables aren't a risk to clipping the green input beam
- Proceeded to put the heavy door on ETMY chamber
- I would have liked to put the heavy door on the ITMY chamber today evening too, but while freeing the SRM from its EQ stops, I noticed that the LL and LR OSEM PD readouts are approximately 60 and 75 % of their saturation values. I think this warrants fixing (I also checked against the frame files from our last DRFPMI lock in march and the PD signals are significantly different) so we should do this before putting the heavy door on. It would also be a good idea to check the table leveling
- The Oplev beams for ITMY and SRM make it cleanly out of the chamber so all looks good on that front
- IR and green beams are well clear of any OSEM cables
Depending on how the X arm situation is, we will finish putting back all the heavy doors on Monday and start the pumpdown
GV Edit 11.30pm:
- We succeeded in locking the X arm as well, although the transmission peaked at 0.1 (but this is the high gain PD and not the QPD, and also, unlike the Y arm, the 50-50 BS splitting the transmitted light between the QPD and the high gain PD is still in place, so can't really compare with the Y arm value of 0.6)
- To get the lock going, we had to change a bunch of things like the POX DC offset, demod phase, sign of the gain etc. It is unclear whether we are locking on the TEM00 mode, but we judged it is sufficient to close doors and pump down
- Johannes and I centered the ETMX and ITMX OL spots on their respective QPDs. Earlier today, Johannes and Lydia had checked ITMX and ETMX OL paths, everything looks decent
- JE piggyback edit : We also tied the upper ITMX OSEM cables to the suspension cage side using copper wire since particularly UR looked like it could slip and possibly fall down into the beam path
- JE piggyback edit: While leveling the ITMX table, Gautam and I found that some of the screws that secure the weights were not vented. None of these were put in during this vent. We replaced them all with vented screws.
- Rana also checked PRM and SRM alignment, all looks okay on that front - the OSEM problem I had alluded to earlier isn't really a problem, once the SRM is aligned, all the OSEMs are reasonably close to 50% of their saturation value.
Looks like on Monday, we will look to put the heavy doors on ITMY, ITMX and ETMX chambers, and begin the pumpdown |
11021
|
Fri Feb 13 03:44:56 2015 |
Jenne | Update | LSC | Held using ALS for a while at "0" CARM offset with PRMI |
[Jenne, Rana]
We wanted to jump right in and see if we were ready to try the new "ALS fool" loop decoupling scheme, so we spent some time with CARM and DARM at "0" offset, held on ALS, with PRMI locked on REFL33I&Q (no offsets). Spoiler alert: we weren't ready for the jump.
The REFL11 and AS55 PDs had 0dB analog whitening, which means that we weren't well-matching our noise levels between the PD noise and the ADC noise. The photodiodes have something of the order nanovolt level noise, while the ADC has something of the order microvolt level noise. So, we expect to need an analog gain of 1000 somewhere, to make these match up. Anyhow, we have set both REFL11 and AS55 to 18dB gain.
On a related note, it seems not so great for the POX and POY ADC channels to be constantly saturated when we have some recycling gain, so we turned their analog gains down from 45dB to 0dB. After we finished with full IFO locking, they were returned to their nominal 45dB levels.
We also checked the REFL33 demod phase at a variety of CARM offsets, and we see that perhaps it changes by one or two degrees for optimal rotation, but it's not changing drastically. So, we can set the REFL33 demod phase at large CARM offset, and trust it at small CARM offset.
We then had a look at the transmon QPD inputs (before the dewhitening) for each quadrant. They are super-duper saturating, which is not so excellent.
QPDsaturation_12Feb2015.pdf
We think that we want to undo the permanently-on whitening situation. We want to make the second stage of whitening back to being switchable. This means taking out the little u-shaped wires that are pulling the logic input of the switches to ground. We think that we should be okay with one always on, and one switchable. After the modification, we must check to make sure that the switching behaves as expected. Also, I need to figure out what the current situation is for the end QPDs, and make sure that the DCC document tree matches reality. In particular, the Yend DCC leaf doesn't include the gain changes, and the Xend leaf which does show those changes has the wrong value for the gain resistor.
After this, we started re-looking at the single arm cancellation, as Rana elogged about separately.
ALSfool_12Feb2015.pdf |
Attachment 1: QPDsaturation_12Feb2015.pdf
|
|
Attachment 2: ALSfool_12Feb2015.pdf
|
|
4618
|
Tue May 3 17:19:25 2011 |
kiwamu | Update | Electronics | Heliax connectors on 1Y2 rack : tightened |
My observation wasn't accurate enough.
The looseness came from the fact that the N-SMA bulk heads were slipping on the black plate.
This is actually what Suresh pointed out (see here). So the thickness of the black plate doesn't matter in this case.
Somehow I was able to tighten the bulk heads using two wrenches and I think they are now tight enough so that the heliax's heads don't move any more.
Quote from #4601 |
I found that all the Heliax cables landing on the bottom of 1Y2 were too loose.
The looseness basically comes from the fact the black plate is too thick for the Heliax cable to go all the way. It permits the Heliax's heads to rotate freely.
|
|
130
|
Wed Nov 28 12:43:53 2007 |
Andrey | Bureaucracy | | Here was the PDF-file of my presentation |
I was making a report with powerpoint presentation during that Wednesday's 40-m meeting.
Here was the pdf-file, but LATER IN THE EVENING I CREATED A WIKI-40M-page describing the algorithm, and now the pdf-file is ON THAT WIKI-40M PAGE.
NOTE ADDED AFTER THE PRESENTATION: I double checked, I am indeed taking the root-mean-square of a difference, as we discussed during my talk.
My slide #17 "Calculation of differential length" was wrong, but now I corrected it. |
3421
|
Fri Aug 13 15:29:35 2010 |
Aidan | Frogs | Photos | Here's the 40m team |
|
Attachment 1: 40m_team.JPG
|
|
3424
|
Mon Aug 16 13:33:06 2010 |
Zach | Frogs | Photos | Here's the 40m team |
One day I'll get to be part of the krew |
15044
|
Thu Nov 21 19:08:58 2019 |
gautam | Update | LSC | High BW lock of Y arm length to PSL frequency |
Summary:
The Y arm cavity length was locked to the PSL frequency with ~26kHz UGF, and 25 degrees phase margin. Slow actuation was done on ETMY using CM_Slow as an error signal, while fast actuation was done on the IMC error point via the IN2 input of the IMC servo board. Attachment #1 shows the comparison of the in-loop error signal spectra with only slow actuation and with the full CM loop engaged.
Details:
- LSC enable OFF.
- Configure the CM board for locking:
- CM board IN1 gain = 25dB.
- CM_Slow whitening gain = +18dB, make sure the offsets are correctly set. CM_Slow filter bank = -0.015.
- CM_Slow-->YARM matrix element in LSC input matrix is -2.5.
- YARM-->ETMY matrix element in LSC Output matrix is 1.
- AO gain set to +5dB. IMC Servo board IN2 gain starts at -32dB, the path is disabled. The polarity is Plus.
- Usual YARM FM triggers are set (FM1, FM2, FM3, FM6, FM8), usual YARM servo gain is used (0.01), usual triggering conditions (ON @ TRY>0.3, OFF @ TRY < 0.1), usual power normalization by TRY.
- Enable LSC mode, wait for the arm to acquire lock.
- Once the digital boosts are engaged, enable the IMC IN2 path, ramp up the gain to -2 dB. Note that this IN2 path is AC coupled, according to this elog. The corner frequency is 1/2/pi/2e3/6.8uF ~11 Hz. This was confirmed by measurement, see Attachment #3. I couldn't find a 2-pin LEMO-->BNC adaptor so I measured at the BNC connector for the IN2 input, which according to the schematic is shorted to the LEMO (which is what we use for the AO path).
- Enable the CM board boost.
- Ramp up the CM board IN1 gain to +31dB. In this config, the CM_Slow signal is ~18,000 cts pk (with the +18dB whitening gain), so not saturating the ADC.
- Ramp up the IMC IN2 gain to 3dB, engage 2 Super Boosts (can't turn on the third). Limiter is always ON.
- Use the CM board error point offset adjust to zero the POY11_I error signal average value - there seems to be some offsets when engaging the boosts. The value I used was 0.9 V (this is internally divided by 40 on the CM board).
- Whiten the CM_Slow signal - this doesn't seem to have any impact on the noise anywhere.
I hypothesize that the high-frequency noise (>100 Hz) is higher for POY than POX in Attachment #1 because I am using the "MON" port of the demod board - this has a gain of 2, and there could also be some flaky components in this path, hence the high frequency noise is a factor of a few greater in the POY spectrum relative to the POX spectrum (which is using the main demodulated output). For REFL11, we have a low noise preamp generating the input signal so I don't think we need to worry about this too much.
The PC Drive RMS didn't look any stranger than it usually does for the duration of the lock.
Attachment #2 shows the OLTF of the locking servo with the final gains / settings, which are in bold. The loop is maybe a bit marginal, could possibly benefit from backing off one of the super boosts. But the arm has stayed locked for >1 hour.
The purpose of this test was to verify the functionality of the CM board and also the IN2 of the IMC servo board in a low-pressure environment. Once I confirm that the modelled OLTF lines up with the measured, I will call this test a success, and move on to looking at REFL11 in the arms on ALS, PRMI on 3f config. I am returning the REFL11 signal to the input of the CM board, but the SR785 remains hooked up.
Unrelated to this work - PMC alignment was tweaked to improve input power to IMC by ~5%. |
Attachment 1: highBW_POY.pdf
|
|
Attachment 2: CM_UGF.pdf
|
|
Attachment 3: IN2_ACcoupling.pdf
|
|
10002
|
Thu May 29 02:16:02 2014 |
ericq | Update | LSC | High Bandwidth power recycled Yarm. |
I'll put more detail in the morning, but I was able to get the PRM/ITMY/ETMY coupled cavities locked with 32kHz bandwidth using the AO path. (However, this is a pretty low-finesse situation, since the BS is dumping so much power out of the PRC. Full buildup is only 3 or 4 times the single arm power)
Since our ALS is better than it was a month ago when I last played with this, I was able to hop straight from ALS to REFL11 I on resonance, with the PRY locked on 3f.
Here are some quick OLTF plots I took along the way.

I'm using this configuration to validate my loop modelling for the full double arm case. Right off the bat, this tells me that the "minus" polarity on the CM servo is the correct one. I didn't use REFLDC at all tonight, but I figure I can check it out by doing the transition backwards, so to speak. |
10004
|
Thu May 29 14:40:17 2014 |
Koji | Update | LSC | High Bandwidth power recycled Yarm. |
Wait. It is not so clear.
Do you mean that the IFO was locked with REFL11I for the first time?
Why is it still in the "low finesse" situation? Is it because of misalignment or the non-zero CARM offset? |
10005
|
Thu May 29 15:33:55 2014 |
ericq | Update | LSC | High Bandwidth power recycled Yarm. |
Quote: |
Wait. It is not so clear.
Do you mean that the IFO was locked with REFL11I for the first time?
Why is it still in the "low finesse" situation? Is it because of misalignment or the non-zero CARM offset?
|
Sorry, the X arm is completely misaligned. This is the configuration I first tried in ELOG 9859, that is: a PRM->ITMY recycling cavity and ITMY->ETMY arm cavity. ITMX is completely misaligned, so the BS is dumping much of the recycling cavity light out, which is why I wrote "low finesse." This is the first time I've used REFL11 to control any of our cavities, though. |
737
|
Thu Jul 24 21:53:00 2008 |
rana | Summary | Treasure | High School Tour group and the PMC |
There was a tour today of 40 high school kids. I warned them that the lasers could burn out their
eyes, that the vacuum could suck them through the viewports like tubes of spaghetti and that the
high voltage amps would fry their hair off.
One of them was taking a picture of the SOS in the flow bench and another one was whispering what
a dumb idea it was to leave a sensitive clean optic out where people might breathe on it. I told
one them to cover his mouth. The other one asked what was the glass block behind the SOS.
It was a spare PMC! s/n 00-2677 with a 279 nF capacitance PZT. I guess that this is the one that
Go brought from MIT and then left here. So we don't have to take the one away from Bridge in the
35 W laser lab.
We can swap this one in in the morning while the FSS people work on the reference cavity
alignment. Please email me if you object to this operation. |
3610
|
Mon Sep 27 00:33:50 2010 |
rana | Update | PSL | High Voltage Driver added to TTFSS -> NPRO |
We added the Thorlabs HV Driver in between the FSS and the NPRO today. The FSS is locking with it, but we haven't taken any loop gain measurements.
This box takes 0-10 V and puts out 0-150 V. I set up the FSS SLOW loop so that it now servos the output of FAST ot be at +5V instead of 0V. This is an OK
temporary solution. In the future, we should add an offset into the output of the FSS board so that the natural output is 0-10 V.
I am suspicious that the Thorlabs box has not got enough zip to give us a nice crossover and so we should make sure to measure its frequency response with a capacitive load. |
3640
|
Fri Oct 1 21:34:14 2010 |
rana, tara | Update | PSL | High Voltage Driver added to TTFSS -> NPRO |
Quote: |
We added the Thorlabs HV Driver in between the FSS and the NPRO today. The FSS is locking with it, but we haven't taken any loop gain measurements.
This box takes 0-10 V and puts out 0-150 V. I set up the FSS SLOW loop so that it now servos the output of FAST ot be at +5V instead of 0V. This is an OK
temporary solution. In the future, we should add an offset into the output of the FSS board so that the natural output is 0-10 V.
I am suspicious that the Thorlabs box has not got enough zip to give us a nice crossover and so we should make sure to measure its frequency response with a capacitive load.
|
We measured the Thorlabs HV Driver's TF today. It is quite flat from 1k to 10k before going up to 25 dB at 100k,
and the response does not change with the DC offset input.
The driver is used for driving the NPRO's PZT which requires higher voltage than that of the previous setup.
We need to understand how the driver might effect the FSS loop TF, and we want to make sure that the driver
will have the same response with DC input offset.
Setup
We used SR785 to measure the TF. Source ch was split by a T, one connected to Driver's input, another one connected to the reference (ch A). See fig2.
The driver output was split by another T. One output was connected to NPRO,
another was connected to a 1nF capacitor in a Pomona box, as a high pass filer (for high voltage), then to the response (ch B)
The source input is DC offset by 2V which corresponds to 38 V DC offset on the driver's output.
The capacitance of the PZT on the NPRO is 2.36 nF, as measured by LC meter.
The result shows that the driver's TF is flat from 1k to 10k, and goes up at higher frequency, see fig1.
The next step is trying to roll of the gain at high frequency for PZT. A capacitor connected to ground might be used to roll off the frequency of the driver's output.
We will inspect the TF at higher frequency (above 100 kHz) as well.
|
Attachment 1: NPROTF.png
|
|
Attachment 2: 2010_10_01.png
|
|
3641
|
Mon Oct 4 06:47:46 2010 |
rana, tara | Update | PSL | High Voltage Driver added to TTFSS -> NPRO |
Inside the FSS box, the FAST path has a ~10 Hz pole made up from the 15k resistor and the 1 uF cap before the output connector.
This should be moved over to the output of the driver to make the driver happy - without yet measuring the high frequency response,
it looks like to me that its becoming unhappy with the purely capacitive load of the NPRO's PZT. This will require a little surgery inside
the FSS box, but its probably justified now that we know the Thorlabs box isn't completely horrible.
|
15906
|
Thu Mar 11 20:18:00 2021 |
gautam | Update | LSC | High bandwidth POY |
I repeated the high bandwidth POY locking experiment.
- The "Q" demod output (SMA) was routed to the common mode board (it appears in the past I used the LEMO "MON" output instead but that shouldn't be a meaningful change).
- As usual, slow actuation --> ETMY, fast actuation --> IMC error point.
- Loop UGF measurement suggests that bandwidth ~25kHz, with ~25 degrees phase margin. Anyway the lock was pretty stable.
One thing I am not sure is - when looking at the in-loop error point spectra, the Y-arm error point did not get suppressed to the CM board's sensing noise floor - I would have thought that with the huge amount of gain at ~16 Hz, the usual structure we see in the spectra between 10-30Hz would be completely squished. Need to think about if this is signalling something wrong, because the loop TF measurements seemed as expected to me.
1020pm: plots uploaded. As I made the plot of the spectrum, I realized that I don't have the calibration for the Y-arm error point into displacement noise units, so it's in unphysical units for now. But I think the comment about the hump around 16 Hz not being crushed to some sort of flat electronics noise floor. For the TF plots, when the loop gain is high, this IN1/IN2 technique isn't the best (due to saturation issues) but I don't think there's anything controversial about getting the UGF this way, and the fact that the phase evolves as expected when the various gains are cranked up / boosts enabled makes me think that the CM board is itself just fine.
10am 12 March: i realized that the "Y-arm error point" plotted below is not the true error point - that would be the input to the CM board (before boosts etc), which we don't monitor digitally. The spectra are plotted for the CM_SLOW input which already has some transfer function applied to it. In the past, I routed the LEMO "MON" connector on the demod board to the CM board input, and hence, had the usual SMA outputs from the demod board going to the digital system. I hypothesize that plotting the spectra for that signal would have showed this expected suppression to the electronics noise floor.
In summary, on the basis of this test, I don't see any red flags with the CM board. |
Attachment 1: OLGevolution.pdf
|
|
Attachment 2: inLoopSpec.pdf
|
|
17628
|
Fri Jun 9 17:39:48 2023 |
yuta | Update | LSC | High bandwidth YARM test |
[Paco, Mayank, Yuta]
CARM Common Mode Board works for YARM locking
For using it for FPMI and PRFPMI, we tested the CARM Common Mode Board by implementing the high bandwidth YARM lock in a way similar to what Paco did in 2021 (40m/16248).
(YARM locking work was done yesterday and modeling was done today,)
What we did:
- Connected POY11_I MON to IN1 of CARM Common Mode Board. (POY11_I MON is basically similar to POY11_I_ERR as C1:LSC-POY11_PHASE_R=-9.033 deg is almost zero).
- Locked YARM at UGF of around 200 Hz using POY11_I_ERR.
- Turned on CARM Common Mode Board with C1:LSC-CM_REFL1_GAIN=+25 dB, C1:IOO-MC_AO_GAIN=-2dB, C1:LSC-CM_REFL_OFFSET=2.972 V to remove the offset. (BOOST OFF, SUPER BOOST 0, POLARITY PLUS, OPTIONs Disabled). Increasing the gains unlocked the lock (+30 dB, +4dB is probably the maximum we could get).
- Measured OLTF of CARM loop at TP1A and TP2A of CARM Common Mode Board using Moku Pro.
- Modeled YARM loop by fitting the measured OLTF data (G_YARM; plotted in blue curve in Attachment #1).
- Modeled IMC loop by fitting the measured OLTF data (G_IMC; plotted in green curve in Attachment #1; OLTF data is from 40m/17009).
- Measured CARM Common Mode Board transfer function from IN1 to AO output. This was basically flat upto 1 MHz in 0dB setting for all (Attachment #2).
- Using CARM OLTF can be calculated as
G_CARM = G_IMC / O_IMC * O_YARM * C_YARM * F_CMB / (1+G_YARM) = r * G_IMC * C_YARM * F_CMB / (1+G_YARM)
where C_YARM is YARM cavity pole (~4 kHz), O_IMC and O_YARM are IMC REFL and POY11_I optical gains. r is some gain used to fit the data. F_CMB is a CARM Common Mode Board transfer function, which is basically flat.
- OLTF of CARM loop measured at CARM Common Mode Board can be calculated as
G_meas = G_CARM / (1 + G_IMC)
Result:
- Attachment #1 gives modeled G_meas (brown line) and measured G_meas (pink dots). r was tuned to match the overall gain. The measurement and the model matches well.
- G_CARM (purple line) also looks stable.
Next:
- Try high bandwidth CARM loop in FPMI |
Attachment 1: HighBWYARMmodel.pdf
|
|
Attachment 2: CARMCommonModeBoard.pdf
|
|
7829
|
Fri Dec 14 03:32:51 2012 |
Ayaka | Update | LSC | High frequency noise in AS signal |
I calibrated the AS error signal into the displacement of the YARM cavity in the same way as I did before (elog).
The open loop transfer function is:

The transfer function from ITMX excitation to AS error signal is:

Then I have got the calibration value : 5.08e+11 [counts/m]
The calibrated spectrum in unit of m/rtHz is

REF0: arm displacement
REF1: dark noise + demodulation circuit noise + WT filter noise + ADC noise (PSL shutter on)
REF2: demodulation circuit noise + WT filter noise + ADC noise (PD input of the circuit (at 1Y2) is connected to the 50 Ohm terminator)
(The circuit and WT filter seem to be connected at back side of the rack. Actually there is a connector labelled 'I MON' but it is not related to C1:LSC-ASS55_I_ERR)
Also we changed the AS gain so that ADC noise does not affect:

However, this did not make big change in sensitivity. I guess this means that circuit noise limits the sensitivity at higher frequencies than 400 Hz.
I tried to adjust the AS gain carefully but I could not do that because of the earthquake. Further investigation is needed.
|
Attachment 5: ASspe.tar.gz
|