40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 1 of 330  Not logged in ELOG logo
ID Date Author Type Category Subject
  16624   Tue Jan 25 18:37:12 2022 TYehonathanUpdateBHDPR2 Suspension

PR2's side magnet height was adjusted and its roll was balanced (attachment 1,2). I verified that the OpLev beam is still aligned. The pitch was balanced: First, using an iris for rough adjustment. Then, with the QPD. I locked the counterweight setscrew.

I turned off the HEPAs, damped PR2, and measured the QPD spectra (attachment 3). Major peaks are at 690mHz, 953mHz, and 1.05Hz. I screwed back the lower OSEM plate. The wires were clamped to the suspension block and were cut. Winch adapter plate removed. I wanted to push OSEMs into the OSEM plates but the wiki is down so I can't tell what was the plan. This will have to wait for tomorrow. Also here like with AS1 we need to apply glue to the counterweights.

Attachment 1: PR2_magnet_height.png
PR2_magnet_height.png
Attachment 2: PR2_roll_balance.png
PR2_roll_balance.png
Attachment 3: FreeSwingingSpectra_div_50mV.pdf
FreeSwingingSpectra_div_50mV.pdf
  16623   Tue Jan 25 16:42:03 2022 AnchalSummaryBHDReduced filter gains in all damped new SOS

I noticed that our current suspension damping loops for the new SOS were railing the DAC outputs. The reason being that cts2um module has not been updated for most optics and thus teh OSEM signal (with the new Sat Amps) is about 30 times stronger. That means our usual intuition of damping gains is too high without applying correct conversion cts2um filter module. I reduced all these gains today and nothing is overflowing the c1su2 chassis now. I also added two options in the "!" (command running drop down menu) in the sus_single medm screens for opening ndscope for monitoring coil outputs or OSEM inputs of the optic whose sus screen is used.

 

  16622   Tue Jan 25 11:02:54 2022 AnchalSummaryBHDPart IX of BHR upgrade - AS1 free swing test failed

For some reasonf the free swing test showed only one resonance peak (see attachment 1). This probably happened because one of the earthquake stops is touching the optic. Maybe after the table balancing, the table moved a little over its long relazation time and by the time the free swing test was performed at 3 am, one of the earthquake stops was touching the optic. We need to check this when we open the chamber next.

Attachment 1: AS1_freeSwingTestFailed.pdf
AS1_freeSwingTestFailed.pdf
  16621   Tue Jan 25 10:55:02 2022 AnchalSummaryBHDPart VIII of BHR upgrade - LO2 input matrix diagonalization performed.

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on the LO2 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/LO2 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.


Free Swinging Resonances Peak Fits
  Resonant Frequency [Hz] Q A
POS 0.981 297 3967
PIT 0.677 202 1465
YAW 0.775 2434 1057
SIDE 1.001 244 4304

LO2 New Input Matrix
  UL UR LR LL SIDE
POS
0.46
1.237
1.094
0.318
0.98
PIT
1.091
0.252
-1.512
-0.672
-0.088
YAW
0.722
-1.014
-0.217
1.519
0.314
SIDE
-0.747
1.523
1.737
-0.534
3.134

The new matrix was loaded on LO2 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.

  16620   Mon Jan 24 21:18:40 2022 PacoSummaryBHDPart IX of BHR upgrade - AS1 placed and OSEM tuned

[Paco]

AS1 was installed in the ITMY chamber today. For this I moved AS4 to its nominal final placement and clamped it down with a single dog clamp. Then, I placed AS1 near the center of the table, and quickly checked AS4 could still be damped. After this, I leveled the table using a heavier/lighter counterweight pair. 

Once things were leveled, I proceeded to install AS1 OSEMs. The LL, UL, UR OSEMs had a bright level of 27000 counts, while SD and LR were at 29500, and 29900 respectively. After a while, I managed to damp all degrees of freedom around the 50% thousand count levels, and decided to stop. 

UL 27000.  -> 16000
UR 27000. -> 13800
LL 27000 -> 14600
LR 29900 -> 14900
SD 29500 -> 12900


Free swinging test set to trigger

AS1 is set to go through a free swinging test at 3 am this evening. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t AS1

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.


SUSPENSION STATUS UPDATED HERE

  16619   Mon Jan 24 20:48:48 2022 AnchalUpdateBHDAS4 Input Matrix Diagonalization performed.

I agree. That's an interesting idea. But does that mean that there is an always working inverse matrix solution or that any solution will be vulnerable to the alignment biases.

I think we can also calculate the matrix rotation required as a function of dc biases and do that rotation in the simulimk model.

Quote:

I think our suspension input matrix diagonalization is not so robust usually because we only choose a inverting matrix which gives the best separation for a single suspension alignment.

i.e. we have seen in the past that adjusting the bias for the alignment makes the matrix inversion not work well. Sometime people turn OFF the alignment bias before making the ringdown and that makes the whole measurement invalid.

This is because the sensitivity of the OSEMs to longitudinal and/or transverse motion is significantly different for different alignment.

I wonder if there's a way we can choose a better matrix by putting in random gain errors on the shadow sensor signals and then finding the matrix which gives the best diag under an ensemble of gain errors.

 

  16618   Mon Jan 24 18:53:09 2022 AnchalSummaryBHDPart VIII of BHR upgrade - LO2 placed and OSEMs tuned

I placed LO2 in its planned position in BS chamber, inserted the OSEMs, and tuned their position to halfway brightness. At the end of the work, I was able to damp the optic successfully. The full open (full brightness) OSEM ADC counts are:

UL 25743.  -> 12876
UR 27384. -> 13692
LL 25550. -> 12775
LR 27395 -> 13697
SD 28947 -> 14473

Today's OSEM tuning was relatively unhappening. I have only following two remarks:

  • BS table was 3 SOS near the East end and PRM is parked in the center, thus the table is very unevenly balanced. I had to use all available counter weights to make it flat near the LO2 suspension.
  • The side OSEM for LO2 is not exactly centered (probably due to table imbalance). I was able to balance the table to a point though that the side OSEM was responsive to full range and I was able to damp the optic.

Free swinging test set to trigger

LO2 is set to go through a free swinging test at 10 pm tonight. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t LO2

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.


Photos: https://photos.app.goo.gl/Ff3yGBprj9xgPbnLA

SUSPENSION STATUS UPDATED HERE

  16617   Mon Jan 24 17:58:21 2022 YehonathanUpdateBHDPR2 Suspension

I picked up the PR2 mirrors (labeled M1, M2) from Anchel's table and took them to the cleanroom. By inspection, I spotted some dust particles on M1. I wasn't able to remove them with clean air so I decided to use M2 which looked much cleaner. I wasn't able to discern any wedge angle on the optic. I inserted the optic into a thin optic adapter. The optic is thicker than I expected so I use long screws for the mirror clamping. I expect that the pitch balance will shift towards the front of the mirror so I assembled only 1 counterweight for now. The side blocks with wires in them were installed.

I engraved the SOS and installed the winches on it. Paco came in and helped me to hang the optic. Looking at the wire hanging angle I realize that 1 counterweight at the front is not enough. I install a second counterweight at the back and observe that I can cross the balancing point.

I locked the EQ stops. Suspension work continues tomorrow...

  16616   Mon Jan 24 17:12:27 2022 ranaUpdateBHDAS4 Input Matrix Diagonalization performed.

I think our suspension input matrix diagonalization is not so robust usually because we only choose a inverting matrix which gives the best separation for a single suspension alignment.

i.e. we have seen in the past that adjusting the bias for the alignment makes the matrix inversion not work well. Sometime people turn OFF the alignment bias before making the ringdown and that makes the whole measurement invalid.

This is because the sensitivity of the OSEMs to longitudinal and/or transverse motion is significantly different for different alignment.

I wonder if there's a way we can choose a better matrix by putting in random gain errors on the shadow sensor signals and then finding the matrix which gives the best diag under an ensemble of gain errors.

  16615   Mon Jan 24 17:10:25 2022 TegaSummaryComputer Scripts / ProgramsSUS Plant Plan for New Optics

[Ian, Tega]

Connected the New SUS screens to the controller for the simplant model. Because of hard-coded links in the medm screen links, it was necessary to create the following path in the c1sim computer, where the new medm screen files are located:

/opt/rtcds/userapps/trunk/sus/c1/medm/templates/NEW_SUS_SCREENS

 

We noticed a few problems:

1. Some of the medm files still had C1 hard coded, so we need to replace them with $IFO instead, in order for the custom damping filter screen to be useful.

2. The "Load coefficient" button was initially blank on the new sus screen, but we were able to figure out that the problem came from setting the top-level DCU_ID to 63.

medm -x -macro "IFO=X1,OPTIC=OPT_CTRL,DCU_ID=63" SUS_SINGLE_OVERVIEW.adl

 

[TODO]

Get the data showing the controller damping the pendulum. This will involve tweaking some gains and such to fine-tune the settings in the controller medm screen. Then we will be able to post some data of the working controller.

 

[Useful aside]

We should have a single place with all the instructions that are currently spread over multiple elogs so that we can better navigate the simplant computer.

Attachment 1: Screen_Shot_2022-01-24_at_5.33.15_PM.png
Screen_Shot_2022-01-24_at_5.33.15_PM.png
  16614   Mon Jan 24 12:33:41 2022 ranaConfigurationWikiAIC Wiki: txz files allowed

I updated the mime.local.conf file for the AIC Wiki so as to allow attachments with the .txz format. THis should be persistent over upgrades, since its a local file.

  16613   Fri Jan 21 16:40:10 2022 AnchalUpdateBHDAS4 Input Matrix Diagonalization performed.

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on the AS4 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/AS4 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.


Free Swinging Resonances Peak Fits
  Resonant Frequency [Hz] Q A
POS 1.025 337 3647
PIT 0.792 112 3637
YAW 0.682 227 1228
SIDE 0.993 164 3094

AS4 New Input Matrix
  UL UR LR LL SIDE
POS
0.844
0.707
0.115
0.253
-1.646
PIT
0.122
0.262
-1.319
-1.459
0.214
YAW
1.087
-0.901
-0.874
1.114
0.016
SIDE
0.622
0.934
0.357
0.045
3.822

The new matrix was loaded on AS4 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.

 

Attachment 1: AS4_SUS_InpMat_Diagnolization_20220121.pdf
AS4_SUS_InpMat_Diagnolization_20220121.pdf
Attachment 2: AS4_FreeSwingData_PeakFitting_20220121.pdf
AS4_FreeSwingData_PeakFitting_20220121.pdf
  16612   Fri Jan 21 14:51:00 2022 KojiUpdateBHDV6-704/705 Mirror now @Downs

Camille@Downs measured the surface of these M1 and M2 using Zygo.

Result of the ROC measurements:M1: ROC=2076m (convex)M2: ROC=2118m (convex)
Here are screenshots. One file shows the entire surface and the other shows the central 30mm.
Attachment 1: M1.PNG
M1.PNG
Attachment 2: M1_30mm.PNG
M1_30mm.PNG
Attachment 3: M2.PNG
M2.PNG
Attachment 4: M2_30mm.PNG
M2_30mm.PNG
  16611   Fri Jan 21 12:46:31 2022 TegaUpdateCDSSUS screen debugging

All done (almost)! I still have not sorted the issue of pitch and yaw gains growing together when modified using ramping time. Image of custom ADC and DAC panel is attached.

 

Quote:

Seen. Thanks.

 
Quote:

Indicated by the red arrow:
Even when the side damping servo is off, the number appears at the input of the output matrix

Indicated by the green arrows:
The face magnets and the side magnets use different ADCs. How about opening a custom ADC panel that accommodates all ADCs at once? Same for the DAC.

Indicated by the blue arrows:
This button opens a custom FM window. When the pitch gain was modified with a ramping time, the pitch and yaw gain grows at the same time even though only the pitch gain was modified.

Indicated by the orange circle:
The numbers are not indicated here, but they are input-related numbers (for watchdogging) rather than output-related numbers. It is confusing to place them here.

 

 

Attachment 1: Custom_ADC_DAC_monitors.png
Custom_ADC_DAC_monitors.png
  16610   Fri Jan 21 11:24:42 2022 AnchalSummaryBHDSR2 Input Matrix Diagonalization performed.

The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on theSR2 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/SR2 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.


Free Swinging Resonances Peak Fits
  Resonant Frequency [Hz] Q A
POS 0.982 340 3584
PIT 0.727 186 1522
YAW 0.798 252 912
SIDE 1.005 134 3365

SR2 New Input Matrix
  UL UR LR LL SIDE
POS
1.09
0.914
0.622
0.798
-0.977
PIT
1.249
0.143
-1.465
-0.359
0.378
YAW
0.552
-1.314
-0.605
1.261
0.118
SIDE
0.72
0.403
0.217
0.534
3.871

The new matrix was loaded on SR2 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.

 

Attachment 1: SR2_SUS_InpMat_Diagnolization_20220121.pdf
SR2_SUS_InpMat_Diagnolization_20220121.pdf
Attachment 2: SR2_FreeSwingData_PeakFitting_20220121.pdf
SR2_FreeSwingData_PeakFitting_20220121.pdf
  16609   Thu Jan 20 18:41:55 2022 AnchalSummaryBHDSR2 set to trigger free swing test

SR2 is set to go through a free swinging test at 3 am tonight. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t SR2

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.

 

  16608   Thu Jan 20 18:16:29 2022 AnchalUpdateBHDAS4 set to trigger free swing test

AS4 is set to go through a free swinging test at 10 pm tonight. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.

To access the test, on allegra, type:

tmux a -t AS4

Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.

  16607   Thu Jan 20 17:34:07 2022 KojiUpdateBHDV6-704/705 Mirror now @Downs

The PR2 candidate V6-704/705 mirrors (Qty2) are now @Downs. Camille picked them up for the measurements.

To identify the mirrors, I labeled them (on the box) as M1 and M2. Also the HR side was checked to be the side pointed by an arrow mark on the barrel. e.g. Attachment 1 shows the HR side up

Attachment 1: PXL_20220120_225248265_2.jpg
PXL_20220120_225248265_2.jpg
Attachment 2: PXL_20220120_225309361_2.jpg
PXL_20220120_225309361_2.jpg
  16606   Thu Jan 20 17:21:21 2022 TegaUpdateSUSTemporary watchdog

Temp software watchdog now operational for LO1 and the remaining optics!

Koji helped me understand how to write to switches and we tried for a while to only turnoff the output switch of the filters instead of the writing a zero that resets everything in the filter.

Eventually, I was able to move this effort foward by realising that I can pass the control trigger along multiple records using the forwarding option 'FLNK'. When I added this field to the trigger block, record(dfanout,"C1:SUS-LO1_PUSH_ALL"), and subsequent calculation blocks, record(calcout,"C1:SUS-LO1_COILSWa") to record(calcout,"C1:SUS-LO1_COILSWd"), everything started working right.

Quote:

After some work on the reference database file, we now have a template for temporary watchdog implementation for LO1 located here "/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db".

Basically, what I have done is swap the EPICS asyn analog input readout for the COIL and OSEM to accessible medm channels, then write out watchdog enable/disable to coil filter SW2 switch. Everything else in the file remains the same. I am worried about some of the conversions but the only way to know more is to see the output on the medm screen.

To test, I restarted c1su2 but this did not make the LO1 database available, so I am guessing that we also need to restart the c1sus, which can be done tomorrow.

 

  16605   Thu Jan 20 17:03:36 2022 AnchalSummaryBHDPart IV of BHR upgrade - SR2 OSEM tuned.

The main issue with SR2 OSEMs, now that I think of it, was that the BS table was very inclined due to the multiple things we removed (including counterweights). Today the first I did was level the BS table by placing some counterweights in the correct positions. I placed the level in two directions right next to SR2 (clamped in its planned place), and made the bubble center.

While doing do, at one point, I was trying to reach the far South-West end of the table with the 3x heavy 6" cylindrical counterweight in my hand. The counterweight slipped off my hand and fell from the table. See the photo in attachment 1. It went to the bottommost place and is resting on its curved surface.

This counterweight needs to be removed but one can not reach it from over the table. So to remove it, we'll have to open one of the blank flanges on the South-west end of BS chamber and remove the counterweight from there. We'll ask Chub to help us on this. I'm sorry for the mistake, I'll be more careful with counterweights in the future.

Moving on, I tuned all the SR2 OSEMs. It was fairly simple today since the table was leveled. I closed the chamber with the optic free to move and damped in all degrees of freedom.


Photos: https://photos.app.goo.gl/CQ6VouSB1HX2DPqW6


SUSPENSION STATUS UPDATED HERE

Attachment 1: DJI_0144.JPG
DJI_0144.JPG
  16604   Thu Jan 20 16:42:55 2022 PacoUpdateBHDAS4 OSEMs installation - part 2

[Paco]

Turns out, the shifting was likely due to the table level. Because I didn't take care the first time to "zero" the level of the table as I tuned the OSEMs, the installation was b o g u s. So today I took time to,

a) Shift AS4 close to the center of the table.

b) Use the clean level tool to pick a plane of reference. To do this, I iteratively placed two counterweights (from the ETMX flow bench) in two locations in the breadboard such that I nominally balanced the table under this configuration to zome reference plane z0. The counterweight placement is of course temporary, and as soon as we make further changes such as final placement of AS4 SOS, or installation of AS1, their positions will need to change to recover z=z0.

c) Install OSEMs until I was happy with the damping. ** Here, I noticed the new suspension screens had been misconfigured (probably c1sus2 rebooted and we don't have any BURT), so quickly restored the input and output matrices.


SUSPENSION STATUS UPDATED HERE

  16603   Thu Jan 20 12:10:51 2022 YehonathanUpdateBHDAS1 resurrection

I was wondering whether I should take AS1 down to redo the wire clamping on the side blocks. I decided to take the OpLev spectrum again to be more certain. Attachments 1,2,3 show 3 spectra taken at different times.

They all show the same peaks 744mHz, 810mHz, 1Hz. So I think something went wrong with yesterday's measurement. I will not take AS1 down for now. We still need to apply some glue to the counterweight.

Attachment 1: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
Attachment 2: FreeSwingingSpectra_div_20mV.pdf
FreeSwingingSpectra_div_20mV.pdf
Attachment 3: FreeSwingingSpectra_div_50mV.pdf
FreeSwingingSpectra_div_50mV.pdf
  16602   Thu Jan 20 01:48:02 2022 KojiUpdateBHDPR2 transmission calculation updated

IMC is not such lossy. IMC output is supposed to be ~1W.

The critical coupling condition is G_PRC = 1/T_PRM = 17.7. If we really have L_arm = 50ppm, we will be very close to the critical coupling. Maybe we are OK if we have such condition as our testing time would be much longer in PRMI than PRFPMI at the first phase. If the arm loss turned out to be higher, we'll be saved by falling to undercoupling.
When the PRC is close to the critical coupling (like 50ppm case), we roughly have Tprc x 2 and Tarm to be almost equal. So each beam will have 1/3 of the input power i.e. ~300mW. That's probably too much even for the two OMCs (i.e. 4 DCPDs). That's OK. We can reduce the input power by 3~5.

Quote:

LO Power

LO power when PRFPMI is locked is calculated by assuming 1 W of input power to IMC. IMC is assumed to let pass 10% of the power (L_{\rm IMC}=0.1).

 

  16601   Thu Jan 20 00:26:50 2022 KojiUpdateSUSTemporary watchdog

As the new db is made for c1susaux, 1) it needs to be configured to be read by c1susaux 2) it requires restarting c1susaux 3) it needs to be recorded by FB 4) and restartinbg FB.
(^-Maybe not super exact procedure but conceptually like this)

cf.
https://wiki-40m.ligo.caltech.edu/How_To/Add_or_rename_a_daq_channel

 

  16600   Wed Jan 19 21:39:22 2022 TegaUpdateSUSTemporary watchdog

After some work on the reference database file, we now have a template for temporary watchdog implementation for LO1 located here "/cvs/cds/caltech/target/c1susaux/C1_SUS-AUX_LO1.db".

Basically, what I have done is swap the EPICS asyn analog input readout for the COIL and OSEM to accessible medm channels, then write out watchdog enable/disable to coil filter SW2 switch. Everything else in the file remains the same. I am worried about some of the conversions but the only way to know more is to see the output on the medm screen.

To test, I restarted c1su2 but this did not make the LO1 database available, so I am guessing that we also need to restart the c1sus, which can be done tomorrow.

  16599   Wed Jan 19 18:15:34 2022 YehonathanUpdateBHDAS1 resurrection

Today I suspended AS1. Anchal helped me with the initial hanging of the optics. Attachments 1,2 show the roll balance and side magnet height. Attachment 3 shows the motion spectra.

The major peaks are at 668mHz, 821mHz, 985mHz.

For some reason, I was not able to balance the pitch with 2 counterweights as I did with the rest of the thin optics (and AS1 before). Inserting the weights all the way was not enough to bring the reflection up to the iris aperture that was used for preliminary balancing. I was able to do so with a single counterweight (attachment 4). I'm afraid something is wrong here but couldn't find anything obvious. It is also worth noting that the yaw resonance 668mHz is different from the 755mHz we got in all the other optics. Maybe one or more of the wires are not clamped correctly on the side blocks?

The OSEMs were pushed into the OSEM plate and the plates were adjusted such that the magnets are at the center of the face OSEMs. The wires were clamped and cut from the winches. The SOS is ready for installation.

Also, I added a link to the OSEM assignments spreadsheet to the suspension wiki.

I uploaded some pictures of the PEEK EQ stops, both on the thick and thin optics, to the Google Photos account.

Attachment 1: AS1_roll_balance2.png
AS1_roll_balance2.png
Attachment 2: AS1_magnet_heigh2.png
AS1_magnet_heigh2.png
Attachment 3: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
Attachment 4: IMG_6324.JPG
IMG_6324.JPG
  16598   Wed Jan 19 16:22:48 2022 AnchalUpdateBHDPR2 transmission calculation updated

I have further updated my calculation. Please find the results in the attached pdf.

Following is the description of calculations done:


Arm cavity reflection:

Reflection fro arm cavity is calculated as simple FP cavity reflection formula while absorbing all round trip cavity scattering losses (between 50 ppm to 200 ppm) into the ETM transmission loss.

So effective reflection of ETM is calculated as

r_{\rm ETMeff} = \sqrt{1 - T_{\rm ETM} - L_{\rm RT}}

r_{\rm arm} = \frac{-r_{\rm ITM} + r_{\rm ETMeff}e^{2i \omega L/c}}{1 - r_{\rm ITM} r_{\rm ETMeff}e^{2 i \omega L/c}}

The magnitude and phase of this reflection is plotted in page 1 with respect to different round trip loss and deviation of cavity length from resonance. Note that the arm round trip loss does not affect the sign of the reflection from cavity, at least in the range of values taken here.


PRC Gain

The Michelson in PRFPMI is assumed to be perfectly aligned so that one end of PRC cavity is taken as the arm cavity reflection calculated above at resonance. The other end of the cavity is calculated as a single mirror of effective transmission that of PRM, 2 times PR2 and 2 times PR3. Then effective reflectivity of PRM is calculated as:

r_{\rm PRMeff} = \sqrt{1 - T_{\rm PRM} - 2T_{\rm PR2} - 2T_{\rm PR3}}

t_{\rm PRM} = \sqrt{T_{\rm PRM}}

Note, that field transmission of PRM is calculated with original PRM power transmission value, so that the PR2, PR3 transmission losses do not increase field transmission of PRM in our calculations. Then the field gain is calculated inside the PRC using the following:

g = \frac{t_{\rm PRM}}{1 - r_{\rm PRMeff} r_{\rm arm}e^{2 i \omega L/c}}

From this, the power recycling cavity gain is calculated as:
G_{\rm PRC} = |g|^2

The variation of PRC Gain is showed on page 2 wrt arm cavity round trip losses and PR2 transmission. Note that gain value of 40 is calculated for any PR2 transmission below 1000 ppm. The black verticle lines show the optics whose transmission was measured. If V6-704 is used, PRC Gain would vary between 15 and 10 depending on the arm cavity losses. With pre-2010 ITM, PRC Gain would vary between 30 and 15.


LO Power

LO power when PRFPMI is locked is calculated by assuming 1 W of input power to IMC. IMC is assumed to let pass 10% of the power (L_{\rm IMC}=0.1). This power is then multiplied by PRC Gain and transmitted through the PR2 to calculate the LO power.

P_{\rm LO, PRFPMI} = P_{\rm in} L_{\rm IMC}G_{\rm PRC}T_{\rm PR2}

Page 3 shows the result of this calculation. Note for V6-704, LO power would be between 35mW and 15 mW, for pre-2010 ITM, it would be between 15 mW and 5 mW depending on the arm cavity losses.

The power available during alignment is simply given by:
P_{\rm LO, align, PRM} = P_{\rm in} L_{\rm IMC} T_{\rm PRM} T_{\rm PR2}

P_{\rm LO, align, no PRM} = P_{\rm in} L_{\rm IMC} T_{\rm PR2}

If we remove PRM from the input path, we would have sufficient light to work with for both relevant optics.


I have attached the notebook used to do these calculations. Please let me know if you find any mistake in this calculation.

Attachment 1: PR2transmissionSelectionAnalysis.pdf
PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf
Attachment 2: PR2_Trans_Calc.ipynb.zip
  16597   Wed Jan 19 14:41:23 2022 KojiUpdateBHDSuspension Status

Is this the correct status? Please directly update this entry.


LO1 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
LO2 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
AS1 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned]
[Damped]
AS4 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
PR2 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
PR3 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]
SR2 [Glued] [Suspended] [Balanced] [Placed In Vacuum] [OSEM Tuned] [Damped]


Last updated: Mon Jan 24 19:32:18 2022

  16596   Wed Jan 19 12:56:52 2022 PacoSummaryBHDAS4 OSEMs installation

[Paco, Tega, Anchal]

Today, we started work on AS4 SOS by checking the OSEM and cable. Swapping the connection preserved the failure (no counts) so we swapped the long OSEM for a short one that we knew was working instead, and this solved the issue. We proceeded to swap in a "yellow label", long OSEM in place and then noticed the top plate had issues with the OSEM threads. We took out the bolt and inspected its thread, and even borrowed the screw from PR2 plate but saw the same effect. Even using a silver plated setscrew such as the SD OSEM one resulted in trouble... Then, we decided to not keep trying weird things, and took our sweet time to remove the UL, UR OSEMs, top earthquake stops, and top plate carefully in-situ. Then, we continued the surgery by installing a new top plate which we borrowed from the clean room (the only difference is the OSEM aperture barrels are teflon (?) rather than stainless. The operation was a success, and we moved on to OSEM installation.

After reaching a good place with the OSEM installation, where most sensors were at 50% brightness level and we were happy with the damping action (!!), we fixed all EQ stops and proceeded to push the SOS to its nominal placement. Then upong releasing the EQ stops, we found out that the sensor readings were shifted.

  16595   Wed Jan 19 12:50:10 2022 AnchalSummaryBHDPart IV of BHR upgrade - SR2 OSEM tuning progress.

It was indeed the issue of the top OSEM plate not being in the right place horizontally. But the issue was more non-trivial. I believe because of the wedge in thick optics, there is a YAW offset in the optic in the free hanging position. I had to readjust the OSEM plate 4 times to be able to get full dark to bright range in both upper OSEMs. After doing that, I tuned the four OSEMs somewhat near the halfway point and once I was sure I'm inside the sensitive region in all face OSEMs, I switched on POS, PIT, and YAW damping. Then I was able to finely tune the positions of both upper OSEMs.

However, on reaching to lower right OSEM, I found again the same issue. I had to stop to go to the 40m meeting, I'll continue this work in the afternoon. But OSEM plate adjustment in the horizontal direction, particularly for thick optics is required to be done before transporting them. I achieved the best position by turning the OSEM 90 degrees and using the OSEM LED/PD plates to determine the position. This was the final successful trial I did in adjusting the plate position horizontally.

 

  16594   Tue Jan 18 18:19:22 2022 KojiSummaryBHDAS4 placed in ITMY Chamber, OSEMs connected

AS4 satellite amplifier D1002818 / D080276 troubleshoot

I dug into the circuit to see what/where things were wrong.

- UL saturation issue: The open light voltage at the TIA output (I-V out) was 10.4V. It seemed that the photocurrent of 86uA was simply a little too much for the transimpedance gain of 121kOhm. So the R18 was replaced to 100kOhm. This made the I-V out to be 8.6V and the ADC input count to be 28200 (Attachment 1). This modification was done on the unit S2100742 CH1 (LEFT CH1)

- Non responding LL issue: Now moved on to LL (LEFT CH2). The basic circuit test didn't reveal any problem. So the DSUB25 cables were swapped at the vacuum feedthru flange. The result is shown in Attachment 2. LL OSEM issue was moved to the 2nd ch of the right channel of the sat amp (CH6). This is means that the problem is somewhere in the vacuum chamber (including the vacuum feedthru). We need to check the in-vacuum cable and the OSEM. We can test the OSEM by swapping the position of the OSEM connector between LL and UL (for example).

 

Attachment 1: Screen_Shot_2022-01-18_at_17.48.16.png
Screen_Shot_2022-01-18_at_17.48.16.png
Attachment 2: cable_swap.png
cable_swap.png
  16593   Tue Jan 18 18:16:28 2022 AnchalSummaryBHDPart IV of BHR upgrade - SR2 Sat Amp Box inspection

I tested the monitor ports on the SR2 Sat Amp Box but found that all LED Mon and PD Mon are giving expected values. I disconnected the cable to OSEM and checked the PD monitors and found no offsets in case of no PD current. I realised that PD transimpedance offset should be checked with PD inputs shorted instead. So I created a male DB 25 connector with pinds 2-3, 50-6, 8-9 and 11-12 shorted. This on connecting to the OSEM cable at the back of sat amp boxes should short the PD inputs. On using this plug, I found no offsets in any of the Sat Amp PD output channels.


Discussion with Koji

It is possible that the issue is there because the magnet is missing the LED-PD path way because it is offset sideways. In fact, in my limited memory, I do not recall seeing the UL OSEM signal ever going to complete darkness either. Tomorrow, we should take a photo of the OSEMs from the back and see if any sideways adjustment of the top OSEM plate is required. If any adjustment is required, we must take the OSEMs out and then do the adjustment. Do not attempt to adjust OSEM plate with OSEMs inserted in-situ. That will most probably knock off the magnets.

  16592   Tue Jan 18 15:19:49 2022 PacoSummaryBHDPart IV of BHR upgrade - Replaced old SR3 with SOS SR2. OSEM tuning attemtped.

[Tega, Anchal, Paco]

We started working on SR2 installation. Preliminary work involved

  • Removing SR3 from BS chamber. For whatever reason this optic was still installed. It got relocated in the west corner of the ETMX flow bench.

That was pretty much it. After identifying the cabling situation, we proceeded to bring SR2 from the cleanroom. The magnets and wires remained well through their travel.

Connected OSEM one-by-one. Starting from top right  to left (PIn1)

1st connector: LL -> UR -> UL

2nd connector: LR -> SD** (we had some trouble here where the first time we made a connection we didn't see any signal, after a brief review of cables, sat amp unit, cables again with Koji, and sat amp again, we found out a connection was not done in the front of the SR2 SatAmp box, after which we saw the sensor signals).

Loosening all OSEMs and taking them out and noting full bright readings:

  • SD: 29600 -> 14980
  • LR:  21840 -> 10920
  • UR:  25900 -> 12950
  • LL: 28020  -> 14010
  • UL: 25750 -> 12875

After finishing the initial SD osem tuning, we moved onto UL, and then to UR, but we noticed that the UR was not able to drop to its target value of ~13000 counts, even when the OSEM face was < 1 mm from the adapter (see Attachments #1-2). Apart from becoming harder to push in, it became apparent that the dark level (full shadow) is not consistent with ~ 0 counts; is there an offset coming from SatAmp? We quickly checked the OSEM by replacing it in-situ with another working one from the cleanroom batch, but the issue persisted. We decided to stop here, as we suspect the SatAmp box might have some issue.


Photos: https://photos.app.goo.gl/HXzG6mj4oxKTksjZ7

Attachment 1: PXL_20220119_012954365.jpg
PXL_20220119_012954365.jpg
Attachment 2: PXL_20220119_013003522.jpg
PXL_20220119_013003522.jpg
  16591   Tue Jan 18 14:26:09 2022 PacoSummaryBHDPart IX of BHR upgrade - Placed remaining filters SR2, PR3, PR2

[Anchal, Paco]

Added input filters, input matrix, damping filters, output matrix, coil filters, and copy the state over from LO1 into SR2, PR2, PR3 screens in anticipation for damping.

  16590   Fri Jan 14 18:12:47 2022 AnchalSummaryBHDAS4 placed in ITMY Chamber, OSEMs connected

AS4 was succesfully suspended and trasported to ITMY chamber (40m/16589). We placed it near the door to make it easy to tune the OSEMs. We connected the OSEMs and found that the LL OSEM is not responding. Even though the the OSEMs are completely out right now, there was no signal on this OSEM. This could be an issue in either at the LED driver circuit or the PD circuit in AS4 Sat Amp box, or it could be the OSEM that is bad. We'll investigate further next day. For now, we recorded the full brightness reading for the OSEMs:

  • UL: 32767  -> 16383
  • UR: 29420 -> 14710
  • LR: 30100 -> 15050
  • SD: 29222 -> 14611

Another thing to note is that UL value above is not changing at all. I checked the CDS screen and the the ADC input is overflowing in complete bright position of the OSEM.

  16589   Fri Jan 14 17:33:10 2022 YehonathanUpdateBHDAS4 resurrection

{Yehonathan, Anchal}

Came this morning, the gluing of the magnets was 100% successful. Side blocks, counterweights were assembled. We suspend AS4 and adjust the roll balance and the magnet height (attachments 1,2). OpLev was slightly realigned.

The pitch was balanced. We had to compensate for the pitch shift due to the locking of the counterweights. Once we got good pitch balance, the motion spectrum was taken (attachment 3). Major peaks are at 755mHz, 953mHz, 1040mHz.

Previous peaks were 755mHz, 964mHz, and 1.062Hz so not much has changed. We pushed back the OSEMs, adjusted OSEM plate and locked it tightly. We lock the EQ stops and transfer AS4 to the vacuum chamber in foil. We open the foil inside the chamber. No magnets were broken. Everything seems to be intact. We connect the OSEMs to CDS.

Attachment 1: AS4_roll_balance2.png
AS4_roll_balance2.png
Attachment 2: AS4_magnet_height2.png
AS4_magnet_height2.png
Attachment 3: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
  16588   Fri Jan 14 14:04:51 2022 PacoUpdateElectronicsRFSoC 2x2 board arrived

The Xilinx RFSoC 2x2 board arrived right before the winter break, so this is kind of an overdue elog. I unboxed it, it came with two ~15 cm SMA M-M cables, an SD card preloaded with the ARM processor and a few overlay jupyter notebooks, a two-piece AC/DC adapter (kind of like a laptop charger), and a USB 3.0 cable. I got a 1U box, lid, and assembled a prototype box to hold this board, but this need not be a permanent solution (see Attachment #1). I drilled 4 thru holes on the bottom of the box to hold the board in place. A large component exceeds the 1U height, but is thin enough to clear one of the thin slits at the top (I believe this is a fuse of some sort). Then, I found a brand new front panel, and drilled 4x 13/32 thru holes in the front for SMA F-F connectors.

I powered the board, and quickly accessed its tutorial notebooks, including a spectrum analyzer and signal generators just to quickly check it works normally. The board has 2 fast RFADCs and 2 RFDACs exposed, 12 and 14 bit respectively, running at up to 4 GSps.

Attachment 1: PXL_20220114_211249499.jpg
PXL_20220114_211249499.jpg
  16587   Fri Jan 14 13:46:25 2022 AnchalUpdateBHDPR2 transmission calculation updated

I updated the arm cavity roundtrip losses due to scattering. Yehonathan told me that arm cavity looses 50ppm every roundtrip other than the transmission losses. With the updated arm cavity loss:

  PRFPMI LO Power (mW) Unlocked PRC LO Power (uW) PRC Gain
pre-2010 ITM 8 28 15.2
V6:704 24 113 12

 

Attachment 1: LO_power_vs_PR2_transmission.pdf
LO_power_vs_PR2_transmission.pdf
Attachment 2: PRC_Gain_vs_PR2_transmission.pdf
PRC_Gain_vs_PR2_transmission.pdf
Attachment 3: PR2_Trans_Calc.ipynb.zip
  16586   Fri Jan 14 12:01:21 2022 AnchalUpdateElectronicsBS & ITMY feedthroughs labeled and connected to Sat Amps

I labeled all the newly installed flanges and connected the in-air cables (40m/16530) to appropriate ports. These cables are connected to the CDS system on 1Y1/1Y0 racks through the satellite amplifiers. So all new optics now can be damped as soon as they are placed. We need to make more DB9 plugs for setting "Acquire" mode on the HAM-A coil drivers since our Binary input system is not ready yet. Right now, we only have 2 such plugs which means only one optic and be damped at a time.

 

  16585   Fri Jan 14 11:00:29 2022 AnchalUpdateBHDPR2 transmission calculation

Yeah, I counted the loss from arm cavities as the transmission from ETMs on each bounce. I assumed Michelson to be perfectly aligned to get no light at the dark port.  Should I use some other number for the round-trip loss in the arm cavity?

  16584   Fri Jan 14 03:07:04 2022 KojiUpdateBHDPR2 transmission calculation

I opened the notebook but I was not sure where you have the loss per bounce for the arm cavity.

    PRC_RT_Loss = 2 * PR3_T + 2 * PR2_T + 2 * Arm_Cavity_Finesse * ETM_T + PRM_T

Do you count the arm reflection loss to be only 2 * 13ppm * 450 = 1.17%?

  16583   Thu Jan 13 17:10:55 2022 AnchalUpdateBHDPR2 transmission calculation

I corrected the calculation by adding losses by the arm cavity ends times the arm cavity finesse and also taking into account the folding of the cavity mirror. I used exact formula for finesse calculation and divided it by pi to get the PRC gain from there. Attachment 3 is the notebook for referring to the calculations I made.

Note that using V6-704 would provide 35 mW of LO power when PRFPMI is locked and 113 uW for alignment, but will bring down the PRC Gain to 17.5.

pre-2010 ITM (if it is still an option) would provide 12 mW of LO power when PRFPMI is locked and 28 uW for alignment, but will keep the PRC Gain to 24.6.

I still have to do a curvature check on the V6-704 optic.

Attachment 1: LO_power_vs_PR2_transmission.pdf
LO_power_vs_PR2_transmission.pdf
Attachment 2: PRC_Gain_vs_PR2_transmission.pdf
PRC_Gain_vs_PR2_transmission.pdf
Attachment 3: PR2_Trans_Calc.ipynb.zip
  16582   Thu Jan 13 16:08:00 2022 YehonathanUpdateBHDgluing magnets after AS1/4 misfortune

{Yehonathan, Anchal, Paco}

In the cleanroom, we removed AS1 and AS4 from their SOS towers. We removed the mirrors from the adapters and put them in their boxes. The broken magnets were collected from the towers and their surfaces were cleaned as well as the magnet sockets on the two adapters and on the side block from where the magnets were knocked off.

We prepared our last batch of glue (more glue was ordered three days ago) and glue 2 side magnets and 2 face magnets. We also took the chance and apply glue on the counterweights on the thick optic adapters so there is no need to look for alternatives for now.

The peek screws and nuts were assembled on the thick optics SOS towers instead of the metal screws and nuts that were used as upper back EQ stops.

  16581   Thu Jan 13 12:29:27 2022 AnchalSummaryBHDAS4 LR magnet broke

After the debacle with AS1 (40m/16580), we decided the put the PEEK earthquake stop by first removing the lower OSEM plate and then doing it. So I unfastened AS4 from its position with the earthquake stops in place and moved the suspension to the center of the table. Then I carefully removed the bottom OSEM plate. But I found out that the LR magnet is broken and lying on the floor of the suspension sad. Given my past on the same day, it could be me breaking it again during the moving of the suspension of taking off the OSEM plate or there is a small chance that this break happened before. Regardless of fault, this meant we have to resuspend AS4 again as well. So we transported AS4 back to the clean room and the work on it's re-suspension has begun.

  16580   Thu Jan 13 12:24:08 2022 AnchalSummaryBHDAS1 SD and LR magnets broke

[Anchal (vacuum work), Paco (outside)]

After the AS1 Sat Amp fix (40m/16579), we today were able to tune all OSEMs to the mid-bright level. But when we were about to call it, we were told that the new PEEK earthquake stop screw and bolts need to go on the thin suspended optics. Against better judgment, we decided to install the new back earthquake stop in-situ since we had tuned all OSEMs already. I installed the new stop but after that found that in the process I have broken off the side magnet and LR magnet from the optic adaptor and they are inside the OSEM coils now. This means we'll have to redo the AS1 suspension almost from scratch again sad. We have transported AS1 to the cleanroom where the work on re-suspension has begun.

  16579   Thu Jan 13 09:48:41 2022 AnchalSummaryBHDAS1 Sat Amp fixed

I fixed the issue in AS1 Sat Amp (S2100741) by using a razor blade. I cut the short between the two places, cleaned up the area and covered it with electrical tape. However, later feedback from Rana was to not use electrical tape as it dries up and becomes brittle and lfaky in long run. So after the AS1 OSEM tuning is over, I'll open this box again and use something else to insulate the exposed area. See attached pictures for current status.

 

Attachment 1: signal-2022-01-13-094823_001.jpeg
signal-2022-01-13-094823_001.jpeg
Attachment 2: signal-2022-01-13-094823_002.jpeg
signal-2022-01-13-094823_002.jpeg
  16578   Tue Jan 11 18:40:25 2022 AnchalSummaryBHDAS1 Sat Amp has a PCB issue

AS1 Sat Amp (S2100741) has a critical PCB issue on it's Ch5-8 board S2100548. This board is supposed to just feed through the coil driver signal from the front DB9 connector to the back DB25 connector but it has a short between pins 2 and 7 at the "Coil Input" end (connector J1). The short persists even after I disconnect the sat amp to the flange connector on the back of this board, which definitely means the short is present in the passive channeling through the PCB or at the soldering points of the two DB connectors. I just flipped the board and found that the soldering connections are clean and separate. I think we'll have to use one of the spare sat amp boxes for AS1 for now, while we either declare this one manufacture defected or fix the issue.

I actually found the short on the PCB trace by just looking carefully at it. Attachment 1 shows the photo of it. Maybe we can fix this by simply cutting the tumor between the two traces (why are these traces so close together in such a large board anyways!!!), but I'm not sure if that is a reliable way of fixing this issue. I'll wait for Koji's comments on what to do with this. We'll recommence OSEM tuning for AS1 tomorrow with fixed electronics.

Attachment 1: signal-2022-01-11-184917.jpeg
signal-2022-01-11-184917.jpeg
  16577   Tue Jan 11 18:18:29 2022 AnchalSummaryBHDAttempted OSEM installation on AS1

[Anchal, Paco, Yehonathan]

Connected in-cir cable to new flange on ITMY Chamber

Connected OSEM one-by-one. Starting from top right  to left (PIn1)

1st connector: LL -> UR -> UL

2nd connector: LR -> SD

Loosening all OSEMs and taking them out and noting full bright readings:

  • SD: 29564 -> 14787
  • LR: 30902 -> 15451
  • UR: 29280 -> 14640
  • LL: 27690 -> 13845
  • UL: 27668 -> 13834

:( We had to stop here as we were unable to actuate on the side coils. We checked the signal chain and found that the monitor output of AS1 LL/SD coil driver is responding to offset changes in the coil output filter module of AS1 side. However, when we connected the output of the coil driver through a breakout board to the AS1 Sat Amp, we saw no signal. We tried switching the coil driver bo with another one one the rack but we found the exact same issue. This led us to believe that something must be wrong with the AS1 Sat Amp. We checked the output of the AS1 LL/SD coil driver without connecting it to the sat amp and found that the output was responding to our CDS changes. Then we checked the second "Coil Input" port of the AS1 Sat Amp, and found that pins 2-7 and pins 3-8 are shorted. This means channel 5 and 8 on this box would be shorted. This is the reason why we were unable to actuate on the coils. I'll work on debugging this box, my first guess is that the ribbon cable is bad.

  16575   Tue Jan 11 15:21:16 2022 AnchalUpdateBHDPR2 transmission calculation

I did this simple calculation where I assumed 1W power from laser and 10% transmission past IMC. We would go ahead with V6-704/V6-705 ATFilms 3/8" optic. It would bring down the PRC gain to ~30 but will provide plenty of light for LO beam and alignment.

Attachment 1: LO_power_vs_PR2_transmission.pdf
LO_power_vs_PR2_transmission.pdf
Attachment 2: PRC_Gain_vs_PR2_transmission.pdf
PRC_Gain_vs_PR2_transmission.pdf
Attachment 3: PRS_Trans_Calc.ipynb.zip
  16574   Tue Jan 11 14:21:53 2022 PacoUpdateElectronicsBS feedthroughs and in-vac cables installed

[Paco, Yehonathan, Chub]

The BS chamber 10" flange with 4 DSUB-25 feedthroughs has been installed with the cables connected at the in-vac side. This is the second of two flanges, and includes 4 cables ordered vertically in stacks of 2 & 2 for [[LO2-1, LO2-2, PR3-1, PR3-2]] respectively.

ELOG V3.1.3-