40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 100 of 344  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  2189   Fri Nov 6 00:40:29 2009 AlbertoUpdateLSCEverything put back as it was

I disconnected the setup for the arm cavity TF measurement. I opened the scitation switch on the ISS medm screen. I reconnected the OMC ISS EXC cable to the breakout box on the floor.

The photodiode on the Y end is stilll connected.

Also the RFAm (whish is not disbaled anymore) still has a 50% beam splitter before it.

I'm also running the Align Full IFO script.

  2190   Fri Nov 6 07:55:59 2009 steveUpdateComputersRFMnetwork is down

The RFMnetwork is down.  MC2 sus damping restored.

  2192   Fri Nov 6 10:35:56 2009 josephbUpdateComputersRFM reboot fest and re-enabled ITMY coil drivers

As noted by Steve, the RFM network was down this morning.  I noticed that c1susvme1 sync counter was pegged at 16384, so I decided to start with reboots in that viscinity.

After power cycling crates containing c1sosvme, c1susvme1, and c1susvme2 (since the reset buttons didn't work) only c1sosvme and c1susvme2 came back normally.  I hooked up a monitor and keyboard to c1susvme1, but saw nothing.  I power cycled the c1susvme crate again, and this time I watched it boot properly.  I'm not sure why it failed the first time.

The RFM network is now operating normally.  I have re-enabled the watchdogs again after having turned them off for the reboots.  Steve and I also re-enabled the ITMY coil drivers when I noticed them not damping once the watch dogs were re-enabled.  The manual switches had been set to disabled, so we re-enabled them.

  2193   Fri Nov 6 12:56:30 2009 HaixingUpdateSUSMagnet has been levitated

  In this experiment, we used a feedback control to create a stable trap for a NdFeB permanent magnet. The block diagram is the following:

block_diagram.PNG

 

 

The displacement of the magnet is sensed by the Hall-effect sensor, whose output voltage is proportional to the magnetic flux produced

by the permanent magnet. It has a flat response within the frequencies we are interested in. It is driven by a 5 V power supplier and its

output has a DC voltagle of 2.5 V. We subtracted the DC voltage and used the resulting signal as the error signal. This was

simply achieved by using two channels "A" and "B". The output is "A-B" with a gain equal to one. We then put the error

signal into another  SR560 as a low-pass filter with a gain of 100 above 30 Hz. We used the "DC" coupling modes in both

preamplifers. The output is then used to drive a coil. The coil has a dimension of 1.5 inch in diameter and 2 inch in length.

The inductance of the coil is around 0.5 H and the resistance is 4.7 Om. Therefore, it has a corner frequency aournd 10/2pi Hz.

The coil has a iron core inside to enhance the DC force to the permanent magnet. The low-frequency 1/f response of the magnet is produced

by the eddy current damping of the aluminum plane that is below the magnet. This 1/f response is essential for a stable configuration. In the

next stage, we will remove the aluminum plane, and instead we will use a filter to create similar transfer function. At high-frequencies, it behaves as 

a free-mass and has a 1/f^2 response. Finally, the magnet is stably levitated.

 

Attachment 1: DSC_0964.JPG
DSC_0964.JPG
  2194   Fri Nov 6 16:27:15 2009 JenneUpdatePEMRanger moved

The Ranger seismometer has been moved to ~the middle of the Mode Cleaner tube, and it's orientation has been changed to horizontal (using all of the locking/mass centering procedures).  This is similar in orientation to the way things were back in the day when Rana and Matt had the OAF running nicely.

  2196   Fri Nov 6 18:02:22 2009 josephbUpdateComputersElog restarted

While I was writing up an elog entry, the elog died again, and I restarted it.  Not sure what caused it to die since no one was uploading to it at the time.

  2197   Fri Nov 6 18:13:34 2009 josephbUpdateComputersMegatron woes

I have removed the RFM card from Megatron and left it (along with all the other cables and electronics) on the trolly in front of the 1Y9 rack.

Megatron proceeded to boot normally up until it started loading Centos 5.  During the linux boot process it checks the file systems.  At this point we have an error:

 

/dev/VolGroup00/LogVol00 contains a file system with errors, check forced

Error reading block 28901403 (Attempt to read block from filesystem resulted short read) while doing inode scan.

/dev/VolGroup00/LogVol00 Unexpected Inconsistency; RUN fsck MANUALLY

 

So I ran fsck manually, to see if I get some more information.  fsck reports back it can't read block 28901403 (due to a short read), and asks if you want to ignore(y)?.  I ignore (by hitting space), and unfortunately touch it an additional time.  The next question it asks is force rewrite(y)?  So I apparently forced a rewrite of that block.  On further ignores (but no forced rewrites) I continue seeing short read errors at 28901404, *40, *41,*71, *512, *513, etc.  So not totally continugous.  Each iteration takes about 5-10 seconds.  At this point I reboot, but the same problem happens again, although it starts 28901404 instead of 28901403.  So apparently the force re-write fixed something, but I don't know if this is the best way of going about this.  I just wondering if there's any other tricks I can try before I just start rewriting random blocks on the hard drive.  I also don't know how widespread this problem is and how long it might take to complete (if its a large swath of the hard drive and its take 10 seconds for each block that wrong, it might take a while).

So for the moment, megatron is not functional.  Hopefully I can get some advice from Alex on Monday (or from anyone else who wants to chime in).  It may wind up being easiest to just wipe the drive and re-install real time linux, but I'm no expert at that.

 

  2198   Fri Nov 6 18:52:09 2009 peteUpdateComputersRCG ETMY plan

  Koji, Joe, and I are planning to try controlling the ETMY, on Monday or Tuesday.  Our plan is to try to do this with megatron out of the RFM loop.   The RCG system includes pos, pit, yaw, side, and oplevs.  I will use matrix elements as currently assigned (i.e. not the ideal case of +1 and -1 everywhere).   I will also match channel names to the old channels.   We could put buttons on the medm screen to control the analog DW by hand.  

 
This assumes we can get megatron happy again, after the unhappy RFM card test today.  See Joe's elog immediately before this one.
 
We first plan to test that the ETMY watchdog can disable the RCG frontend, by using a pos step (before connecting to the suspension).   Hopefully we can make it work without the RFM.  Otherwise I think we'll have to wait for a working RFM card.
 
We plan to disable the other optics.  We will disable ETMY, take down the ETMY frontend, switch the cables, and start up the new RCG system.  If output looks reasonable we will enable the ETMY via the watchdog.   Then I suppose we can put in some small steps via the RCG controller and see if it damps.  
 
Afterwards, we plan to switch everything back.
  2199   Fri Nov 6 19:25:31 2009 Sanjit, Jenne, JoeUpdateAdaptive FilteringMore work on saving coeffs on the OAF screen

Quote:

 I made some changes in the code (all commented in the installed and SVN version) to print the filter coefficients. I got crazy output. Sometimes memory bugs lead to such crazy behavior. So far I could not find any bugs, but will have to spend more time on it 

 

Something strange was going on in the OAF code, printf would print a double precision number in %f format but not in %lf or %e format!

Since we know this problem now, we can move forward, but it will be important to know why printf was restricted and if there are other such constraints which we should remember while making changes in the codes.

 

  2200   Fri Nov 6 19:29:24 2009 JenneUpdateelogelog acting up

elog was acting up again (not running), so I restarted it. 

  2201   Fri Nov 6 20:10:15 2009 JenneUpdateelogelog acting up

Quote:

elog was acting up again (not running), so I restarted it. 

 

And again.  This makes 4 times since lunchtime yesterday....something bad is up.

  2202   Fri Nov 6 23:02:44 2009 HaixingUpdateGeneralSR785 Spectrum Analyzer

I am using SR785 Spectrum Analyzer now and also tomorrow. 
I will put it back on Sunday. If anyone needs it during the weekend,
please just take it and I can reset it by myself later. Thanks.

  2203   Sat Nov 7 23:50:45 2009 HaixingUpdateGeneralOpen-loop transfer function of the magnetic levitation system

I measured the open-loop transfer function of the magnetic levitation system.

The schematic block diagram for this measurement is the following:

transfer_function_meas_bd.PNG

I injected a signal at a level of 20mV between two preamplifiers, and the corresponding open-loop

transfer function is given by B/A.  I took a picture of the resulting measurement, because

I encountered some difficulties to save the data to the computer via the wireless network.

The bode plots for the transfer function shown on the screen is the following:

Transfer_function_meas.jpg

 

I am puzzled with the zero near 10 Hz. I think it should come from the mechanical response function, because there is no zero in the transfer functions

of the preamplifer and the coil itself. I am not sure at the moment.

The corresponding configuration of the levitated magnet is

magnetic_levitation.jpg

  2204   Sun Nov 8 14:18:25 2009 AlbertoUpdateSUSETMY Watchdogs tripped

This afternoon I re-enabled the ETMY coils after I found that the watchdogs for the mirror had tripped last night at 2:06am.

  2205   Sun Nov 8 22:50:29 2009 AlbertoUpdateASCIFO Alignment

Tonight I aligned the IFO by running the scripts one by one.

SRC was far off and I had to align SRM by hand before the script could work. SPOB is still low when DRM is aligned.

I'm restoring the full IFO now that I'm taking off.

  2206   Mon Nov 9 01:52:56 2009 ranaUpdatePEMcoherence v. time for 2 accelerometers

I used the coh_carpet.m function from the mDV to calculate this plot:

coh_carpet('C1:PEM-ACC_MC1_X','C1:PEM-ACC_MC2_X',gps('now - 3 days'),3600*12,4,10,64)

It shows the coherence v. time of two of our X-direction accelerometers starting around 1AM on Friday and going for 12 hours.

I'm not sure what it means exactly, but it looks like the coherence is relatively steady as a function of time. I will need more RAM than Rosalba or a smarter code to calculate longer time stretches.

Attachment 1: coh.png
coh.png
  2207   Mon Nov 9 08:43:16 2009 steveUpdateSUSMC2 damping restored

MC2 damping restored,  MZ locked and the arms are flashing now.

  2209   Mon Nov 9 11:14:57 2009 AlbertoUpdateABSLStarted working on the PSL table

I'm working on the PSL table to set up the PLL setup for the AbsL experiment.

  2212   Mon Nov 9 13:22:08 2009 josephb,alexUpdateComputersMegatron update

Alex and I took a look at megatron this morning, and it was in the same state I left it on Friday, with file system errors.  We were able to copy the advLIGO directory Peter had been working in to Linux1, so it should be simple to restore the code.  We then tried just running fsck, and overwritting bad sectors, but after about 5 minutes it was clear it could potentially take a long time (5-10 seconds per unreadable block, with an unknown number of blocks, possibly tens or millions).  The decision was made to simply replace the hard drive.

Alex is of the opinion that the hard drive failure was a coincidence.  Or rather, he can't see how the RFM card could have caused this kind of failure.

Alex went to Bridge to grab a usb to sata adapter for a new hard drive, and was going to copy a duplicate install of the OS onto it, and we'll try replacing the current hard drive with it.

  2215   Mon Nov 9 14:59:34 2009 josephb, alexUpdateComputersThe saga of Megatron continues

Apparently the random file system failure on megatron was unrelated to the RFM card (or at least unrelated to the physical card itself, its possible I did something while installing it, however unlikely).

We installed a new hard drive, with a duplicate copy of RTL and assorted code stolen from another computer.  We still need to get the host name and a variety of little details straightened out, but it boots and can talk to the internet.  For the moment though, megatron thinks its name is scipe11.

You still use ssh megatron.martian to log in though.

We installed the RFM card again, and saw the exact same error as before.  "NMI EVENT!" and "System halted due to fatal NMI".

Alex has hypothesized that the interface card the actual RFM card plugs into, and which provides the PCI-X connection might be the wrong type, so he has gone back to Wilson house to look for a new interface card.  If that doesn't work out, we'll need to acquire a new RFM card at some point

After removing the RFM card, megatron booted up fine, and had no file system errors.  So the previous failure was in fact coincidence.

 

  2217   Mon Nov 9 15:11:02 2009 AlbertoUpdateLSCEverything put back as it was

Quote:

I disconnected the setup for the arm cavity TF measurement. I opened the scitation switch on the ISS medm screen. I reconnected the OMC ISS EXC cable to the breakout box on the floor.

The photodiode on the Y end is stilll connected.

Also the RFAm (whish is not disbaled anymore) still has a 50% beam splitter before it.

I'm also running the Align Full IFO script.

 

I removed the beam splitter and the PDA 255.

the beam path to the RFAM photodiode is clear again.

  2218   Mon Nov 9 15:21:37 2009 JenneUpdateGeneralDrill Press is down for the count

Quote:

The on/off switch for the drill press is broken.  Replacement parts should be here tomorrow. 

 Drill press is all better now.  A spare switch is in the top drawer with the drill bits.

  2221   Mon Nov 9 18:32:38 2009 robUpdateComputersOMC FE hosed

It won't start--it just sits at Waiting for EPICS BURT, even though the EPICS is running and BURTed.

 

[controls@c1omc c1omc]$ sudo ./omcfe.rtl
cpu clock 2388127
Initializing PCI Modules
3 PCI cards found
***************************************************************************
1 ADC cards found
        ADC 0 is a GSC_16AI64SSA module
                Channels = 64
                Firmware Rev = 3

***************************************************************************
1 DAC cards found
        DAC 0 is a GSC_16AO16 module
                Channels = 16
                Filters = None
                Output Type = Differential
                Firmware Rev = 1

***************************************************************************
0 DIO cards found
***************************************************************************
1 RFM cards found
        RFM 160 is a VMIC_5565 module with Node ID 130
***************************************************************************
Initializing space for daqLib buffers
Initializing Network
Waiting for EPICS BURT


  2222   Mon Nov 9 19:04:23 2009 robUpdateComputersOMC FE hosed

Quote:

It won't start--it just sits at Waiting for EPICS BURT, even though the EPICS is running and BURTed.

 

[controls@c1omc c1omc]$ sudo ./omcfe.rtl
cpu clock 2388127
Initializing PCI Modules
3 PCI cards found
***************************************************************************
1 ADC cards found
        ADC 0 is a GSC_16AI64SSA module
                Channels = 64
                Firmware Rev = 3

***************************************************************************
1 DAC cards found
        DAC 0 is a GSC_16AO16 module
                Channels = 16
                Filters = None
                Output Type = Differential
                Firmware Rev = 1

***************************************************************************
0 DIO cards found
***************************************************************************
1 RFM cards found
        RFM 160 is a VMIC_5565 module with Node ID 130
***************************************************************************
Initializing space for daqLib buffers
Initializing Network
Waiting for EPICS BURT


 

From looking at the recorded data, it looks like the c1omc started going funny on the afternoon of Nov 5th, perhaps as a side-effect of the Megatron hijinks last week.

 

It works when megatron is shutdown.

  2223   Mon Nov 9 19:09:09 2009 JenneUpdatePEMNoise floor of the Ranger Seismometer

To estimate the noise floor of the Ranger, Rana and I locked the mass on the seismometer, so there will be no (aka minimal) signal from the motion of the ground in the pickup coil.  We should be seeing primarily the noise of the readout electronics.  We also put the Ranger on top of one of the foam lids from the Seismometer Isolation Boxes to further isolate from ground motion (this didn't change the signal noticeably).  

In this plot, Green is the locked-mass-on-foam noise floor, blue is the regular spectra, with the SR560 AC coupled, and the red is the regular seismic spectra with the SR560 DC coupled.  There doesn't seem to be a noticeable difference between blue and red (the spectra were taken at different times of day, with the red taken at night, when we generally expect things to be quieter).  I'm leaving the SR560 DC coupled.  (Rana had found it earlier this afternoon GND coupled....not sure yet why).

Also, we're not sure that the green curve is true readout noise, vs. how much of it is specifically due to the fact that the mass is locked down.  Especially around a few hundred Hz, the green curve is much higher than the other 2, and at a few tens of Hz there is some weird peak action.  However, this will be okay as a first-run noise estimate for the Ranger's noise floor.

The question at hand is: Do we need to redo any of the Ranger's readout electronics (i.e. replace the SR560 with a Pomona Box circuit) to lower the noise floor, or is it okay as-is?

Attachment 1: Ranger_noiseFloor_Spectra.png
Ranger_noiseFloor_Spectra.png
  2224   Mon Nov 9 19:44:38 2009 rob, ranaUpdateComputersOMC FE hosed

 

We found that someone had set the name of megatron to scipe11. This is the same name as the existing c1aux in the op440m /etc/hosts file.

We did a /sbin/shutdown on megatron and the OMC now boots.

Please: check to see that things are working right after playing with megatron or else this will sabotage the DR locking and diagnostics.

  2225   Tue Nov 10 10:51:00 2009 josephb, alexUpdateComputersMegatron on, powercycled c1omc, and burt restored from 3am snapshot

Last night around 5pm or so, Alex had remotely logged in and made some fixes to megatron.

First, he changed the local name from scipe11 to megatron.  There were no changes to the network, this was a purely local change.  The name server running on Linux1 is what provides the name to IP conversions.  Scipe11 and Megatron both resolve to distinct IPs. Given c1auxex wasn't reported to have any problems (and I didn't see any problems with it yesterday), this was not a source of conflict.  Its possible that Megatron could get confused while in that state, but it would not have affected anything outside its box.

Just to be extra secure, I've switched megatron's personal router over from a DMZ setup to only forwarding port 22.  I have also disabled the dhcp server on the gateway router (131.215.113.2).

Second, he turned the mdp and mdc codes on.  This should not have conflicted with c1omc.

This morning I came in and turned megatron back on around 9:30 and began trying to replicate the problems from last night between c1omc and megatron.  I called Alex and we rebooted c1omc while megatron was on, but not running any code, and without any changes to the setup (routers, etc).  We were able to burt restore.  Then we turned the mdp, mdc and framebuilder codes on, and again rebooted c1omc, which appeared to burt restore as well (I restored from 3 am this morning, which looks reasonable to me). 

Finally, I made the changes mentioned above to the router setups in the hope that this will prevent future problems but without being able to replicate the issue I'm not sure.

  2226   Tue Nov 10 13:02:36 2009 AlbertoUpdateLSCX and Y Arm Cavity Poles Measurement

From fitting the arm cavity transfer functions I got the following values for the cavity pole frequencies.

X ARM: fp_x = (1720 +/- 70) Hz

Y ARM: fp_y = (1650 +/- 70) Hz

Attached are the plots from the fitting.

Attachment 1: SummaryOfFits.pdf
SummaryOfFits.pdf SummaryOfFits.pdf
Attachment 2: CodeAndData.tar
  2229   Tue Nov 10 19:19:57 2009 AlbertoUpdateABSLRotated polarizer on the PSL table, along the MC input pick off beam

Aligning the beam for the PLL of the AbsL Experiement I rotated the polarizer along the path of the MC Input pick off beam (= the pick off coming from the MC periscope).

  2230   Tue Nov 10 19:21:53 2009 AlbertoUpdateABSLPLL Alignment

I've been trying to lock the PLL for the AbsL Experiment but I can't see the beat (between the auxiliary NPRO and the PSL).

I believe the alignment of the PLL is not good. The Farady Isolator is definitely not perfectly aligned (you can see it from the beam spot after it) but still it should be enough to see something at the PLL PD.

it's probably just that the two beams don't overlap well enough on the photodiode. I'll work on that later on.

I'm leaving the lab now. I left the auxiliary NPRO on but I closed its shutter.

All the flipping mirrors are down.

  2232   Wed Nov 11 00:55:47 2009 JenneUpdateAdaptive FilteringTerms put on some ADC inputs

Mostly a note to self:  I have put terminators on the ADC inputs which are usually the PEM-SEIS-GUR2_(XYZ) channels.  Since these 3 signals are currently going into the ASS ADC, these PEM ADC inputs are open, and have predefined channel names.  I'll collect the data and put it as the ADC noise level in my nifty plot which will show the noise limits of all things which affect Wiener Filtering.

  2233   Wed Nov 11 01:33:52 2009 peteUpdateCDSRCG ETMY code update

 I've added the side coil to the model controller and plant, and the oplev quad to the model controller and plant.  After the megatron wipe, the code now lives in /home/controls/cds/advLigo/src/epics/simLink.  The files are mdc.mdl (controller) and mdp.mdl (plant).  These RCG modules go at 16K with no decimation (no_oversampling=1 in the cdsParameters block) so hopefully will work with the old (16K) timing.

I've loaded many of the filters, there are some eft to do.  These filters are simply copied from the current frontend.  

Next I will port to the SUS module (which talks to the IO chassis).  This means channel names will match with the current system, which will be important when we plug in the RFM.

  2234   Wed Nov 11 09:48:04 2009 steveUpdateIOOwhere is IOO-RFAMPD_DCMON ?

RFAMPD_DCMON disappered on Nov 5, 2009

Attachment 1: rfampddc.jpg
rfampddc.jpg
  2237   Wed Nov 11 12:50:10 2009 JenneUpdatePEMSeismometer Noise Characteristics

The attached plot shows the spectra of the 3 Z axes of the 3 seismometers we have (this data is from ~20Aug2009, when the Ranger was in the Z orientation) in Magenta, Cyan and Green, and the noise of each of the sensors in Red, Blue and Black.  The noise curves were extracted from the spectra using the Huddle Test / 3 Corner Hat method.  The Blue and Black traces which are just a few points are estimates of the noise from other spectra.  The Blue points come from the Guralp Spec Sheet, and the Black comes from the noise test that Rana and I did the other day with the Ranger (elog 2223).  

I'm not really happy with the black spectra - it looks way too high.  I'm still investigating to see if this is a problem with my calibration/method....

Attachment 1: HuddleTest_Aug2009data.png
HuddleTest_Aug2009data.png
  2238   Wed Nov 11 15:04:52 2009 AlbertoUpdateABSLWorking on the AP table

I've opened the AP table and I'm working on it.

  2239   Wed Nov 11 16:18:57 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

I've opened the AP table and I'm working on it.

I re-aligned the Faraday on the AP table. I also aligned the beam to the periscope on the PSL and all the other optics along the beam path.  Now I have a nice NPRO beam at the PLL which overlaps with the PSL beam. The alignment has to be further improved because I see no beat yet.

I wonder if the all the tinkering on the PSL laser done recently to revive the power has changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat. So maybe the misalignment is the casue.

Not feeling very well right now. I need to go home for a while.

AP table closed at the moment.

NPRO shutter closed

  2240   Wed Nov 11 17:10:51 2009 JenneUpdateABSLWorking on the AP table

Quote:

Quote:

I've opened the AP table and I'm working on it.

I re-aligned the Faraday on the AP table. I also aligned the beam to the periscope on the PSL and all the other optics along the beam path.  Now I have a nice NPRO beam at the PLL which overlaps with the PSL beam. The alignment has to be further improved becasue I see no beat yet.

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat. So maybe the misalignment is the casue.

Not feeling very well right now. I need to go home for a while.

AP table closed at the moment.

NPRO shutter closed

 We definitely changed the PSL NPRO temp while fiddling around, trying to increase the laser power.  I think it's noted in the elog both times that it's happened in the last few months (once when Rana, Koji and I worked on it, and then again when it was just Koji), but we opened up the side of the MOPA box so that we could get at (and change) the potentiometer which adjusts the NPRO temp.  So you may have to search around for a while.

  2241   Wed Nov 11 17:33:54 2009 KojiUpdateABSLWorking on the AP table

Yes it did.

For long time, the crystal temperature C1:PSL-126MOPA_LTMP was 43~46deg. Now it is 34deg. Try ~10deg lower temperature.

Quote:

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat.

 

  2243   Wed Nov 11 20:46:07 2009 peteUpdateCDSRCG ETMY phase I update

The .mdl code for the mdc and mdp development modules is finished.  These modules need more filters, and testing.  Probably the most interesting piece left to do is putting in the gains and filters for the oplev model in mdp.  It might be OK to simply ignore oplevs and first test damping of the real optic without them.   However, it shouldn't be hard to get decent numbers for oplevs, add them to the mdp (plant) module, and make sure the mdc/mdp pair is stable.  In mdp, the oplev path starts with the SUSPIT and SUSYAW signals. Kakeru recently completed calibration of the oplevs from oplev cts to radians:   1403  .  From this work we should find the conversion factors from PIT and YAW to oplev counts, without making any new measurements.  (The measurements wouldn't be hard either, if we can't simply pull numbers from a document.)  These factors can be added to mdp as appropriate gains.

I've also copied mdc to a new module, which I've named "sas" to address fears of channel name collisions in the short term, and replaced the cpu-to-cpu connections with ADC and DAC connections.  sas can be the guy for the phase I ETMY test.  When we're happy with mdc/mdp, we hopefully can take the mdc filter file from chans, replace all the "MDC" strings with "SAS", and use it.

  2244   Wed Nov 11 20:57:06 2009 kiwamuUpdateElectronicsMulti-resonant EOM --- LC tank circuit ---

I have been working about multi-resonant EOM since last week.

In order to characterize the behavior of the each components, I have made a simple LC tank circuit.

You can see the picture of the circuit below.

DSCN0160.JPG

Before constructing the circuit, I made an "ideal" calculation of the transfer function without any assumptions by my hand and pen.

Most difficult part in the calculation is the dealing with a transformer analytically. Eventually I found how to deal with it in the analytical calculation.

The comparison of the calculated and measured transfer function is attached.

 It shows the resonant frequency of ~50MHz as I expected. Those are nicely matched below 50MHz !!

For the next step, I will make the model of the circuit with stray capacitors, lead inductors, ... by changing the inductance or something. 

 

Attachment 2: LCtank_complete.png
LCtank_complete.png
  2245   Wed Nov 11 21:30:20 2009 HaixingUpdateGeneralmagnetic levitation modelling files uploaded to svn

I have created a directory under the svn. The link is https://nodus.ligo.caltech.edu:30889/svn/trunk/docs/haixing

In the directory, there are three folders are related to the magnetic levitation.

 

The experimental data is in the "experiment_data".

 

The comsol numerical modelling files are in "mag_levi_comsol_modelling" which contains "1x1 magnets",

"4x4 magnets" and "16x16 magnets" sub-folders where detailed modelling results are included.The mathematica

notebooks in those folders are used to produce the plots I posted on the wiki page.

 

The "mag_levi_feedback" contains the Simulink modelling of the feedback loop. To generate the plot for the

open-loop transfer function. One needs to ruc the "mag_lev.m" file.

 

 

 

  2246   Thu Nov 12 01:18:34 2009 haixingUpdateSUSopen-loop transfer function of mag levi system (comparison between simulink and measurement)

I built a Simulink model of the magnetic levitation system and try to explain the dip in the open-loop transfer function that was observed.

One can download the model in the svn. The corresponding block diagram is shown by the figure below.

 

block_diagram.png

Here "Magnet" is equal to inverse of the magnet mass. Integrator "1/s" gives the velocity of the magnet. A further integrator gives the displacement of the magnet.

 

Different from the free-mass response, the response of the magnet is modified due to the existence of the Eddy-current damping  and negative spring in the vertical

direction, as indicated by the feedback loops after two integrals respectively. The motion of the magnet will change the magnetic field strength which in turn will pick

up by the Hall-effect sensor. Unlike the usual case, here the Hall sensor also picks up the magnetic field created by the coil as indicated by the loop below the mechanical

part. This is actually the origin of the dip in the open-loop transfer function. In the figure below, we show the open-loop transfer function and its phase contributed by both

the mechanical motion of the magnet and the Hall sensor with the black curve "Total". The contribution from the mechanical motion alone is shown by the magenta curve

"Mech" which is obtained by disconnecting the Hall sensor loop (I rescale the total gain to fit the measurement data due to uncertainties in those gains indicated in the figure). 

The contribution from the Hall sensor alone is indicated by the blue curve "Hall" which  is obtained by disconnecting the mechanical motion loop. Those two contributions

have the different sign as shown by the phase plot, and they destructively interfere with each other and create the dip in the open-loop transfer function.

contribution_plot.png

In the following figure, we show the close-loop response function of the mechanical motion of the magnet.

 

mech_resp_plot.png

As we can see, even though the entire close loop of the circuit is stable, the mechanical motion is unstable around 10 Hz. This simply comes from the fact that

around this frequency, the Hall sensor almost has no response to the mechanical motion due to destructive interference as mentioned.

 

In the future, we will replace the Hall sensor with an optical one to get rid of this undesired destructive interference.

 

 

  2248   Thu Nov 12 09:43:29 2009 steveUpdatePEMconstruction has started at CES

The concrete  floor cutting has begun next door at CES

Attachment 1: cuttingconcr.jpg
cuttingconcr.jpg
Attachment 2: cutcon1.JPG
cutcon1.JPG
Attachment 3: cutcon2.JPG
cutcon2.JPG
  2249   Thu Nov 12 10:45:02 2009 AlbertoUpdatePSLAbandoned Frequency Generator

This morning I found a frequency generator connected to something on the PSL table sitting on the blue step next to the sliding doors.

Is anyone using it? Has it been forgotten there? If that's the case, can the interested person please take care of removing it?

  2250   Thu Nov 12 10:45:36 2009 AlbertoUpdateABSLWorking on the AP table

I've opened the AP table and I'm working on it.

Also auxiliary NPRO turned on and mechanical shutter opened.

  2251   Thu Nov 12 11:19:10 2009 KojiUpdatePSLAbandoned Frequency Generator

Last night there was an activity for a calibratuon work, which I helped. I can take care of the FG.

Quote:

This morning I found a frequency generator connected to something on the PSL table sitting on the blue step next to the sliding doors.

Is anyone using it? Has it been forgotten there? If that's the case, can the interested person please take care of removing it?

 

  2252   Thu Nov 12 11:34:38 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

Yes it did.

For long time, the crystal temperature C1:PSL-126MOPA_LTMP was 43~46deg. Now it is 34deg. Try ~10deg lower temperature.

Quote:

I wonder if the all the tinkering on the PSL laser done recently to revive the power have changed the PSL NPRO temperature and so its frequency. That could also explain why the beat doesn't show up at the same temperature of the NPRO as I used to operate it. Although I scanned the NPRO temperature +/- 2 deg and didn't see the beat.

 

 Beat found at 30MHz with auxiliary NPRO temperature of 37.19 degrees, vs. ~48 deg as it used to be.

The beat is small (-70dBm). PLL alignment has to be improved.

  2253   Thu Nov 12 12:50:35 2009 AlbertoUpdateComputersStochMon calibrated channels added to the data trend

I added the StochMon calibrated channels to the data trend by including the following channel names in the C0EDCU.ini file:

[C1:IOO-RFAMPD_33MHZ_CAL]
[C1:IOO-RFAMPD_133MHZ_CAL]
[C1:IOO-RFAMPD_166MHZ_CAL]
[C1:IOO-RFAMPD_199MHZ_CAL]

Before saving the changes I committed C0EDCU.ini to the svn.

Then I restarted the frame builder so now the new channels can be monitored and trended.

  2254   Thu Nov 12 12:51:45 2009 AlbertoUpdateABSLWorking on the AP table

Quote:

I've opened the AP table and I'm working on it.

Also auxiliary NPRO turned on and mechanical shutter opened.

AP table and aux NPRO shutter just closed.

  2255   Thu Nov 12 15:40:27 2009 josephb, koji, peterUpdateComputersETMY and Megatron test take 1

We connected megatron to the IO chassis which in turn was plugged into the rest of the ITMY setup.  We had manually turned the watchdogs off before we touched anything, to ensure we didn't accidently drive the optic.  The connections seem to go smoothly.

However, on reboot of megatron with the IO chassis powered up, we were unable to actually start the code.  (The subsystem has been renamed from SAS to TST, short for test).  While starttst claimed to start the IOC Server, we couldn't find the process running, nor did the medm screens associated with it work.

As a sanity test, we tried running mdp, Peter's plant model, but even that didn't actually run.  Although it also gave an odd error we hadn't seen before:

"epicsThreadOnceOsd epicsMutexLock failed."

Running startmdp a second time didn't give the error message, but still no running code.  The mdp medm screens remained white.

We turned the IO chassis off and rebooted megatron, but we're still having the same problem.

 

Things to try tomorrow:

1) Try disconnecting megatron completely from the IO chassis and get it to a state identical to that of last night, when the mdp and mdc did run.

2) Confirm the .mdl files are still valid, and try rebuilding them

ELOG V3.1.3-