40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 141 of 341  Not logged in ELOG logo
ID Date Authordown Type Category Subject
  16247   Wed Jul 14 20:42:04 2021 gautamUpdateLSCLocking

[paco, gautam]

we decided to give the PRFPMI lock a go early-ish. Summary of findings today eve:

  1. Arms under ALS control display normal noise and loop UGFs.
  2. PRMI took longer than usual to lock (when arms are held off resonance) - could be elevated sesimic, but warrants measuring PRMI loop TFs to rule out any funkiness. MICH loop also displayed some saturation on acquisition, but after the boosts and other filters were turned on, the lock seemed robust and the in-loop noise was at the usual levels.
  3. We are gonna do the high bandwidth single arm locking experiments during daytime to rule out any issues with the CM board.

The ALS--> IR CARM handoff is the problematic step. In the past, getting over this hump has just required some systematic loop TF measurements / gain slider readjustments. We will do this in the next few days. I don't think the ALS noise is any higher than it used to be, and I could do the direct handoff as recently as March, so probably something minor has changed.

  16249   Fri Jul 16 16:26:50 2021 gautamUpdateComputersDocker installed on nodus

I wanted to try hosting some docker images on a "private" server, so I installed Docker on nodus following the instructions here. The install seems to have succeeded, and as far as I can tell, none of the functionality of nodus has been disturbed (I can ssh in, access shared drive, elog seems to work fine etc). But if you find a problem, maybe this action is responsible. Note that nodus is running Scientific Linux 7.3 (Nitrogen).

  12063   Tue Apr 5 11:42:17 2016 gaericqutamUpdateendtable upgradeTABLE REMOVAL

There is currently no table at the X end!

We have moved the vast majority of the optics to a temporary storage breadbord, and moved the end table itself to the workbench at the end. 

Steve says Transportation is coming at 1PM to put the new table in.

  9575   Sat Jan 25 21:09:16 2014 gabrieleHowToLSCProcedure to measure PRC length

I know the drawing is wrong. I put random distances, not realistic ones, and I did not try to get something close to reality. Once we put the measured distances, the drawing should (hopefully) be correct.

  228   Wed Jan 9 10:47:15 2008 frickeUpdateComputersethernet wiring in office/control room
The electrical people have been here for three days, installing ethernet cables and drops in the 40m office area, in the old conduits where there was power and 10base2. Soon we will have reliable ethernet connections, instead of relying on switches hanging from the ceiling, etc!
  10935   Fri Jan 23 14:25:03 2015 evanUpdateCDSNew netgpib scripts for SR785

Does netgpibdata/TFSR785 work at the 40m currently? I rsynced the netgpibdata directory to LHO this morning to do some measurements, but I had to modify a few lines in order to get it to call the SR785 functions properly. My version is attached.

Attachment 1: TFSR785.zip
  10363   Mon Aug 11 21:03:48 2014 ericq, ranaSummaryIOOMC demod measurement

We measured the TF of the MC Demod board today.

We set the Marconi to +3dBm and drove the PD IN port of the demod board, starting at 29.5 MHz. Then we looked at the beat signal amplitude in the output of the demod board. So this is a transfer function but with mag only. Plots from Q below.

Rana took the demod board out and took pictures of it. Inside, the post mixer low pass is a SCLF-5 from mini-circuits. This has a lot of cutoff down low. Since the purpose of this filter is only to cutoff the 2f-1f and the 3f-2f products, we need to have a lot of attenuation at 29.5 MHz. One day, we may want to re-instate that notch for the (3*f1- f_MC) beat frequency, but for now we want stability.

So, I recommend that we (Steve) get 3 each of the SCLF-10 and SCLF-10.7 from Mini-Circuits Tuesday morning. Maybe we can put them into a spare board?

Also, we should probably remove the 140kHz:70kHz lead filter which is in the MC servo board. Its out of date. I think it would be fine for us to get a 7-15 kHz UGF for the CM servo and the MC can basically do that already. Mainly we want to fix the high frequency shape to get more stability.

After the measurements and photos, we had to reset the MCWFS offsets to get the WFS to not break the lock. Seems very sensitive to offsets. Hopefully Andres will give us a new Gouy phase telescope.

  7388   Fri Sep 14 16:39:14 2012 ericq, jenneUpdateGeneralFirst In Vac Picture

After much fussing, we got a picture of MMT1 with the beam.

Using the iris doesn't seem feasible. Since it has to be significantly separated from the optic, it is hard to judge whether it is centered, especially in yaw.

It took ~30 min to get this picture. Comments on whether this kind of picture is good enough are welcomed, since there are many more to be taken.

Attachment 1: mmt1.jpg
mmt1.jpg
  9572   Thu Jan 23 23:10:19 2014 ericq UpdateGeneralVent so far

[ericq, Manasa, Jenne]

Summary: We opened up the BS and both ITM chambers today, and put the light doors on. //Edit : Manasa  Post-vent the MC was very much misaligned in yaw. Both the ITMs moved in pitch as inferred from the oplev; but there is still light on the oplev PDs//. We toiled with the PMC and mode cleaner for a while to get reasonable transmission and stability (at least for a period of time). We then tried to lock IR to the y-arm, to no avail. 

Locking the PMC doesn't seem very robust with the low power level we have; adjusting the gain at all when it's locked throws it right out. The mode cleaner spot was visibly moving around on MC2 as well. We'll continue tomorrow. 

Details about alignment efforts: Manasa and I tried for a while to try and align the y-arm for IR. Straight out of venting the green TM00 would lock to the y-arm with about .45, as compared to .8 before venting, so it didn't seem to drift too far. The x-arm would even flash any modes, however. For a while, IR was no where to be seen after the mode cleaner. Eventually, we used the tip tilts to bring the AS beam onto the camera, which exhibited fringes, so we knew we were hitting the ITMs somewhere. We wandered around with the ETM to see if any retroflection was happening, and saw the IR beam scatter off of the earthquake stop. We moved it to the side to see it hitting the OSEM holder, and moved down to the bottom OSEM holder to get an idea of where to put pitch to get roughly the center of the ITM, then undid the yaw motion.

There, we would see very infrequent, weak flashes. We weren't able to distinguish the mode shape though; however, the flashes were coincident with where the green would lock to a very yaw-misaligned fishbone mode, to the lower right of the optic's center. We figured that if we gradually fixed the green alignment with the mode shapes we could see and actually lock on, we could use the tip tilts to adjust the IR pointing and keep it coincident and eventually resonate more. However, this didn't really work out. The flashes were very infrequent, and at this point the PMC/MC were getting very touchy, and would cease to stay locked for more than a minute or two. At this point, we stopped for the day. 

 

  9579   Mon Jan 27 21:36:35 2014 ericq UpdateGeneralVent so far

After turning the slow FSS threshold down, the mode cleaner stays locked enough to do other things. We were able to align the tip tilts to the y-arm such that we were able to get some flashes in what looks like a TM00-ish mode. (It was necessary to align the PRM such that there was some extra power circulating in the PRC to be able to see the IR flashes on the ITMY face camera) This is enough to convince us that we are at least near a reasonable alignment, even though we couldn't lock to the mode. 

The x-arm was in a hairier situation; since the green beam wouldn't flash into any modes, we don't even know that a good cavity axis exists. So, I used the green input PZTs to shine the green beam directly on the earthquake stops on the ITMX cage, and then inferred the PZT coordinates that would place the green beam roughly on the center of ITMX. I moved the ETMX face camera such that it points at the ETMX baffle. I tried looking for the retroreflected green spot to no avail. Hopefully tomorrow, we can get ourselves to a reasonably aligned state, so we can begin measuring the macroscopic PRC length. 

  9583   Tue Jan 28 22:24:46 2014 ericq UpdateGeneralFurther Alignment

[Masasa, ericq]

Having no luck doing things remotely, we went into the ITMX chamber and roughly aligned the IR beam. Using the little sliding alignment target, we moved the BS to get the IR beam centered on ITMX, then moved ITMX to get good michelson fringes with ITMY. Using an IR card, found the retroflection and moved ETMX to make it overlap with the beam transmitted through the ITM. With the PRM flashing, X-arm cavity flashes could be seen. So, at that point, both the y-arm and x-arm were flashing low order modes. 

  12302   Thu Jul 14 22:29:57 2016 ericq UpdateGeneralETMX guide rod gluing / ETMY Magnet gluing

The pickle puckers came off ETMY cleanly yes ETMY now rests in the ring holder, under a glass jar, with all of its magnets.

We removed the guiderod gluing fixture from ETMX without any apparent damage to the fixture arm, optic, or guiderod epoxy joint. 

I started measuring some distances on the optic for the side magnet gluing, but am not sure of it yet. So, I didn't manage to start the gluing today. 

  12305   Fri Jul 15 16:23:51 2016 ericq UpdateGeneralGluing setbacks

[ericq, Lydia]

Here is a picture of the ETMX guide rod post-gluing. There is unfortunately a fair amount of excess. The "tab" is the result from the epoxy travelling along the finger of the fixture arm that held the guide rod.

We set out to glue the previously remove ETMX side magnet, and set up the fixture to do so. For ETMX we needed 3 mm of shimming on the thick side, and 6mm on the thin side.

However, while cleaning the magnet+dumbbell base of epoxy residue, I broke the dumbbell off of the magnet no

We then fetched the spare side magnet that Steve had been holding onto. While cleaning it, it was dropped and dissapeared from this plane of existence nono

So, instead of gluing a side magnet today, we are gluing the existing magnet and dumbbell back together:

Sadly, this used up the last of our EP30.nonono

Though Koji had the foresight to order more(yes), it will not arrive until Monday/Tuesday, so no side magnet gluing until then.frown

  12372   Thu Aug 4 14:21:21 2016 ericq UpdateComputer Scripts / ProgramsWeb things mostly back online

The nodus restart caused a bit of downtime. The apache configuration files were accidentally deleted the other day, so elog/svn/wikis were just holding on in memory; this fact was unfortunately not elogged. 

Things should be up and running again, except for the 8080->8081 elog redirection which I haven't been able to figure out.

I will also set up the NFS backup to include nodus configuration files from now on

  12373   Thu Aug 4 15:00:40 2016 ericq UpdateComputer Scripts / ProgramsWeb things mostly back online

Nodus' /export and /etc directories are now being backed up at /cvs/cds/caltech/nodus_backup

They will be rsync'd over as part of the nightly tape backups (scripts/backup/rsync.backup)

  12382   Sun Aug 7 14:53:39 2016 ericq UpdateSUSETMX Standoff gluing was successful

I came in to check on ETMX. I freed the earthquake stops, and found that the OSEMS were reasonably, but not perfectly, centered. Turning on the damping, I found that the pitch balance is biased slightly downwards at about ~0.5mrad, which is acceptable. 

As another check for how much we moved the standoff while gluing, we can look at the spectra of the OSEMS while the mirror is free swinging, and see if/how the resonance frequencies have moved around. As Gautam previously mentioned, the pitch frequency is even softer than we expected from the thicker ruby standoff alone. This is due to the excess glue around the guide rod forcing us to position the standoff even lower to have good contact with the optic's barrel. In the plot below, the design yaw/pit/pos frequencies are the dashed lines, and the measured frequencies are the solid lines. 

[The plot is not in spectral density units, so that the peak heights reflect real units of motion at each resonance frequency. Data and code used to generate the plot is attached] 

  Yaw Pitch Pos Side
Design frequencies from T000134: 0.773 Hz 0.856 Hz 1.001 Hz  
ETMX Measurement in-air 2010 0.828 Hz 1.04 Hz 0.908 Hz 0.949 Hz
Pre-gluing 0.785 Hz 0.709 Hz 0.949 Hz 0.975 Hz
Post-gluing 0.789 Hz 0.705 Hz 0.953 Hz 0.984 Hz

According to the calculations from ELOG 12316, this pitch frequency implies the support point is 0.317mm lower than the design value of 0.985mm. (However, this is just an approximation and does not include the fact that each standoff is at a different height.)

Nevertheless, this difference is frequency is not so large that the dynamics of the suspension will be qualitatively changed in some important way; really, the pitch frequency is just ~1.5dB lower. So, I deemed our standoff gluing a success, removed the optic from the suspension, and placed it in an optic holding ring after giving the top of the barrel a gentle drap wipe with some iso. At this point, I used the microscope to look at the ruby standoff groove. As far as I can tell, no glue has invaded the groove - it looks sharp as ever. (whew)

I also wiped the wire with acetone and easily removed the glue droplets. However, I noted that (as is the case for ETMY) the wire is deformed at the points where it was in contact with the standoffs. I wonder if we should re-suspend with new wire, or accept the current deformed wires.

In any case, we can now move on to air baking the ETMX tower and gluing the stray magnet back onto ETMY.

Attachment 1: ETMX_resonances.pdf
ETMX_resonances.pdf
Attachment 2: ETMX_SUSspectra.zip
  7294   Tue Aug 28 11:28:31 2012 ericqUpdatePSLPMC alignment going bad

Quote:

PMC transmission started going down this afternoon, around 3pm-ish.  Right now it's 0.775, which is very, very low.  The new MC locking stuff is engaged, so it's not the FSS slow servo's fault. 

EDIT: I just realized that the limit of 0 counts output of the MC2 MCL filter bank was still engaged, from a time earlier this afternoon when I had switched back to the old servo, so there was no feedback going back to keep the slow drift of the laser in check.  PMC trans isn't coming back instantly, so I'll check it again when I come in tomorrow.

 

By adjusting the PMC steering mirrors, Jenne and I realigned the PMC input beam. Transmission is at 0.829 now. 

  7295   Tue Aug 28 16:27:22 2012 ericqUpdatePSLPBS and Half Wave plates introduced

[Jenne, Eric]

We installed a Half Wave Plate -> Polarized Beam Splitter -> Half Wave Plate in the PSL beam line, immediately after the EOM, to be used for attenuating the beam when we vent, as in Entry 6892.

It was illuminating to discover that the optics labeled QWP0-1064-10-2 are indeed half wave plates, instead of quarter wave plates as QWP suggests. 

The PBS transmits "P"/Horizontal polarization, but the beam coming from the EOM is "S"/Vertically polarized, and we want to keep that, since we do not want the beam attenuated quite yet. 

So, we use the HWP to rotate the P from the EOM to S, so that the majority of the power passes through the PBS. The second HWP then rotates the transmitted S back into P, which continues to the mode cleaner. When we want to attenuate, we will simply rotate the first HWP to change the proportion of S polarized light that will pass straight through the PBS and towards the mode cleaner. 

After setting the proper HWP angles, we aligned the PBS via minimizing the MC reflection.

Since we have not yet attenuated the power, we have not yet changed the BS for the MC reflection, since this would damage the PD. The beam splitter will be changed out for a 100% reflectivity mirror to increase the power to the PD when we do.

 

  7297   Tue Aug 28 17:16:54 2012 ericqUpdatePSLPower reduced!

We have now reduced the power being input to the MC from 1.25W to 10mW, and changed out the MC refl BS for a mirror. 

The power was reduced via the PBS we introduced in Entry 7295.

While we were in there, we took a look at the AS beam, which was looking clipped on the monitor. Jenne felt that it appears that the clipping seems to be occurring inside the vacuum, possibly on the faraday. This will be investigated during the vent. 

  7306   Wed Aug 29 11:47:21 2012 ericqUpdateVACVenting

 [Steve, Eric]

I've been helping Steve vent this morning. The following things were done (from Steve's logbook):

  • Particle counts: 0.5 micron particles, 4200 counts per cubic ft
  • Vertex crane drive checked to be ok
  • Optical Levers set for local damping only
  • Saved some screens
  • PSL shutter and green shutters closed
  • HV Off checked, JAM nuts checked
  • Vac: Close V1, VM1, ans - VA6, open VM3 - RGA, cond: chamber open mode
  • 8AM: VV1 open to N2, regulator set  to 14 psi
  • 8:23AM: 35psi Instrument grade Air

(At this point, I took over the air canisters, while Steve made preparations around the lab. 

  • 9:00AM: 2nd air cylinder, 14 psi 
  • 9:40AM: 3rd air cyl
  • 10:20AM: 4th air cyl
  • 11:00AM: 5th air cyl

With the 5th cylinder, we began approaching 1 atm, so we slowed the regulator down to 5psi. Around 750 torr, Steve opened VV1 to air.

According to Steve, we will be at atmospheric pressure at  ~12:30pm.

  7308   Wed Aug 29 17:02:41 2012 ericqUpdatePSLPower reduced!

Quote:

We have now reduced the power being input to the MC from 1.25W to 10mW, and changed out the MC refl BS for a mirror. 

The power was reduced via the PBS we introduced in Entry 7295.

While we were in there, we took a look at the AS beam, which was looking clipped on the monitor. Jenne felt that it appears that the clipping seems to be occurring inside the vacuum, possibly on the faraday. This will be investigated during the vent. 

 The power has been increased to 20mW. We got the 10mW number from the linked elog entry above. However, after venting we were having problems locking the MC. Upon investigating past elog posts, we found that 20mW was actually the power used in the past. The MC will now autolock. 

  7337   Tue Sep 4 13:50:26 2012 ericqUpdatePSLPMC Realigned, power adjusted

 I adjusted the PMC alignment this morning, brought the transmission up to 0.83V.

After the lunch meeting, we found the the MC transmission was higher than recently seen. Turned out the HWP had drifted, causing 30mW to be input to the MC. I adjusted it back down to 20mW. 

  7377   Wed Sep 12 20:08:51 2012 ericqUpdateElectronicsAS beam scan

Quote:

We conducted a beam scan on the AP table of the AS beam. We used a lens to focus the beam onto a power meter, and slowly moved a razor blade across the beam using a micrometer, vertically and horizontally both in front of and behind the beam. We also had to block the beam next to the AS beam in order to do this, but is unblocked now. Mike will begin curve fitting the data to try and see if there is a different spot size given by the x-axis vs. the y-axis, and if the lens has any effect.

 [ericq, mikej, some input from zach]

After realigning the MC, the measurement was repeated this afternoon. This time, however, we isolated the beam from ITMY by misaligning ITMX. The beam looked somewhat elliptical to me, and Mike should have fits up tonight. Afterwards, ITMX was returned to the position I found it in, and the PMC shutter and access connector were closed. (Sorry about last night!)

  7958   Tue Jan 29 20:28:11 2013 ericqUpdateGeneralEarly work on Mirror Mounts

 [Q, Chloe]

Chloe has been to the lab twice to start up her investigations in acoustic noise coupling to mirrors. The general idea for the setup is a HeNe laser bouncing off a mirror and onto a QPD, whose signal provides a measure of beam displacement noise. The mirror will be mounted and excited in various ways to make quantitative conclusions about the quality of different mounting schemes.

We have set up the laser+mirror+QPD on the SP table, and collected data via SR560s->SR785, with the main aim of evaluating the suitability of this setup. The data we collected is not calibrated to any meaningful units (yet). For now, we are just using QPD volts.

Chloe collected data of vertical displacement noise for the following schemes: Terminated SR785 input, Terminated SR560 inputs, Laser centered directly onto the QPD, Laser shining on mirror centered on QPD, laser/mirror/qpd with some small desktop speakers producing white noise from http://www.simplynoise.com. Data shown below. 

early.pdf

 

 

  9442   Wed Dec 4 21:41:09 2013 ericqUpdateGreen LockingGreen PDH Characterization

 My job right now is to characterize the green PDH loops on each arm. Today, Jenne took me around and pointed at the optics and electronics involved. She then showed me how to lock the green beams to the arms (i.e. opening the shutters until you hit a TM00 shape on the transmitted beam camera). Before lunch, the y arm was easiest to lock, and the transmitted power registered at around 0.75. 

After lunch, I took a laptop and SR785 down to the y end station. I unhooked the PDH electronics and took a TF of the servo (without its boost engaged, which is how it is currently running) and noise spectrum with the servo input terminated.

I then set up things a la ELOG 8817 to try and measure the OLTF. However, at this point, getting the beam to lock on a TM00 (or something that looked like it) was kind of tough. Also, the transmitted power was quite a bit less than earlier (~0.35ish), and some higher order modes were higher than that (~0.5). Then, when I would turn on the SR785 excitation, lock would be lost shortly into the measurement, and the data that was collected looked like nonsense. Later, Koji noted that intermittent model timeouts were moving the suspensions, thus breaking the lock. 

We then tried to lock the x arm green, to little success. Koji came to the conclusion that the green input pointing was not very good, as the TM00 would flash much less brightly than some of the much higher order modes. 

Tomorrow, I will measure the x arm OLTF, as it doesn't face the same timeout issue that is affecting the y arm.

  9447   Fri Dec 6 12:45:51 2013 ericqUpdateGreen LockingGreen PDH Characterization

Yesterday, made a slew of measurements on the X-arm when locked on green. By tweaking the temperature loop offset and the green input PZT pointing, I was able to get the transmitted green to around 1.0. The PDH board gain was set to 4.0. I had trouble making swept sine measurements of the OLTF; changing the excitation amplitude for different frequency ranges would result in discontinuities in the measured TF, and there was only a pretty narrow band around the UGF that seemed to have reasonable coherence.

So, I used the SR785 as a broadband noise generator and measured the TF via dividing the spectra in regions of coherence. Specifically, I used the "pink noise" option of the SR785. I also used a SR560 as a low pass to get enough noise injected into the lower frequency range to be coherent, while not injecting so much into the higher frequencies that the mode hopped while measuring. 

The servo board TF was easily fitted to a 4th order zpk model via VFIT, but I'm having trouble fitting the OLTF. (There is a feature in the servo TF that I didn't fit. This is a feature that Zach saw [ELOG 9537], and attributed to op amp instability) Plots follow. Also, while these need to be calibrated to show the real noise spectrum of the cavity motion, I'm attaching the voltage noise spectra of the error and control signals as a check that electronics/PD noise isn't dominating either signal. 

LoopTF.pdfServoTF.pdf

MixerOutput.pdfServoOutput.pdf

  9459   Thu Dec 12 21:23:15 2013 ericqUpdateGreen LockingBetter Xarm OLTF

With the newly repaired PDH board, I spent some time with the x arm green PDH loop. I found it SO MUCH EASIER to measure the OLTF by injecting before the servo, instead of after it. (i.e. I added a swept sine from the SR785 to the mixer output (error signal) before the servo input). This is likely because the error signal is much flatter. I used a 10mV excitation across the whole frequency range (30-100kHz). 

Here's the OLTF. I'm working on fitting it and breaking it up into its constituent TFs, then making a rudimentary noise budget. 

Dec12_Xarm_OLTF.pdf

  9496   Thu Dec 19 19:45:12 2013 ericqUpdateGreen LockingX-Arm Green PDH Loop Stuff
With the fixed servo box, I remeasured the OLTF, the servo, and the low pass filter between the mixer output and servo input. Dividing the OLTF by the servo and LPF transfer functions should just leave the the [laser PZT->cavity->PD] transfer function, which should have the shape of the cavity pole plus any delay in the loop, up until the PZT is no longer linear / the measurement has bad SNR.

I'm missing a few pieces of the loop. While I know the PD gain in V/W, I don't know how much power is in the sideband, which affects the slope of the PDH error function. Also, I've found old ELOG posts mentioning either 1 or 5MHz/V being the NPRO PZT response, but am not sure how to determine what it actually is. These are essentially just scalars though, so finding the reason for low phase margin doesn't depend on them.

Here are the TFs I've measured ("residual" refers to OLTF/(servo*LPF)):



The teal "residual" TF presumably owes its shape to the cavity pole + the time delay around the loop. Messing around with the data, the shape fits very well to a real pole at 27kHz and a ~3usec delay. I have no real way to back that up as the unique truth behind it, however. Is there a good way to measure the delay? Without assuming any delay, the shape is best fit by a real pole at 26kHz and some funky complex zeros.

Another thing to look at is the CLG implied by the measurement of the OLTF, given by 1/(1-G). I plotted this quantity for the measured loop, and also for G/2 and 3G/2 to get an idea for how it changes as you turn the servo gain knob. I measured with the knob at 4.0. There seems to be quite a bit of gain peaking!



Also, I drew up a simple block diagram sort of thing to show how everything is connecting down at the green electronics rack at the end of the X arm (while totally glossing over the optical elements involved). This hopefully helps anyone who wants to inspect/take apart/massacre the setup.

  9539   Wed Jan 8 16:08:52 2014 ericqSummaryLSCEffect of PRC length mismatch on error signals

 [ericq,Gabriele]

So, we want an relatively quick measurement of the PRC length error (with sign!) at the order of .5 centimeter or so. Rana suggested the "demodulation phase method," i.e. lock the simple Michelson, measure what demodulation phase brings the 1F signal entirely within the phase quadrature, then lock the PRMI and measure the demodulation phase again. This tells you something about the length of the PRC. 

Gabriele and I worked through a simulation using MIST to determine how to actually do this. We simulated the case of injecting a line at 1kHz in the laser frequency via the laser's PZT and looking at the transfer function of the 1kHz signal to the I and Q at the 1F AS demodulated signal when locked. (Michelson locked on the dark fringe, PRC locked on 11MHz sideband) With the I and Q in hand, we can measure some demodulation phase angle that would bring everything into I. 

When the PRC length is in the ideal location, the demodulation phases in the two cases are the just about the same. Sweeping the length of the PRC around the ideal length gives us a monotonic function in the difference in the demodulation phases:

phaseVlength.pdf

So, with this simulation, we should be able to calibrate a measured difference in demod phase into the length error of the cavity! We will proceed and report...

  9544   Thu Jan 9 17:58:31 2014 ericqSummaryLSCEffect of PRC length mismatch on error signals

[ericq, Gabriele, Manasa]

 We wanted to perform the PRC length measurement today with an AS11 signal, but such a signal didn't exist. So, we have temporarily connected the AS110 PD signal (which is some Thorlabs PD, and not a resonant one) into the REFL11 demod board. 

We then proceeded with the goal of locking the PRC with REFL165. A few parameters that were changed along the way as we aligned and locked things:

  • the XARM gain was increased from 0.4 to 0.5 to help it acquire lock
  • the MICH gain was decreased from -10 to -5 since there was some gain peaking in its servo output
  • the REFL165 demodulation phase was changed from 155 to 122, to place a PRCL excitation entirely within I (we did this while locked on the carrier)

Sadly, in the end, we couldn't lock the PRC on a sideband in a stable manner. The alignment would drift faster than we could optimize the alignment and gains for the PRC. I.e. we would lock the PRC on the carrier, align PRM (and maybe touch ITMX) to maximize POPDC, switch to sideband locking, try to lock, and things would start looking misaligned. Switching back to carrier locking, the beam spots on REFL (for example) would have moved.

Manasa noted the MC_TRANS_Y has been substantially drifting along with small drift in MC_TRANS_P as well. So we need to fix the source of the mode cleaner beam drifting if we want to make this measurement. 

  9560   Thu Jan 16 21:38:13 2014 ericqUpdateLSCRepeat of PRC length measurement

[ericq,Jenne]

Since we don't have agreement between the measurements we made the other day and the earlier estimations, I wanted to repeat the demodulation angle measurement. We had to do a few things to keep the PRMI locked, since in the last few days, it hasn't been stable enough.

The mode cleaner had been very fussy lately; the WFS were pushing in a way that caused fast oscillations of the transmission and reflection powers. I turned off the servos, manually aligned the mode cleaner to transmission of about 15k and refl of about .4, centered the beams on the WFS QPDs, and turned the loops back on. Things were much stable after that. Also, Jenne noticed that the PMC loop had walked the laser PZT temperature to a bad place, and fixed it.

After aligning the carrier locked PRMI, the last piece needed to get things stable enough for sideband locking was turning off the angular damping on the PRM suspension screen (this was turned back on when we were done). Waiting until evening noise levels probably helped too. We used a 1000 count MICH excitation in the PRMI case, and recorded data for about a minute in one degree steps around the demodulation phase that looked to put the excitation entirely within the Q of the PD. Also, we notched out the excitation frequency in the MICH servo bank for today's measurement; I think it's outside of the loop bandwidth anyways, but it's good to be sure. 

Jenne and I pondered a bit whether changing the AS55 demodulation phase while it (AS55 Q) is being used as the MICH control signal introduces subtleties that we haven't anticipated, but couldn't come up with anything concrete. Changing the angle from the what maximizes the Q just looks like a slight change in MICH gain, and shouldn't affect the phase of the excitation signal on the PD...

In any case, the data have been recorded, and the results will follow soon. 

  9566   Wed Jan 22 16:36:45 2014 ericqUpdateElectronicsRF distribution box power button fail

Quote:

Rana, Gabriele and I are trying to measure the FSR of the PRC (elog about that later), and we turned off the power to the RF generation box so that we could switch cables at the EOM combiner.  However, as in elog 9101, the power button won't latch when we try to turn the power back on.  All 3 of us tried, to no avail.  For our measurement, poor Gabriele is standing holding the button pushed in, so that we can have some RF sidebands. 

Tomorrow, we'll have to pull the RF generation box, and put in a better switch.

I replaced the stupid broken fancy button with a simple sturdy switch. I had to file out the hole in the chassis a bit, but the switch is pressed in tightly and securely. I put the box back in the rack, but the power cable was coming directly from the power supplies with no fuses. The box was drawing ~.9 and 1.5 Amps from two supplies, so I put 2A fuses on both. Plugged everything back in, and the mode cleaner locks, so it looks like all is well.

RXA: When its so close, I prefer to size it up by 1 step. Please change to 5A fuses. Otherwise, we may blow them from power glitches.

Q: 5A fuses have been swapped in

  9608   Thu Feb 6 16:41:31 2014 ericqUpdateGeneralIn-Vac Alignment

[Manasa, ericq]

Both arms have been aligned via ASS. PRC locked on carrier.

SB locking hasn't happened yet...

Details:

  • Aligned MC at low power, measured spots
  • Found ITMX AS, REFL spots on cameras. Couldn't find ITMY spot. Found x-arm flashes with PRM aligned.
  • MC Refl Y1 mirror was replaced with the 90:10 BS; blocked WFS path until MC was aligned
  • PMC power was increased (~1.4W directly before PSL shutter)
  • Touched up MC alignment, reactivated high power autolocker, measured spots.
  • Locked x-arm on IR, ran ASS
  • Found ITMY spot on AS camera, locked y-arm, ran ASS on both arms
  • Checked green beams. Y-arm locks at around .6, X-arm at around .2 (input steering needs adjustment)
  • Centered beams on WFS, reset filter bank offsets, turned on WFS
  • Aligned PRM, locked PRC on carrier.
  • Tried locking PRC on sideband, had troubles. Looks like there is some increased seismic activity; might be the culprit.

 

  9609   Fri Feb 7 12:43:12 2014 ericqUpdateGeneralIn-Vac Alignment

[ericq]

PRC Locked on Sidebands

Jenne reminded me that if we change a cavity, phases can change... So, first, I locked the PRC on the carrier, and then gave it MICH and PRCL excitations to optimize the AS55 and REFL55 phase rotation angles by looking at the excitation demodulated outputs of the unused quadrature (i.e. we want all of MICH to be in AS55 Q, so I rotated the phase until C1:CAL-SENSMAT_MICH_AS55_I_I_OUTPUT was zero on average).

This resulted in:

  • AS55: 7 -> -5.5
  • REFL55: 73 -> 86.9

I then used the same settings as in ELOG 9554, except I used -1s instead of +1s for the POP110I trigger matrix elements. (I'm not sure why this is different, but I noticed that the PRC would lock on carrier with positive entries here, so I figured we wanted the peaks with opposite sign).

So far, it seems more stable than when we were doing the demodulation phase measurements, it's been locked for >15 minutes without me having to tweak the gains or the alignment from the carrier locked case.

  9612   Fri Feb 7 13:30:25 2014 ericqUpdateGeneralIn-Vac Alignment

Quote:

 

 Nice work!!  As with all the other RF PDs, POP110's phase likely needs tuning.  You want POP110 (and POP22) I-quadratures to be maximally positive when you're locked on sidebands, and maximally negative when locked on carrier.  What you can do to get close is lock PRC on carrier, then rotate the POP phases until you get maximally negative numbers.  Then, when locked on sideband, you can tweak the phases a little, if need be.

Adjusted the angles as Jenne suggested:

  • POP22: 105 -> 163
  • POP110: 150 -> -83
  9614   Sat Feb 8 15:14:18 2014 ericqUpdateLSCPRM Sideband Splitting

[ericq]

Today, I kicked the PRM to see the sideband splitting in POP110. 

First, we can qualitatively see we moved in the right direction! (See ELOG 9490)

PRCpeaks.pdf

I fit the middle three peaks to a sum of two Lorentzian profiles ( I couldn't get Airy peaks to work... but maybe this is ok since I'm just going to use the location parameter?), and looked at the sideband splitting as a fraction of the FSR, in the same way as in Gabriele's ELOG linked above.

This gave: c / (4 * f55) * (dPhi / FSR) = 0.014 +- .001 

Since the PRC length with simultaneous resonance (to 1mm) is given by c / (4 * f11) = 6.773, this means our length is either 6.759m or 6.787m (+- .001). Given the measurement in ELOG 9588, I assume that we are on the short side of the simultaneous resonance. Thus

The sideband splitting observed from this kick indicates a PRC length of 6.759m +- 1mm

  9627   Wed Feb 12 14:05:16 2014 ericqUpdateSUSPRM Oplev Checked Out

 [ericq]

Steve fixed the PRM oplev pointing. I turned on the loops and measured the OLG, then set the pitch and yaw gains such that the upper UGF was ~8Hz (motivated by Jenne's loop design in ELOG 9401)

  • Pitch gain: +7
  • Yaw Gain: -5

I then measured the oplev spectra of the optics as they were aligned for PRMI. (OSEMs on, oplevs on, LSC off, and ASC off)

Next, Jenne and I need to fix the ASC loop such that it properly accounts for the oplev loop. 

ol_spectra.pdf 

 

  9637   Fri Feb 14 02:09:55 2014 ericqUpdateElectronicsTransmon QPD whitening

 [Quick post, will follow up with further detail later. Excuse my sleepy ELOG writing]

Goal: Check out the transmon QPD signal chain; see if whitening works. Assess noise for 1/sqrt(TRX/Y) use. 

First impression: Whitening would not switch on when toggling the de-whitening. The front monitors on the whitening boards are misleading; they are taken a few stages before the real output. ADC noise was by far the limiting noise source. 

I updated the binary logic in the c1scx and c1scy to actually make the binary IO module output some bits. 

After consulting a secret wiring diagram on the wiki, not linked on the rack information page (here), I worked out which bits correspond to the bypass switches in the whitening board ( a fairly modified D990399, with some notes here)

Now, FM1 and FM2 (dewhitening filters on the ETM QPD quadrants) trigger the corresponding whitening in the boards. Here's a quick TF I took of the quadrant 1 board at ETMY. (I should take a whitening+dewhitening TF too, and post it here...)

qpdWhitening.pdf

Seems to roughly work. Some features may be due to non-accounted for elements in the anti-imaging of the DAC channels I used for the excitation, or such things. The board likely needs some attention, and at least a survey of what is there. 

I also need to take dark noise data, and convert into the equivalent displacement noise in the 1/sqrt(TRX/Y) error signals. For the no-whitening ADC noise, I estimated ~1pm RMS noise on a 38pm linewidth of PRFPMI arms. 

  9642   Mon Feb 17 20:35:19 2014 ericqUpdateElectronicsTransmon QPD whitening

My apologies for all of that crap I left at the Y-end... I cleaned the rest of it up today. 

I took transfer functions of the four ETMY QPD whitening channels today. (Attempted the ETMX ones too, but had troubles driving the board; detailed below). I've attached a zip with the DTT xml files for the cases of no whitening / 1 whitening stage / both whitening stages engaged. Here's a plot of both whitening stages engaged. 

qpdY2whit.pdf

 

Given the way I measured, the DAC output anti-imaging is in the TFs as well. ( This is a D000186 board; with something like a 4th order elliptic LP, but I need to look at the board / fit the TF to see the parameters, there are different revisions with different filter shapes.) 

The c1scy model had excitation blocks on some of the unused DAC channels (C1:SCY-XXX_CHAN9 etc.), but these were in the second DAC output connection, and not cabled up. However, the 8th channel on the DAC had no connection in the simulink model, so I added another excitation block there (C1:SCY-XXX_CHAN8), and used the anti-imaging front panel lemo connector to drive the input of the whitening board. 

I also added a similar channel to the SCX model, but no data would show up in the channel as viewed by data viewer (though the channel name was black), or in analog world. There's the additional weirdness that the SCY excitation channels show up under SCX in DTT and awggui... I'm not entirely sure what's going on here.

I still need to look at the noise, and peek inside the boards, to check for homemade modifications and see if there are bad things like thick film resistors that may be spoiling the noise performance...

Attachment 2: ETMY_QPD_whitening.zip
  9654   Wed Feb 19 11:00:16 2014 ericqUpdateLSCSome Simulation Efforts

 Q EDIT: THIS IS WRONG. I LOCKED PRC ON THE CARRIER

 As Koji measured the other day: MICH and PRCL seem very degenerate in the 3f REFL PDs. 

I'm using this as a motivation to do some simulation in MIST and try to understand the best way to implement the 3F locking scheme. Hopefully my thinking below isn't nonsense...

First, I modeled the PRC with no arm cavities and the estimated cavity length I got with the PRM kick measurement, and looked at the REFL sensing matrix.

PRMISensingAsIs.pdf

This agrees with the observed degeneracy. I then modeled the case of the PRC length that gives coincident SB resonance, again with no arm cavities.

PRMISensingCoinc.pdf

Now there is good separation in REFL165. (REFL33 still looks pretty degenerate, however). This raised the question, "What does the angle between MICH and PRCL in REFL165 do as a function of macroscopic PRC length?" 

MICHvPRCLangle.pdf

  • We see ~90 degrees at coincident resonance
  • Shortening the cavity, which we did to account for the arms, quickly shrinks the angle
  • Presuming we moved to make the cavity 4cm shorter implies we had ~45 degrees between MICH and PRCL in REFL165 before the move. (Is this consistent with earlier observations?)

To me, this implies that locking the PRC on 3F from scratch won't be simple. However, the whole point of the PRC length choice is to have coincident SB resonance when the arms are resonating.

So: even if we're not spot on, we should be relatively close to the PRC length where having arms resonant gives us simultaneously resonant upper and lower sidebands, where MICH and PRCL should be orthogonal-ish. I.e. building up a little bit of IR power in the arms may start to break the degeneracy, perhaps allowing us to switch from 1F to 3F locking, and then continue reducing the CARM offset. 

So, I ultimately want to model the effect of arm power buildup on the angle between MICH and PRCL in the 3f PDs. This is what I'm currently working on. 

So far, I have reproduced some of the RC modeling results on the wiki to make sure I model the arms correctly. (I get 37.7949 m as the ideal arm length for a modulation freq of 11.066134 MHz vs. 37.7974m for 11.065399 MHz as stated on the wiki). Next, I will confirm the desired PRC length that accounts for the arms, and then look at the MICH vs PRCL angle in the REFL PDs as a function of arm power or detuning. 

ArmLengthChoice.pdf

  9656   Wed Feb 19 14:14:46 2014 ericqUpdateLSCSome Simulation Efforts

 Q EDIT: THIS IS WRONG. I LOCKED PRC ON THE CARRIER

Koji noted oddities in the sensing matrix results I had gotten; namely that the plots showed REFL33 not changing at all, when we know for a fact that this should not be the case. 

Gabriele lent his eyes to my code, and came up with the idea that the modulation depths I was using were maybe not ideal (.1 for both 11 and 55). This affects REFL33 in that it is not simply Carrier * 33Mhz + 11Mhz * -22Mhz but also 22MHz * 55MHz, etc. 

I got more realistic values from Jenne (0.19 for 11MHz and .26 for 55Mhz) and re-ran the code, with more realistic results. The behavior for 165 has remained the same, but the other signals are more well behaved. 

Moral of the story: the modulation depths affect the 3f signals in a complicated way.

PRMISensingAsIs.pdf

PRMISensingCoinc.pdf

MICHvPRCLangle.pdf

 

 

  9657   Wed Feb 19 16:42:08 2014 ericqUpdateLSCSome Simulation Efforts

Disregard previous ELOGs, I had the PRC locked on carrier 

Locked on the sideband, the MICH / PRCL angle is much less sensitive to the PRC length, and shouldn't in fact be as degenerate as we've seen in reality. 

SBLOCK_PRMISensingAsIs.pdfSBLOCK_MICHvPRCLangle.pdf

So, my simulations no longer provide any reason for the 3F signals to be so degenerate. 

  9660   Fri Feb 21 12:45:57 2014 ericqUpdateLSCEquivalent Displacement Noise from QPD Dark Noise in SQRTINV

EQ UPDATE: Measured it wrong the first time, fixed now.

I measured the spectra of the SQRTINV channels from dark QPDs, with offsets adjusted to imitate various transmission levels. (While the dark noise stays constant in terms of, say, TRX counts, 1/sqrt(TRX) isn't linear, and so the noise coupling depends on the TRX offset). 

SQRTINVspectra.pdf

I did some calculations to turn this into the equivalent displacement noise when using SQRTINV as an error signal. This depends on where on the fringe you are locking, since the slope of SQRTINV vs. position is not constant, and can only really be treated as linear down to about 1/3 of a line width away from full resonance. In my calculations, I assumed a coupled arm line width of 38pm, and a full transmission of 700 counts in TRX/Y. 

The QPD dark noise RMS when two line widths away (TR = 40) is about 5fm, and only goes down from there. 

SQRTINV_DarkNoise.pdf

  9670   Tue Feb 25 14:48:49 2014 ericqUpdateLSCChanging PRCL offset changes REFL 165 degeneracy

After speaking with Jenne and Gabriele, I did a little bit of simulating based on my earlier code that looked at the angle of MICH vs. PRCL, just with cavity detuning instead of macroscopic length change.

The zero point in the following plots is with the PRC locked on the sideband. The PRC detuning was done by changing the PRM-BS microscopic length (in terms of phase), and the MICH detuning was done by adding half of the detuning to the BS-ITMY distance, and subtracting half of it from the BS-ITMX distance. 

MICHvPRCLangle_wOffset.pdf

 

This plot is in terms of radians, so to roughly relate it to line width, here's a plot of the POP powers as a function of the PRC detuning. 

SBprclPeaks.pdf 

  9671   Tue Feb 25 16:07:33 2014 ericqUpdateLSCChanging PRCL offset changes REFL 165 degeneracy

 And glossing over the MICH offset, here's the PRC offset plots in displacement, rather than radians.

The simulation is actually slightly different now. I now use nominal ITM T values (T=.014) instead of the random R=.99 I had in place. 

MICHvPRCLangle_wOffset.pdfMICHvPRCLangle_wOffset_fullscale.pdf

(correction: Field Power should be Field Amplitude in the first plot)

  9692   Wed Mar 5 16:27:51 2014 ericqUpdateLSCPreliminary Arm Loss Measurements

I measured the arm cavity losses as Kiwamu did way back in ELOG 5074.

I used the same logic as the ../scripts/LSC/armloss script, but did it manually. This meant:

  1. Lock and ASS-Align both arms. 
  2. Misalign the ITM of the arm that I'm not measuring, to get its spot off of AS
  3. Take 10 seconds of ASDC_OUT data while the arm is locked. 
  4. Unlock, misalign ETM of arm of interest, take another 10 seconds of ASDC_OUT
  5. Relock, run ASS, goto #3

Analysis was done similar to ../scripts/LSC/armloss.m. This uses the nominal T values (.014 and 15e-6) to estimate the input power from the unlocked ASDC data, and the cavity reflectivity from the locked ASDC / input power. Then, loss is calculated by:

  • Pin = ASDC(unlocked) / R1
  • Rc = ASDC(locked) / Pin
  • rc=sqrt(Rc), etc.
  • Loss = 1 - (( 1 / r1r2)) * ( 1 - t1^2 r2 / (r1 - rc)) ^2

I did this for pairs of locked / unlocked data stretches. (Subsequent pairs maybe have slightly different things going on, but each pair was taken within a minute or so of each other)

Unfortunately, during the X Arm measurements, the MC was misbehaving with large REFL fluctuations, so I don't have confidence the results.

The Y Arm data seems fine, however. 

The Y arm loss is 123.91 +/- 10.47 ppm 

(Trial-to-Trial fluctuations dominate the fluctuations within each trial by far, and their standard deviation is what I report as the random error above)

This seems roughly in agreement with old values I've seen in the ELOG. I'll remeasure the x arm tomorrow during the day. Here's a plot showing the ASDC values of the Y Arm measurements. 

Yarm.pdf

  9693   Wed Mar 5 18:04:36 2014 ericqUpdateLSCEquivalent Displacement Noise from QPD Dark Noise in SQRTINV

At today's meeting, it was suspected that these noise levels were far too low. (ELOG 9660)

I've attached the math I did to get the conversions, as well as the dark noise SQRTINV spectra at various imitated transmission values and the python script that does the converting. 

I've gone over my calculations, and think they're self-consistent. However, a potential source of misestimation is the treatment of the Lorentzian profile simply existing with the coupled arm line width (38pm). The conversion to m/rtHz is directly proportional to the line width of the transmission peak, so if it is much broader in practice (because of imperfect PRC buildup or something), the noise will be that much worse.

I'm open to any other feedback about what I may have done wrong!

 

Attachment 1: calc1.jpg
calc1.jpg
Attachment 2: calc2.jpg
calc2.jpg
Attachment 3: SQRTINVspectra.dat.zip
Attachment 4: darkTransmonSpec.py
#! /usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt

data = np.loadtxt('./SQRTINVspectra.dat')

# Coupled arm linewidth
w = 38e-12
# Lorentzian value at full resonance
I0 = 700
... 21 more lines ...
  9710   Mon Mar 10 21:14:58 2014 ericqSummaryLSCComposite Error Signal for ARms (3)

Using Koji's mathematica notebook, and Nic's python work, I set out to run a time domain simulation of the error signal, with band-limited white noise added in. 

model.png

Basically, I sweep the displacement of the cavity (with no noise), and pass it to the analytical formulae with the coefficients Koji used, with some noise added in. I also included some 1/0 protection for the linearized PDH signal. I ran a sweep, and then compared it to an ALS sweep that Jenne ran on Monday; reconstructing what the CESAR signal would have looked like in the sweep. 

The noise amounts were totally made up. 

They matched up very well, qualitatively! [Since the real sweep was done by a (relatively) noisy ALS, the lower noise of the real pdh signal was obscured.]

simSweep.pdfalsSweep.pdf

Given this good match, we were motivated to start trying to implement it on Monday. 

At this point, since we've gotten it working on the actual IFO, I don't plan on doing much more with this simulation right now, but it may come in handy in the future...

  9714   Tue Mar 11 15:01:28 2014 ericqUpdateComputer Scripts / ProgramsMC Signal Monitoring

Two weeks ago (Feb 26) I took the "Q MON" output of the demodulator that sends its Q output to the MC servo board as the error signal, and connected it to an SR785, so we can occasionally monitor the error signal noise. (Also, I did not appropriately ELOG the fact I touched things...)

I'm working on an automated script to do the monitoring, but the wireless router that the SR785 is connected is wicked slow. I should run an ethernet cable to it...

I'm just figuring I'll look at the full span (~100kHz) spectrum every ten minutes, and compare it to some nominal spectrum from a known-good time, and the last few hours.

  9720   Tue Mar 11 19:07:24 2014 ericqUpdateElectronicsHigh gain Trans PD electronics change

Speaking of the whitening board, I had neglected to post details showing the the whitening was at least having a positive effect on the transmon QPD noise. So, here is a spectrum showing the effects that the whitening stages have on a QPD dark noise measurement like I did in ELOG 9660, at a simulated transmission level of 40 counts. 

The first whitening stages gives us a full 20dB of noise reduction, while the second stage brings us down to either the dark noise of the QPD or the noise of the whitening board. We should figure out which it is, and fix up the board if necessary. 

SQRTINVwhitening.pdf

The DTT xml file is attached in a zip, if anyone wants it.

Attachment 2: sqrtinvWhitening.zip
ELOG V3.1.3-